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1. Introduction

Let B be a commutative Banach algebra. A subspaceM of B has the multi-
plicative extension property (m.e.p.) if every linear functional on M of norm
at most one is the restriction to M of a multiplicative linear functional on B.
(See [1], [2] and [6].) Thus a subspace with the m.e.p, has the property that
its conjugate space consists of scalar multiples of multiplicative functionals.
This suggests the following generalization.

DEFINITION. A subspace M of B has the generalized m.e.p, if for some
a > 0, every linear functional on M of norm at most a is the restriction to M
of a multiplicative linear functional on B. (In this case we say M has the
a-m.e.p. If a 1, we just say M has the m.e.p.)

In [1] we considered certain examples of subspaces with the m.e.p. The
purpose of this paper is to determine circumstances under which there exist
subspaces with the generalized m.e.p. The basic general result is Theorem 2.2
which gives necessary and sufficient conditions for the existence of such a sub-
space. Theorem 2.3 gives a sufficient condition that we have found useful in
construction of examples. These conditions were inspired by the construction
in [1] of a subspace of the disc algebra with the m.e.p.

In Section 3 we investigate the generalized m.e:p, in function algebras on
compact metric spaces and in the algebras LI(G), M(G), and H. We give
an example of such a subspace of M(G) that is different in nature from the
original example of Hewitt and Kakutani [2].
The following notation is used throughout this paper. D is the open unit

disc, 2 is the closed unit disc, and I is an index set. t denotes the functions
on I into 2 with the product topology, and is the projection of t into its ith

coordinate. is the element of gt with (j) 0 if i j and (i) 1. If
F is a subset of a Banach space E, c.l.s. F denotes the closed linear span of F.
We wish to thank the referee for pointing out an error in our original state-

ment and proof of Theorem 2.2.

2. Generalities

Throughout this section B is a commutative Banach algebra with maximal
ideal space 9. . We begin with a simple lemma giving conditions
under which the generalized m.e.p, is preserved under isomorphisms.
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LEMMA 2.1. Suppose M1 has the al-m.e.p, in B, T is a continuous linear
operator ofM into B, and is a homomorphism ofB into B1 such that b T(f) f
for all f e M1. Then T(MI) has the a-m.e.p, in B, where a al/l T [[.

Proof. Let M T(M) and a a/ll T II. If L e M* and l]L -< a, then
[[ T*L <- al, so there exists h e 9E, such that T*L(f) ](hl) for all f e M.
Let h 7*(h ). Then h e 9. and for Tf e M,

L(Tf) T*L(f) ](h) ( Tf) ^(h) (Tf) ^(h).

THEOREM 2.2. B has an infinite-dimensional subspace with the generalized
m.e.p, if and only if the following conditions hold.

a There is a subset X c E, an infinite set I, and a continuous map of
X onto a compact convex symmetric subset of 2 which contains the functions, ieI.

b IfM c.l.s. r o i e I}, there is a continuous operator T M B
such that (Tg) X g for all g e M ^.

Suppose M is an infinite-dimensional subspace of B with the
Let

{f," i e I}

be a maximal topologically free subset of M1 (i.e. fi c.l.s. {f i # j e I} such
that fi 1/a for all i e I (see [8, Propositions 1 and 2] and [9, p. 221]).
Clearly I is an infinite set. Let

M c.l.s. {fi: i e I}
and let

X {mOE:lf(m)l < allf] forall feM}.

Then X is a subset of S,, the closed ball of radius a in M*.
For L e S, and i e I, let (L)(i) L(f). Then is continuous in the

weak* topology of S, into 12. Hence (S,) is compact, Let K (X) and
=[x.
By the Hahn-Banach theorem, M has the a-m.e.p, in B. Therefore

K I,(S,), and it is easy to check that K is compact, convex, and symmetric
in . Since {f i e I} is topologically free, for each i e I there is an L e S,
such thatL(f) a]]fll landL(f) 0forj# i. Thus &eKforall
i e I, and (a) holds.

If f M, we can choose x0 e X such that If(x0) a f II. Thus

[lf[[ --< (1/a)]]lX
Also ] X r,o, for each i e I. Let v(f) ]1 X for f e M, and let
M^ v(M) Then v maps M bicontinuously onto M^ Taking T v-we have (b).

Conversely, suppose (a) and (b) hold. Let K (X) and M T(M^).
Then M isbicontinuously isomorphic to M and is the closed linear span of the
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linearly independent family
{T(o ) i e I}.

Write f T( o +).
Since K is a compact convex symmetric subset of the Banach space of

bounded functions on I, it follows from the result of Phelps [6] that the space
of all continuous linear functions on K has the m.e.p, in C(K). If

2 c.l.s. {ril K" ieI},

then 2 has the m.e.p, in C(K), andM {1 o

[l sup{[/o(

because maps X onto K. Thus r

Suppose k is linear functional on Mwith ]]k 1. Then r*k e and
r g 1, so there is some e K such that (r*k)(l) l(k) for nil e 2 Be-

cause is onto we can choose x e X such that (x) k. Thus k(l o )
(r )(1) l(k) o (x) for all e 2. Hence M has the m.e.p, in C(X)
the bounded continuous functions on X.
Now T M B, and we have a homomorphism v of B into C(X) defined

by v(f) f] X, so that v Tf f for all f e M. Thus by Lemma 2.1, M has
the a:m.e.p, in B, where a 1/ T ].
To apply Theorem 2.2 to a given Banach algebra, one must not only be able

to construct the subspce M with the m.e.p, in C(X) for some X , but
also to obtain a linear operator T M B which is continuous. In Theorem
2.3 we have an alternative method that shifts the emphasis to a better choice
of X.

