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Part I: Preliminaries
1. Introduction. The response functions or functionals which appear in

constitutive equations may all be symbolized by y (x), where x and y are
tensors, or aggregates of tensors, and may thus be considered vectors in ab-
stract real vector spaces X and Y respectively. The material symmetries of
such a system may then all be described by a group G, which has representa-
tions S and T by invertible linear operators inX and Y respectively. A central
problem in the formulation of constitutive .equations is to find the canonical
forms of form-invariant, and thus physically admissible, functions C--that is,
functions which satisfy T(g),(x) ((S(g)x) for all g in G.
The standard techniques for this problem have been developed largely by

Rivlin and his co-workers, [7], [11], and ref.’s in [14], but often require the as-
sumption that is a polynomial. All assumptions on the form of have been
removed by Wineman and Pipkin, first for finite symmetry groups [9] and then
for compact symmetry groups [14]. This paper extends the conclusions of
Wineman and Pipkin to a large class of locally compact groups, namely
Lindelof mean-ergodic groups, through the use of a more general concept of
the group average. That is, the now possible non-compactness of G requires
that we first prove a topological ergodic theorem, based on the mean ergodic
theorem of CalderSn [2], and then use this to find as before, the restrictions on
form-invariant functions.
In the arguments of Wineman and Pipkin, the invariant Hurwitz integral

on a compact group [121 is used repeatedly to take averages over the group G.
In our more general discussion, the left (or right) invariant Haar integral [6]
is required for this purpose; but this integral cannot be used uncritically to
compute group averages, for a non-compact group has infinite Haar measure.
To obtain group averages, we require a theorem stating the convergence of
averages on larger and larger compact open subsets of G--that is, a topo-
logical ergodic theorem in the style of the ergodic theorems for various norms
[7]. Our first task is therefore to prove Theorem 4, which will be the principal
tool in this paper, but readers who wish to avoid such details may skip to
Part II, and read only the statement of this theorem.

2. Integration of vector-valued functions. Over the group G we shall wish
to integrate not only functions (g) on G alone, but also functions (g, x) on
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both G and X. For each fixed x in X such expressions, of course, are functions
on G alone, and can be integrated accordingly, but then any continuity in x of
the resulting integral must be derived separately. A less concrete but more
elegant approach is to regard (g, x) for each g as a vector in a suitable real
function space, and to integrate at once for all values of x. However, this
approach requires a brief recapitulation of the integration theory for vector-
valued functions.
A topological vector space (Z, X)) is a vector space Z with a vector topology

"d--that is, a topology in which the standard vector compositions
(y, z) -- y z and (a, z) - az are iointly continuous for all scalars a and all
vectors y, z. Such a topology need not be describable by a norm, but may
often be characterized by a family of pseudo-norms--that is, non-negative
functions on Z such that (y - z) _< ,(y) + (z) and (az) a (z) but
(z) may be zero for non-zero vectors z.

In a topological vector space (Z, X)) the subset V is a neighborhood of 0 if
and only if the subset z + V is a neighborhood of z; so that the family X)0 of
neighborhoods of 0 characterizes X). The subfamily 5 of 0 is a local base for
X) if for each V in X)0 there exists U in such that U c V; a topological vector
space (Z, X)) is locally convex if it has a local base consisting of convex sets.
Local convexity is a convenient restriction, for it permits the choice of convex
neighborhoods in all proofs, and is a plausible restriction, for it includes nearly
all of the well-known function spaces [5].
To integrate the vector-valued functions which will appear in this paper, we

shall need the following theorem, a slight specialization of the results of Bour-
baki [1, Ch. III 4]. Let A be a compact topological space with elements h,
and let r be a Borel probability measure on the space A. Let Z and Z’ be real
locally convex Hausdorff topological vgctor spaces with the property EC: the
closed convex extension of each compact subset is itself a compact subset; and
let C(A, Z) be the real vector space of all continuous functions from A into Z.

THEOREM 1 (vector integral theorem). For each in C(A, Z) there exists
in A a unique f (h dr(h), which lies in the closed convex extension of (A ),
such that

( 1 the integral is a uniformly continuous real linear functional on C(A, Z)
(2) (f (h) dr(h)) <_ f ((h)) dr(h) for each continuous pseudonorm

uonZ
(3) T(f (h) dr(h) f T(h) dr(h) for each continuous linear trans-

formation T from Z into Z’.

