
THE HOMOTOPY CATEGORY OF SPECTRA.

BY

DAN BUeA ANO ltISTIDE DELEANU

The obiective of this paper is to show that the homotopy category of semi-
simplicial spectrap in the sense of Kan [4] canbe fully embedded in a very con-
venient manner into an abelian category (pE (Theorem 6.1). We ,mean by
this the following" pE coincides with the full subcategory of proiectives of
(gp, agp has enough injectives and projectives and the iniectives and pro-
iectives coincide, and there exists a one-to-one correspondence between exact
functors on agp to an abelian category and functors on gp to the same cate-
gory which transform mapping cone sequences into exact sequences. Peter
Freyd has proved [7] a general theorem according to which there exists for an
additive category satisfying certain conditions a full embedding into an abelian
category having properties of the above type; he has,applied this to the stable
category. It is the work of Freyd which suggested to the authors the con-
siderations of the present paper.

In a letter to a friend of the authors R. L. Knighten stated that he knew
some of the results below.
The point of view developed here facilitates the study of some questions

concerning the structure of the homotopy category of spectra, such as the
Postnikov resolutions and others, which will be dealt with in a subsequent
paper. We believe that the homotopy category of spectra is flnportant since
it permits the classification of additive generalized cohomology theories.

In 1 we have collected for the convenience of the reader a few notions and
results due to D. Kan and G. W. Whitehead, and we have adapted their cover-
ing homotopy theorem to our needs.
The main result is contained in Theorem 6.1, and the rest of the paper is

devoted to setting up the machinery we need to prove this theorem.
The results contained in this paper have been announced in [1].

1. Preliminaries

The category of semisimplicial spectra p. The objects are semisimplicial
spectr defined as follows" A semisimplicial spectrum X consists of

(i) for every integer q a set X(q) with a distinguished element (called
base point); the elements of X(q) will be clled simplices of degree q,

(ii) for every integer q and every integer i >_ 0 a function

d X(q) -- X(q_)

such that d (the i-face operator), and a function

s X(q) --> X(q+)
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such that s (the i-degeneracy operator). These operators are required
to satisfy the following axioms"

I. The following identities hold" d d d_l d for i < j; s s s. s_l for
i > j; d s s._ d for i < j; d s identity for i j, j -t- 1; d s s d_
for i > j + 1.

II. For every simplex a e X all but a finite number of its faces are the base
point, i.e. there is an integer n (depending on a) such hat d a for i > n.

The morphisms are maps f X --* Y which are degree-preserving and com-
mute with all face and degeneracy operators.
The cone functor C Sp -- Sp is defined as follows:

(CX)(q) {(p, a)l p -> 0, a X(_), where (p, .) is identified with .}

and
d,(p, a) (p 1, ), s.,(p, a) (p + 1, a), i < p,

(p, di_, a) (p, s,_ a), i >_ p.

The suspension functor S $p Sp is defined as follows: SX is obtained
from CX by identifying, for every a e X, the simplex (0, a) with the appropri-
ate base point.
For a family (X) of objects of Sp, the direct sum /,X and the direct

product iX are defined by /, X)(q) /, (X) (q) (i.e. the union of
the (X)(q)’s with the base points identified) and X, X)(q) X, (X)(q)
with the system (,)i as base point.
For any subspectrum A of a spectrum X, we denote by X\A the spectrum

for which (X\A)(q) is the set obtained from X(q) by identifying A(q) to ,. If
f A --, Y is a map of spectra, where A is a subspectrum of X, we denote by
X u Y the spectrum for which (X u Y)() is obtained from X()u Y(q) by
identifying each x X(q) with f(x) Y(q). In particular, if we identify X
with the subspectrum of CX consisting of the simplices of the form (0, a) and
if f X -- Y is map of spectra, then we denote by C] the spectrum CX u] Y.
We denote by Sp -- Sp the functor (which is an utomorphism of Sp)

which assigns to each spectrum X the spectrum . defined by
For any integer n :> 0, we denote by the n-th iterate of the automorphism

~, and by ~-" the n-th interate of the inverse of this automorphism.
For any spectrum X we can consider the spectrum I.X [3, ch. 2] and the

inclusionsj,j X -- I.X which identify X with subspectra of I.X. This is
the analogue of the cylinder and it permits the definition of the homotopy
relation.