THEOREM 2.3. Let X and suppose tre is a continuous map ofX to
such that for each i e I there is some f

1/a Z . Then c.l.s. {f i e I} has the a-m.e.p, in B.

Proof. LetM c.l.s.{f ieI} SupposeLe andL a. Then
[L(f) g 1 for all ieI. If ae is such that a(i) L(f), then for

--1x e ({}) we have ](x) a(i) L(f) for all i e I. Since this holds for
the generators of M, L(f) ](x) for all f e M.

It should be noted that the functions p r o in the above proof have the
property that for any finite J I and any complex numbers a, j e J,

hus he mppingpfhsn extension o 11 of M- e.l.s. {p I} h
is sill of norm mos 1/a. Thus condition (b) of heorem
fled under he hypotheses of heorem 2.3.

3.
In his section we consider certain sndrd Bneh lgebrs. he question

is whether or no given lgebr hs subspee wih he generalized m.e.o



THEOREM 3.1. If X is an uncountable compact metric space and A is any
uniformly closed subalgebra of C(X) that separates points and contains the con-
stants, then A contains an infinite-dimensional subspace with the m.e.p.

P.roof. By Petczyfiski [5] there exists a closed uncountable subset So of X
and a linear operator of extension T’C(So) -- A with TI 1 (nd
(Tf)l So f). Also So contains a subset P homeomorphic to the Cantor
ternary set. By the theorem of Petczyfiski in [4], there is a linear operator of
extension T" C(P) - C(So) with T 1. Thus T T T. is a linear
operator of extension of C(P) into A. Let I be any countable index set and
let q be a continuous map of P onto 2. By Theorem 2.3 c.l.s. {r o i e I/
M has the m.e.p, in C(P). Since T is an isometry ofM into A and since

the homomorphism (F) F P, for F e A, satisfies (v o T)f f for f e M,
we see by Lemm 2.1 that T(M) has the m.e.p, in A.

This last theorem includes Theorem 4 of [1] as a special case. This provides
subspaces of the disc algebra A(D) with the m.e.p. Evidently, thes same
spaces serve as subspaces of H (D), the bounded analytic functions in D, with
the m.e.p. One may ask whether there are any subspaces of H(D) that are
different from these. We show next that there are such subspaces.

TOIEM 3.2. There exist infinite-dimensional subspaces M of H(D with
the m.e.p, such that M A D (0).

Proof. Let h be the homeomorphism of D into the fiber [1 as constructed
in [3, p. 166 ff.]. The map f-] o is a homomorphism of H onto itself that
maps A(D) into the constant functions. There is associated with h a iunction
Hh e with the property that (k) k for all k e D.
Let M be an infinite-dimensional subspace of A(D) with the m.e.p. Let

UT M -- be the mp T(F) F o h. Then T is an isometry of M into
H such thut (TF) o b F for all F e M. Then, by Lemma 2.1, the space
M T(M) has them.e.p, inH. AlsoMaA(D) (0) because TFis
mapped by into the non-constant F e M, if F 0. In fact, if F e M and
F 0, there must exist for every e D a linear functional L e M* such that
L(F) F 11, and i - 1. Since M has the m.e.p, there is some ze 2

such that F(z) F II. ThusM cannot contain any non-zero constants,
and M cannot contain ny non-zero elements of A (D).
Next we apply the theorems of 2 to algebras of measures on groups.

THEOnEM 3.3. Let G be a locally compact abelian group. Then a necessary
and sucient condition that L( G) have a subspace with the generalized m.e.p, is
that G not be compact.

Proof. Suppose G is compact and M is a subspace of Li(G) with the a-m.e.p.
Let f M, f 1. If F is the dual of G, then F is discrete and vanishes at
infinity on F. Thus there is a finite subset F of F such that I](’)1 < a/2 for
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e F. Let L be a linear functional on M with L 11 a L(f). For each
e (1/2, 1), tL is a linear functional on M, a/2 <_ tL <- a, and, if tl t,

tl L t L. Since M has the a-m.e.p, there corresponds to each e (1/2, 1) a
’t e 1 such that tL(g) O(’t) for g M, and this correspondence is 1-1. In
particular, ](’t) at > a/2, so that "t e F for all e (1/2, 1). But this says
that F is uncountable, which is a contradiction.

If G is not compact, then the dual, r, of G contains a perfect Helson set K
which is homeomorphic to the Cantor ternary set [7, Theorem 5.6.6]. If I is
countable, there is a continuous map of K onto t. Because K is a Helson
set, there exists for each i e I an fie LI(G) with ]i K r-o and fi -<
II.ilK II, where is a constant depending only on K. By Theorem 2.3,

c.l.s. {fi i e I} has the 1/ m.e.p.
Now we pose the same question for M(G). If G is discrete, then M(G)

LI(G), and the question of existence of subspaces with the general.ized m.e.p.
is answered by Theorem 3.3. If G is not discrete, the answer is always affirma-
tive-there always exist subspaces with the m.e.p. This is the result of Hewitt
and Kakutani [2]. A different result in the same vein is the following.

THEOREM 3.4. If G is a compact abelian group with an uncountable dual F,
then there exists an infinite dimensional subspace of M( G) with the a-m.e.p, for
some a > 0 and having the property that every linear functional of norm at most a

is a continuous character of G.

Proof. By modifying the procedure of [7, 5.7.6] one can obtain an uncount-
able Sidon set E in F. Since E is discrete and uncountable, there is a con-
tinous map of E onto t, where I is countable. The functions i o q are con-
tinuous and bounded on E. Since E is Sidon set there exists for each i e I a
measure i e M(G) such that

where B is a constant depending only on E. By Theorem 2.3, M
c.l.s, lt i e I/ has the 1/B-m.e.p. in M(G). Moreover, if L e M* and
L <- l/B, there exists a e E such that L() t(’) for all e M.
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