Proof. See Chap. II 4 of ref. 1.
If we take Z’ R then by Theorem 1.3

for each continuous linear functional z* on Z. Conversely, this equation for
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all z* defines the integral uniquely as a linear functional on Z*, the continuous
dual space of Z.

3. Auxiliary fixed-point theorem. Let G be a locally compact topological
group, and let be the left-invariant Haar measure on G. Let (a, < be a
directed family of compact open subsets of G, let lim denote the limit, in the
topology of the context, as A runs through (a, < ), and let S(a) be the sub-
set, clearly a semigroup, of all h in G such that

lim (hA /k A )/(A lim (Ah A)/(A O,
where/ denotes the symmetric difference. Call the family (a, < ergodic if
Ua c S((), and call the group G mean-ergodic if it contains an ergodic family
(a, < for which S(() G. In Part II we shall assume that G is mean-
ergodic but now we assume only that G contains an ergodic family (a, < ).
Let (Z, X)) be a real locally convex Hausdorff topological vector space with

the property EC, and let U be a representation of G by invertible linear oper-
ators on Z with the properties

(U1) U(g) is continuous for each g in G
(U2) g -+ U(g)z is a continuous map for each z in Z
(U3) theclosureof {U(g)z geS(a)} iscompactforeachzinZ.

Let K be the closed convex extension of {U(g)z g Sa(()} then K is also
compact for each z in Z by the property EC. We shall now introduce the
means MA over subsets A in a, note that cluster points of {M z A e a, <
exist, and show following Calder6n that these are fixed points of the U(g).

COROLLARY 1.1. For each compact open subset A of G and each vector z in Z
there exists in Z a unique M z U(g)z d(g)/(A), which lies in K.
The map MA thus defined is a linear operator on Z.

Proof. If we take q(g) U(g)z and r /(A) then by Theorem 1
there exists a unique M z in Z, which lies in the closed convex extension of
{U(g)z:geA}, a subset of K; and by Theorem 1.1 in particular Mz
depends linearly on U(g)z, hence linearly on z.

LEMMA 1. In the vector topology , for each z in A and each h in S.( ( ),

lima [U(h)M z MA z] lim [M U(h)z M z] O.

Proof. In effect we have made the assumption that K is compact, but at
this point we shall use only the consequence that K is bounded; that is, if V
is any convex circled neighborhood of 0 then there exists a positive real a

such that K c aV. We shall prove only the first statement, since the second
follows similarly by permuting a few terms. Now if B(g) denotes the charac-
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teristic function of a subset B of G, then

(A)[U(h)M z M z] f [U(h) U(g)z U(g)z]A (g) d(g)

f V(g)z[hA(g) A(g)] d(g)

(hA A)M- z (A hA)M,- z.

Thus

(A)[U(h)M z M z] eta(hA A)K t(A hA)Kz t(hA L A).aV,

and since h lies in S((), the first statement follows on division by t(A).

THEOnEM 2 (fixed-point theorem). For each z in Z there exists zo in K
which is a fixed point of U(h) for all h in S(().

Proof. The net {M z A e (, / lies in the compact set K, and thus
has a cluster point zo in K. hence we may restrict A to u cofinal subfamily of
a on which limM z z0. Then on the right side of

U(h)zo Zo [U(h) I][z0 M, z] - [U(h)M z M, z]

with h in S(a), the first term has limit 0 by the continuity of U(h) and the
second term has limit 0 by Lemma 1;so that U(h)zo zo, which is independent
of A, must be 0 by the uniqueness of limits.

4. Topological ergodic theorem. Let the topological group G, the top-
ological vector space Z, and the representation U retain the properties stated
in section 3. Now let ’ be another vector topology, for which (Z, X)’) is
also a real locally convex Hausdorff topological vector space with the prop-
erties

(U4) (Z, ) and (Z, X)’) have the same continuous dual space Z*
(US) the U(g) are equicontinuous at 0 for all g in S(().

Condition U4 is satisfied trivially when X) X)’, as in our planned applica-
tion, and is satisfied generally if and only if X) and X)’ lie between the weak
topology w(Z, Z*) and the Mackey topology re(Z, Z*), [5, 18.8].
We shall now show following Calder(in that fixed points of U(g) g S(a)

are unique x)’-limits of /M z A e a, <}, and thus introduce the meanM
over the whole subset Sa(a). We shall soon find that M is a continuous
linear operator on Z, and in fact show that M commutes with U(h) for all
h in S(a).