Let Sp be the full subcategory of Sp consisting of Kan spectra, i.e. spectra
satisfying the extension condition (cf. [4, 7.3]).

Let Spa be the subcategory of Sp whose objects are group spectr, i.e.
spectra for which each X(q) is a group and the d’s and s’s are homomorphisms,
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and whose morphisms are maps of spectra which are homomorphisms for
each q.

Finally, let Sp be the full subcategory of Sp consisting of free group
spectra.
We denote by F Sp --* SpL the functor which associates to each X the spec-

trum F(X) defined as follows: (FX) is the group with a generator Fa for
every a eX and one relation F. .; the face and degeneracy homo-
morphisms are given by d Fa F d , st Fa Fs (i >_ 0).

If K Sp --* Sp is the inclusion functor, there exists a functorial morphism
i id$ --> KF [4] given by i(X)(a) Fa. Whenever there will be no danger
of confusion, we shall write simply F(X) instead of KF(X).
There are two equivalent definitions for the concept of homotopy of two

maps of a spectrum into a Kan spectrum.

DEFINTIO 1 [4]. fl, f X -- Y, where Y e Sp are said to be homotopic
if there is a map f I.X -, Y such that fj

DEFINITION 2 [6, App. A]. f, f. X --* Y, where Y e Sp are said to be
homotopic ifff X --. Y can be extended to a map f CX Y.

If Y e Sp, f, f, are said to be homotopic if

i( Y)f i( Y)f, Z ---+ FY
are homotopic.

In [6], App. A, it. is shown that the two definitions coincide.
Homotopy groups can be defined as in [4] and [5], and homology groups as in

[5]. Homotopic maps induce the same homomorphism for the homotopy and
homology groups.

DEFINITION 3. A map f X -+ Y where X, Y e Sp, is said to be a weak
homotopy equivalence if it induces isomorphisms for the homotopy groups.
According to the definition of homotopy groups, i(X) is a weak homotopy

equivalence for every X.
The notion of a strong homotopy equivalence for objects of Sp is defined

as in [4, 8.1]. It is shown in [4] that for spectra in Sp weak and strong homo-
topy equivalences coincide and therefore we shall simply say homotopy
equivalences.
We use fibrations in the sense of [5, (5.1)]. By [5, (5.5)], if X is a sub-

spectrum of Y, then the sequence

Z j- Y P-- Y\X
is a fibration, where j denotes the inclusion and p the identification map.

THE HOMOTOPY EXTENSION THEOREM [6, .A_.8]. Let X e Sp Y e Sp and
let A be a subspectrum of X. Let

wo X Y, vo, v A ---> Y
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be maps such that wo A vo and vo vl Then there is a map wl X --> Y
such that wl A vl and Wo wl

DEFiNiTiON 4. A map of spectra p X --. Y is said to be a Kan fibration,
if for any family x0, x,..., xk_, xk+,..., xeX and y e Y such that
d x. d._ x for i < j, i, j /c and px d y for i k there exists z e X such
that dz x for i /c and pz y.

PROPOSITION 1.1. Any epimorphism of group spectra

f’X-oY
(i.e. f(q) X(q) ---) Y(q) is onto) is a Kan fibration.
The proof is similar to that of group spectra (see, for instance, [9]).

PROPOSITION 1.2. Let p X -- Y be a Kan fibration and f" CZ ---> Y a map.
Then there exists a map g CZ -- X such that pg f.

Proof. We use an analogon of the Eilenberg-Zilber 1emma which is proved
in Appendix A.

Let Z be the subset of Z consisting of all simplices z such that d z for
i >_ n. We remark that Z contains only non-degenerate simplices (except for
the base points) and Z- Z.