LEMMA 2. In the vector topology ’, for each z in Z,
(1) Kz is a bounded subset of Z
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(2) K is the closed convex extension of U(g)z g e S(()
(3) the MA are equicontinuous at 0 for all A in (.

Proof. K, is X)-compact and thus W-bounded; by condition U4, X) and
yield the same bounded sets and the same closed convex sets [5, 17.1 and
17.5]. By condition U5, for each closed convex ’-neighborhood W of 0
there exists a convex ’-neighborhood V of 0 such that U(g)V c W for all
g in Sa((). If z is in V, then U(g)z is in W for all g in S((), and thus K
is in W, so that MA z is in W; that is, MA V c W.

THEOREM 3 (topological ergodic theorem) For each z in Z let there exist
Zo in K which is a fixed point of T h for all h in S (a). Then Zo is the unique
2’-limit of MA z A e a, < }; and the map M defined by Mz Zo is a2’-con-
tinuous linear operator on Z such that
(1) M M, i.e., M is a projection operator
(2) U(h)M MU(h) M for each h in S(().

Proof. For each convex X)’-neighborhood W of 0, there exists by Lemma
2.3 a convex X)’-neighborhood V of 0 such that Ma V W for all A in
Thus there exist by Lemma 2.2 elements v in V, hi, hm in S(a), and
al, am > 0 with sum unity such that

Zo z v + .= a[U(h)z z].

But by hypothesis z0 is clearly a fixed point of MA for all a in (, so that

Zo MA z W - ’-1 a[M V(h)z MA z].

Moreover, Lemma 1 holds for ’ as well as X), by Lemma 2.1; so that
MA U(hi)z MA z e W for all i, and thus z0 MA z e W + W,whenever
A > some Am in a.
Now on Z, M is the pointwise limit of an equicontinuous family {Ma} of

linear operators, and is thus itself a continuous linear operator. Also, by
the fixed point property, U(h)Mz Mz for each z in Z and each h in S(a),
so that by definition M Mz Mz, and in the limit Mz Mz. Finally,
by definition U(h)z is in K, and by Lemma 1,

MU(h)z X)’-lima M. U(h)z X)’-lima M. z Mz.

Part II. Group mean on C(X’, Y)
5. Definitions. Let X and Y be finite-dimensional real Banach spaces

with elements x and y respectively, let be an arbitrary family of compact
subsets of X with (J X, and let X’ be an arbitrary union of subsets K
in :. We need not specify , but in all sections following we shall take its
sets to be each S-invariant, and in Section 9 we shall take them all to be S-or-
bits, these concepts being defined below. Also we need not specify Xt, but
in certain arguments we shall take X’ as a single K in, asX =/x x P},
or as the whole of X.
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Let F(X’, Y) be the set of all functions from X’ into Y; and let B(X’, Y),
C.(X’, Y), and C(X’, Y) respectively be the subsets of all functions bounded
on each K in , all functions continuous on each K in a:, and all functions
continuous on X’. Then clearly

C(X’, Y) c Cx(X’, Y) c Bx(X’, Y) c F(X’, Y),

and these sets of functions, with elements , I,, are all real vector spaces.
Let 5 be the topology of uniform convergence in norm on the sets K in

a: n X’. That is, for a single K in the topology 5x on F(K, Y) is that of
convergence in the norm

II sup {]1 (x)I1: x eK},

and for an arbitrary X’, the topology on F(X’, Y) is that of convergence
individually in the pseudo-norms I1 for all K in, n X’. Now convergence
individually on subsets K in is equivalent to convergence simultaneously
on finite numbers of such subsets; so that we my, nd henceforth shll,
ssume x closed under finite unions.
With the topology 3x it cn be shown that B(X’, Y) is topological

vector spce, nd that C(X’, Y) is closed subspce. It cn further be
shown that Ba(X’, Y), nd therefore ll its closed subspces, inherit from Y
the properties of being complete, locMly convex, nd Husdorff; nd that ny
such topological vector spce hs in ddition the property EC needed for inte-
gration of vector-wlued functions [5, 7.6 nd 13.4].

Let G be locally compact topological group with left-invrint Hr
mesure ; indeed let G be men-ergodic such group with ergodic fmily
(e, < ). Let S and T be representations of G by invertible linear operators
on X nd Y respectively; nd for ech in F(X, Y) let

U(g)(x) T(g)(S(g)-x).

Then U(e) I, where e is the identity of G, and

V(gh),(x) T(g)T(h),(S(h)-lS(g)-lx) U(g)U(h)(x);

so that U is a representation of G by invertible linear operators on F(X, Y).
An S-invariant subset of X is a subset invariant under S(g) for all g in

G; the S-orbit of an element x is the set S(G)x IS(g)x; g G}, which is
clearly S-invariant. Similarly we define a T- invariant subset of Y and a
U-invariant subset of F(X, Y), and we define the T-orbit of y and the U-orbit
of , which are T-invariant and U-invariant respectively. On any U-in-
variant subspace of F(X, Y), note that U is still a representation of G by
invertible linear operators on this space. In particular, if X’ is S-invariant
then F(Xr, Y) is U-invariant, for functions in F(X’, Y) may be regarded as
vanishing outside X’.

Let X’ be S-invariant in X, and let U be restricted to F(X’, Y). Then for
each in F(X’, Y) we call form-invariant if/ is U-invariant, that is, if
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U(g)O for all g, and we call invariant if is form-invariant, where T
is specifically the identity representation. We shall now put continuity
assumptions on S and T which imply the U-invariance of Bc(X’, Y) and
C(X’, Y) and which yield the properties U1-U5 for the representation U on
C(X’, Y). We shall then apply the topological ergodic theorem on this
space, and use the resulting group mean M to obtain our conclusions.

6. Botmdedness property. Since X and Y are Banach spaces, we may
define norms on their linear operators L in the usual way; that is,

L sup Ill Lx [I/ll x If: x 0}.

Now let S and T be representations of G with the propergies

(ST1) IIS(g) <- landllT(g) <- lforallginG
(ST2) S(g) and T(g) are continuous in norm.

In this section, we shall consider only the boundedness property ST1,. from
which we can obtain conditions U1, U3, and U5 by suitably restricting ;
in the next section we shall consider the continuity property ST2, from
which we can obtain the remaining hypotheses for the topological ergodic
theorem.
By condition ST1, the sets

Xp {x: ]lxll - P/ and Y {y: I[Yll -a}

for all p and a in [0, o are respectively S- and T-invariant; and by the finite-
dimensionality of X and Y, the sets Xp and Y, and all their closed subsets,
are compact. Thus in X there exist families of S-invariant compact subsets
which cover X, such as: the sets X with p 1, 2, by our preceding re-
marks; the sets {x: ][xll P} with0 _-< p < byLemma3.1; and the
closures S(G)x- of all S -orbits in X, since S(G)x X whenever x -< p.
If we enlarge these families to include finite unions of the given sets, then the
resulting systems are all candidates for the family , which we assumed closed
under finite unions. This enlargement does not change 5 or the first sys-
tem, but adds further sets, all S-invariant and compact, to the second and
third families

Henceforth let be an arbitrary family of S-invariant compact subsets of X,
closed under finite unions, with X, and let X be an arbitrary union
of subsets K in , so that X’ is also S-invariant. By condition ST1 and this
restriction on the spaces C(X’, Y), Ca:(X" Y), and B(X’, Y), as well as
F(X’, Y), are all U-invariant; so that on any of these spaces the representa-
tion U is well defined, and may be studied further.

LEMMA 3. If S(g) land T(g) g l f all g in G, then
(1) S(g) and T(g) are isometries X and Y respectively for each g in G.
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(2) U(g) is an isometry on Bx(K, Y) for each g in G and each K in
(3) the U(g) are equicontinuous on Bx(X’, Y) for all g in G.

Proof. For any K in take any in Bc(K, Y); then for each g in G,

V(g) IlK sup T(g)(S(g)-ix) - supK T(g)(x)

Thus U(g)[I 1 on Bx(K, Y); and the U(g) are equieontinuous
on Bx(X’.Y) by definition of 5x. Suppose U(g) I1 ll ll with
0 a ( l for some g in G and some 0;then

I1 U(g-’)U(g) I U(g-) II" u() I1 11 U(g-’) I1" [[

Thus 1 g 11 U(g-) on Bx(K, Y), a contradiction; and U(g) is an
isometry on Bx(K, Y). The argument for (2) holds in any Banaeh space,
so that S(g) and T(g) are likewise isometries.