Let z e Z. We consider xl x in X and y f( 1, z) e Y. The
extension condition furnishes a simplex x e X. We set g(1, z) x, and
g(0, z) d0 g(1, z).

Z Z. ZLet z e Then do z e since d do z do d+ z for 11 i. We
take x g(1, doz), x x in X and y f(1, z). We have

px pg(1, doz) f(1, doz) f d(1, z) dlf(1, z),

px f(1, d_ z) f d(1, z) d,f(1, z)

for i > 2.
The extension condition furnishes a simplex x e X and we set g(1, z) x.

Z ZFurthermore, for any z e we set g(0, z) do g(1, z).
It is easily shown that d g( 1, z) g d(1, z) and d g(0, z) g d(0, z).

ZFor any z e and any system of indices i > i. > > i, _> 0 we set

g(1, s s, z) s+ s,+g(1, z)
(1)

g(0, s,.., s,z) d0g(1, s,"’s,z).

It is checked immediately that d g g d and, for i 0, s g gs,.
Assume inductively that we have defined g on all simplices of the form

(0, z), (1, z), (0, sl’"s,z), (1, s, ""s,z)

with z e nondegenerate, i > > i, >_ 0 and that g commutes with d for
any i and with s for i > 0 and pg f.
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Let z e Z"+ Z" be nondegenerate. Then, for any j _< n and any i >_ n
we have d d z d. d+ z =., hence d. z e Z. d z is either nondegenerate or
of the form dz s...s y with i > > 4 >_ 0, with y nondegenerate
(see Appendix A). In the latter case, it is easily shown that i < n. Then,
for any k _> n, we have d d. z d s s y which implies either
y or d_ y =., i.e. y e Z. It follows that g(1, d z) is already defined.
We take x g(1, d0z), ..., x+ g(1, d,,z), x,+ and

y ](1, z). We have

px pg(1, dz) =f(1, dz) ---fd(1, z) dy (1 _< i _< n q- 1)

f(1, d,_z) fd,(1, z) d,f(1, z) = d,y (i > n q- 1).

Let0 < i_< n-t- 1.

d g( 1, d_ z) g d( 1, d_ z) g( 1, d_ d_ z) g(1, d._ d_ z)

g d_( 1, d_ z) d_ g(1, d_ z).

For0 <i_<nq- 1, j>_nq-2wehave

dg(1, d_ z) dg(1, .) d. d_ ..
Thus we can apply the extension condition which yields a simplex x such that
d x x (i > 0), p(x) y. We set g(1, z) x. Moreover, for any non-
degenerate z e Z+ Z we set g(0, z) do g( 1, z).
We also define g on simplexes of the form

(0, s, sz), (1, s, s z)

where i > > 4 _> 0 and z e Z+ Z is nondegenerate by the formula
(1).
We check that d g g d (II ), nd s g gs (i > 0).
() If z is nondegenerte, it follows from the definition of g that

d g( 1, z) g d( 1, z) for all i.

g,(1, z) g(1,
_

z) ,g(1, z) (i > o)
by(l)

It is easily shown that d g(O, z) g d(O, z), s g(O, z) gs(O, z).
(b) Let i > i. > > 4 _> 0 and z nondegenerate.

g d0(1, s s z) g(0, s, s z) do g(1, s, s z).

If i > 0, we have

g d(1, s, s z) g(1, d_ s, s z).

By the commutation rules of d and s, d_ s s is either of the form
s, s_, with j > > j_ >_ 0, or of the form s s d with
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k> > k>_ O. In the first case,

g(1, d_ s, s z) g(1, s s’_, z)
s’,+ s’_+ g(1, z)

d s,+ s+ g(1, z)

dg(1, s s, z).