LMM* 4. If (g) 1 and T(g) 1 for alZ g in G, he or each
in Cx(X’, Y), the closure of U(g) g G} is cpact for the topology

Proof. We need a slight modification of the proof of Aseoli’s theorem"
Let @ be the family of all finite subsets of X, and let 5e be the topology of con-
vergence in (uniform) norm on the sets P in n X’. LetJ U(g) g e G}
and let J be the 5e-closure of J, that is, the pointwise closure of J. Now
each x in X lies in some K in , and (K) is compact since K is compact,
sothat(K) Yforsomea ;thus

J.[x] c iT(e)((h)z)’g, hG} {T(g)(K)"gG} Y,
whence J[x] Y. That is, J[x] has compact closure by the compactness
of Y, and thus J is 5-eompaet by the Tyehonoff theorem.

Also is uniformly continuous on each K in , so that for any e > 0
there exists > 0 such that x x’ < implies (x) (x’) < on
this K. But then x < implies (g)-x (g)-x’ < , and
thus

II T(g)((g)-x) T(g)((g)-x’) !1

for each g in G. That is, Ja is equieontinuous on each K in , and thus, by
standard theorem [4, 7. 14], J is equieontinuous on each K in . Therefore
in J, by a standard theorem [4, 7.15], for each K, 5-eonvergenee implies
5x-convergence, and in Cx(X’, Y), sinee U X, 5x-convergence implies
5-eonvergenee. That is, 5 x on J, and thus the 5x-closure of J is
5x-compact.
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7. Existence of group mean. We have just studied the boundedness
property ST1 and obtained from it conditions U3 and Uh; we shall now study
the continuity property ST2 and obtain from it condition U2. But if we
choose X) x)’ 5 in the space C(X’, Y), then U1 follows from Uh, and
U4 becomes trivial; and since G was assumed a mean-ergodic group, the
topological ergodic theorem will now yield a group mean on C(X’, Y).

LEMMA 5. If S(g) and T(g) are continuous in norm on G, then g -- U(g)
is c$inuous on G for each fixed in Cx(X’, Y),

Proof. For each K in , sup x and [[ are finite, since g and
(K) are compact. Also

U(g) sup IT(g) I](S(g)-x)I[

But is uniformly continuous on K, and

x g z(e z II’sup II;
so that, on the right side of the preceding inequality, both terms approach
0asge.

THEORE 4 (5-ergodic theorem). Let S and T satisfy the conditions ST1
and ST2, and let G be a mean-ergodic group. Then there exists on C(X, Y)
with the topology 5 a continues linear operator M such that, for each in
cx(x’, Y),

(1) M unique 5 -limaM #

(2) M M, i.e., M is a projection operator
(3) U(g)M MU(g) M for each g in G
(4) is form-invariant ff and ly ffM .
Proof. We have noted that C(X’, Y) with the topology 5 is a real

locally convex Hausdorff topological vector space which is complete, and
therefore has the property EC, and that U is a representation of G by in-
vertible linear operators on C(X’, Y). If we put ’ 5 then this
topological vector space with this representation satisfies the conditions for
Theorems 2 and 3 by Lemmas 3.3, 4, and 5; so that the existence of M, the
continuity of M, and parts (1), (2), and (3) follow from Theorem 3.

If is form-invariant then U(g) for all g in G, so that M
for allA ina, andthusM bypart(1). If M# thenU(g)
U(g)M M for all g in G by part (3), so that is form-invariant.

COROLLARY 4.1. M 1 on C(K, Y) with the topology 5 for each
Kin.



MATERIAL SYMMETRY RESTRICTIONS 211

Proof. on C(K, Y) is described by the norm IlK so that by
Theorems 1.2 and 4.1,

for all in C(K, Y). Thus IIMII <- 1; but by Theorem 4.3, IIMII
M2 -< M on C(K, Y), and 1 _< M [I.

Finite-dimensionality. If we let be a family of S-invariant compact
subsets of X, but drop the requirement that [J X, then Lemmas 3 and
5 hold for any Banach spaces X and Y. However, Lemma 4 used explicitly
the conditions that [J X and that Y is compact, and thus presupposes
X and Y to be finite-dimensional.
To see that Lemma 4 can fail otherwise, let X and Y both be a Hilbert space

H with denumerable basis {e}, and let Gp be the (denumerable) group of
unitary operators on H induced by the group of permutations on finite
subsets of {e}. Also let G Gp X G with the discrete topology, let
S(gl, g) gl and T(g, g2) g., and let .(x) e. for all j and all x in X.
If e. is in K for some K in , then {e} S(G)e is in K; if U(G)-; is 3-
compact and x is in K, then {e} [U(g)-][x] has compact closure. But
{e} is contained in no compact subset of H.

Part III. Form-invariant functions

8. lolynomial functions. Let Lr(X, Y) be the set of all r-linear func-
tions (xl, xr) from X into Y which are separately continuous in each
variable x, and thus, by a standard argument, are jointly continuous in
these variables. Let Pr(X, Y) be the set of all functions (x, x) with

in L,(X, Y), and let P(X’, Y) be the restriction to X’ of P(X, Y). Then
X and Y, hence L(X, Y), hence Pr(X, Y), and hence P(X’, Y) are finite-
dimensional real vector spaces; so that P(X, Y) is a closed subspace of
C(X’, Y), [5, 7.3].

Let G be a mean-ergodic group, so that Theorem 4 holds; then P,(X’, Y)
is M-invariant, since it is closed and U-invariant. Let P(X’, Y) be the set
of all finite sums of functions in the spaces P(X’, Y), that is, the set of all
polynomial functions from X into Y; then P(X’, Y) is an M-invariant real
linear manifold in C(X’, Y) by the preceding arguments.
When Y R we shall always understand T to be the identity representa-

tion. Then by Theorem 4, MC(X’, Y) is the subspace of all form-in-
variant functions in C(X’, Y), and MC(X’, R) is the subspace of all
invariant real-valued functions in C(X’, R). Similarly MP(X’, Y) is
the subspace of all form-invariant polynomial functions in P(X’, Y), and
MP(X’, R) is the subspace of all invariant real-valued polynomial functions
in P(X’, R). We shall now use these concepts to prove the results of Wine-
man and Pipkin.
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LEMMA 6. P( X’, Y) is 5x-dense in C(X’, Y).

Proof. Since is closed under finite unions, we need only show P(K, Y)
uniformly dense in C(K, Y) for each K in . Let {e} be a basis of Y, and
{e* *a dual basis o Y*, such that e e 1 or i 1, ..., dim (Y).
Then eP(K, Y) P(K, R) for each i, and if is in P(K, R) then e is in
P(K, Y) with e(e) ; so that eP(K, Y) P(K, R) Now take
e > 0, take any in C(K, Y), and recall the Stone-Weierstrass theorem, by
which there exists in P(K, R) for each i such that *
Thus

< dim (Y)

nd dim (Y) is finite.

THOE 5 (density theorem). MP(X’, Y) is -dense in MC(X’, Y).

Proof. Since is closed under finite unions, we need only show MP(K, Y)
uniformly dense in MC(K, Y) for eeh K in . Tke e > 0, tke ny in
MC(K, Y), hence in C(K, Y), nd note by Lemm 6 that there exists in
P(K, Y) such that e. ThenM ndM is in MP(K, Y),
so that by Corollary 4.1,

THeOreM 6 (separation theorem). Le K and K be disjoin S-invarian
cpaet bses of X; hen MP(X, R) separates K and K

Proof. Since we hve not specified , nd since MP(X, R) is independent
of , we my ssume here that K, K, nd K u K re in . Now the
spree X is Husdorff, so that K ndK re closed; nd the spree X is normal,
so that there exists in C(X, R) such that (x) 0 on K, (x) 1 on K,
nd 0 (x) 1 on X. Then M is defined and in C(X, R), such that
M(x) 0 on K, M() 1 on K, nd 0 M(x) 1 on X; nd by
Theorem 5 there exists in MP(X, R) such that M I[u < , so
that separates K nd K.

9. Closed S-orbits. To exploit Theorems 5 and 6 for the desired conclu-
sions, we must now assume not only that G is mean-ergodic but also that G
has closed S-orbits--that for each x in X the orbit S(G)x is closed in X.
Now the orbit S( G)x is contained in the compact subset Xp for each p > x II,
and is thus itself compact, so that by Theorem 6, MP(X, R) separates dis-
tinct orbits. Moreover, the family of all orbits S(G)x clearly covers X, so
that we may, and henceforth shall, choose the family to consist of all finite
unions of S-orbits.
We have previously noted that MP(X’, Y) and MC(X’, Y) are real

vector spaces for any S-invariant subset X’ of X and any finite-dimensional
Banach spaces X and Y. We now further observe that MP(X’, R) and
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MCc(X’, R) are real algebras, by the convention, that T is the identity
representation, and that MP(X’, Y) and MCc(X’, Y) are respectively
modules over MP(X’, R)and MCc(X’, R). Indeed, the former pair are
closed under the obvious multiplication of real-valued functions within them,
the latter pair closed under the obvious multiplication by real-valued func-
tions in their respective algebras [3].
A generating set for an algebra (resp. a module) is a subset r such that

any given element can be expressed in terms of the elements of r as a finite
polynomial with scalar coefficients (resp. a finite linear combination with
coefficients in the multiplier algebra); and an integrity basis (resp. module
basis) is simply a minimal generating set. In particular, for a given generat-
ing set 1 of MP(X’, Y) and for each x in X let 2 be the function on all ,
in F defined by 2() ,(x), and let (x) 2, so that is a map from X
onto a subset of Rr. Then we shall characterize MCc(X’, R) in terms of
these concepts, and MCc(X’, Y) in terms of a generating set for MP(X’, Y).

LEMMA 7. is a function constant on each S-orbit such that, for each xl
and x2 in X, the following are equivalent:

(1) (x) (x)
(2) S( G)xl n S( G)x2 0
(3) S( G)x S( G)x

Proof. Now {S(g)’g e GI is a transformation group on X, and thus
defines an equivalence relation on X by" x x. if and only if x S(g)x
for some g in G. Therefore parts (2) and (3) each hold if and only if x x.,
since S(G)x is the equivalence class of x. If x x then (x) (S(g)-x)

(x.) for any in MCc(X, R); so that q is constant on S(G)xl and in
particular is constant on S(G)x. Conversely if (x) (x:) then
(x) (x) for any in MCc(X’, R); so that S(G)x n S(G)x. 0 by
Theorem 6, since by assumption S(G)x is compact for i 1, 2.

THEOREM 7 (characterization of invariant real-valued functions). For any
q in F(X’, R), the following are equivalent:

(1) is an invariant function
(2) is in MCx(X’, R)
(3) o for some map R

Proof. A function q in F(X’ R) is invariant if and only if it is constant on
S-orbits, and thus by Lemma 7 if and only if it has the form o of part (3).
Such a function is clearly continuous on finite unions of S-orbits, and thus
by Theorem 4.4 is an element of MCc(X’, R), all of whose elements, con-
versely, are invariant.

LEMMA 8. If { ),} with n < is a generating set for MP(X, Y),
then it is a generating set for MCc(X’, Y).
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Proof. If I, is an element of MP(S(G)x, Y) for any x in X, then by
definition there exists an element of P(X, Y) such that IS(G)x.
But by hypothesis there exist elements 1, . in MP(X, R) such that
that MP _-1 b 0, and therefore

MIS(G)x ,’--1 ( S(G)x)(( s(e)x).

However IS(G)x is constant, so that MP(S(G)x, Y) considered as a real
vector space is spanned by the functions 1S(G)x, and is thus finite-dimen-
sional.

Clearly MP(S(G)x, Y) is then uniformly closed, and is thus MC(S(G)x, Y)
by Theorem 5. Now take any x in X’ and any ) in MCc(X’, Y); then
IS(G)x is in MC(S(G)x, Y), so that there exist scalars a(S(G)x) with

i 1, n such that

[(G)x ((G))( ()).

If we let (x) a(S(G)x) for each i and all x then o is clearly invariant,
so that is in MC(X’, Y), and =1, by construction.

10. Form-invariant functions for Lindelof groups. To obtain the Wine-
man-Pipkin canonical form of a form-invariant function in F(X’, Y) we
must finally assume that MP(X, Y) has a finite generating set, hence a
finite module basis, and that the topological group G is also a Lindelof space--
that each open cover of G has a countable subcover. We shall need this
hypothesis for a category argument [4, 6.34] but, before proceeding, we shall
study its effect on the group G; clearly every compact group is a Lindelof
space, but so, we shall note, are much less restricted groups.
The subset C of G is .called a-connected (resp. a-compact) if it is the union

of a countable family of connected (resp. compact) subsets. We shall see that
the Lindelof property and these two are all equivalent, and imply that all
form-invariant functions lie in MC(X’, Y), so that by lemma 8 they are all
representable via a module basis for MP(X, Y).

IEMMA 9. Let G be a locally compact group; then the following are equiva-
lent:

(1) G is a Lindelof space
(2) G is a-connected
(3) G is a-compact.

Proof. Let Go be the identity component of G, which is well known to be
an open and closed normal subgroup [4, 3T] so that G {hGo h G} con-
tains a disjoint open cover of G. If G is a Lindelof space, then the distinct
subsets hGo can form at most a countable family, in which every subset.hG0
is connected by definition. If G is a-connected, then the distinct subsets’hG0
can again form a countable family, and Go c OrN for any neighborhood N
of e, [4, 3T]. But we can choose N compact, and thus N compact, so that
Go is a-compact, and thus G is a-compact. If G (J: C with each C compact,
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and if {Aj j e J} is an open cover of G, then we can select from the At a
finite cover of each Cr, and thus a countable cover of G.

LEMMA 10. Let G be a Lindelof group and S(G)x a closed orbit in X; then
g ---> S(g)x is an open map.

Proof. With distances measured as in X, the closed subset S(G)x is a
complete metric space, and thus a set of second category in itself [4, 6.34].
If N is any neighborhood of e, then {gN g GI is an open cover of G and there
exists a countable subcover/g N i 1, 2, since G is a Lindelof group.
But S(G)x U--i S(g N)x, so that some S(g N)x has non-void interior in..
S(G)x, and S(gN)x S(ggl)S(gk N)x has non-void interior for each g in G.
Thus S(g)x interior of S(N)x for some g in N, and x e interior of S(N-IN)x.

THEOREM 8 (characterization of form-invariant functions). For any @
in F(X’. Y) and any generating set Oi, 0,,} of MP(X, Y), the following
are equivalent;

(1) is a form-invariant function
(2) is in MCc(X’, Y)
(3) ’7_-i q for some ql , in MCc(X’, R).

Proof. Clearly (3) (2) =v (1), so that we need only prove the reverse
implications. Take any form-invariant and any open subset V of Y, and
recall that g -- T(g)y is continuous for each fixed y in Y by condition ST2.
But T(g)(x) @(S(g)x) for each x in X, so that the set

N {g T(g)@(x)e V} {g @(S(g)x)e V}

is open in G, and by Lemma 10,

S(N) {x’ eS(G)x @(x’) e V}

is open in S(G)x. Thus @IS(G)x is continuous for each x in X, so that
is in MCc(X’, Y) by definition, and @ 7--1 by Lemma 8.

11. Summary. We have assumed that X and Y are finite-dimensional
real Banach spaces, that G is a mean-ergodic locally compact group, and that
S and T are representations of G by invertible linear operators on X and Y
respectively, such that S(g) -< 1 and T(g) -< 1 for all g in G, S(g)
and T(g) are continuous in their operator norms, and that all S-orbits are
closed sets. We have then proved in Theorem 7 that an integrity basis of
MP(X, R) is also a functional basis for all invariant functions in F(X’, R).
We have further assumed that G is a Lindelof group and that MP(X, Y)

has a finite set of generators 01, On. We have finally proved in Theorem
8 that the O are a set of generators, over the algebra of all invariant functions
in F(X’, R), for all form-invariant functions in F(X’, Y).
We have noted that G is a Lindelof group if and only if it is either a-con-

nected or a-compact; we can offer only somewhat less exact conditions that
G be mean-ergodic. Again, each compact group is mean-ergodic, but so is
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each locally compact group G in which

G (Jrl N and lim (Nr’+I)/(Nr) 1

for some compact symmetric neighborhood N of e. To see this we take
((, to be {N" r 1, 2, .../ with set inclusion, and for any h in G we
let s be an integer such that h lies in Ns; then

hN N C Nr*" N and N hN C h(N+8 Nr),

so that limr (hN /X N)/(N O.
Without the condition that G have closed S-orbits, the only asymmetric re-

quirement on the two representations, there exist counterexamples to Theorems
7 and 8 for such simple G as the additive groups of the integers and of the
real numbers. However, we may conjecture that a restriction t’o measurable
invariants and form-invariant functions might again yield the conclusions of
these theorems, by suitable methods of topological dynamics.
Wineman and Pipkin also obtain canonical forms of arbitrary form-in-

variant functionals of vector histories, that is, of functions x(r) with values
in X.J However, given Theorems 7 and 8, the discussion of functionals becomes
entirely algebraic, requiring not even continuity in r, and may be carried
through exactly as before to the same conclusion.
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