In the second case, according to Appendix A, d z is of the form s s y,
where p > p >_ 0 and y e Z" is nondegenerate. But by the com-
mutation rules of the s’s the expression s s s s caa be written
as sa s+, where t t+ >_ 0 so that we have

g(1, d_ s s z) g(1, sa s,+ y)

sa+ s++ g(1, y)

s+’"s+ s,+’" s.,+ g(1, y)

s+ s+ g(1, s s y)

s+ s+ g(1, d z)

s,+ s,+ g d+(1, z)

s+ s,+ d+ g(1, z)

d s,+ s,+ g(1, z)

dg(1, s, s, z).
Furthermore,

dg(O, s s, z) dd0g(1, s s, z)

do d+ g(1, s s, z)

do g d+(1, s s, z)

do g(1, d s s, z)

g(O, ds s, z)

g d(O, s s, z).

It is also proved without difficulty that

sl g(1, s si, z) gs(1, si s, z)

s g(O, s s, z) gs(O, s, s, z)
for any j > O.
The verification of the induction is now complete.
By Appendix A and by the fact that Z [J>_0 Z’, it follows that g is de-

fined on all simplices of the form (0, z), 1, z).
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For any landweset

g(n, z) ’-So g(1, z).

We have for every z e Z

gso(1, z) g( 2, z) so g(1, z),

sog(O,z) sodog(1, z) doslg(1, z) dogs1(1, z) d0g(1, SoZ)

g(O, so z) gso(O, z).

It is also proved easily that

d g(n, z) g di(n, z), st g(n, z) gs(n, z)

for all i and any z e Z and n > 1.

PROPOSiTiON 1.3. Let A be a subspectrum of X and

j A X, s" X -- X\Athe canonical morphisms. Then the obvious inclusion F(A Ker F(s) is a
weak homotopy equivalence, where Ker F( s) is the subspectrum consisting of all
x e F(X) such that F(s)x ,.

This follows immediately from the above remark that

AX-X\A
is a fibration.

CovRi ttOOTOPV TItEORE. Let Y, Z e Spa and let p" Y ---> Z be an
epimorphism of groups. Let X Sp and let

Vo X --> Y, wo, wl X -- Zbe maps such that pro Wo Wo --- wl Then there is a map vx X --> Y such
that pv w and Vo v.

Proof. Let w" CX --, Z be an extension of Wo.W-[. By Proposition 1.2
there is a map v CX --, Y such that pv w.

Set v (vlX)-Vo.
PROPOSITION 1.4. For any object X Sp there exists a homotopy equiva-

lence " F(SX) -- F(X) which is natural up to homotopy.
The proof is to be found in Appendix B.

2. The Puppe sequence
Let f X --* Y be a morphism in the category p. Denote by f’ Y --. Cf

the natural inclusion. Consider the diagram

The authors are grateful to Dr. Klaus Dudda for drawing their attentio to an
error in connection with this proposition in an earlier draft.
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where S’, f", f’, are inclusions and p is defined as follows: the simplices of
CY are sent to ,, i.e. p(n, y) (see the definition of C in 1), and the sim-
plices of the form (n, x), with x e X and n 0 are sent to (n, x) SX. Like-
wise for q and r. Clearly, we have the following sequence infinite in both
directions"

F(J-1) F(-) F(]’-I) F(1) ---- F(X)

F(]) F(Y)_F(S’)) F(Cs) o_ F(2)_F(]) F()--
3. The homotopy category of spectra

We denote by $-p the category whose objects are Kan semisimplicial spectra
and whose morphisms are homotopy classes of morphisms from Sp. Simi-
larly, we have the categories Spa, Sp.
We can consider the functors

_
p --, p and/7 pg __, p induced by

I and F.

PROPOSITION 3.1. Each of the functors and establishes an equivalence
between the categories $pB and $pz

Proof. F establishes an equivalence. This is an immediate consequence of
the fact that each X e gp is isomorphic in p with F(X) and of Corollary
(A.11) of [6]. I establishes an equivalence for the same reasons.

PROPOSITION 3.2. The category pv. possesses arbitrary direct sums and
direct products.

Proof. The direct sum of a family (X,), is the object F(V,, X) of
p. To see this, one uses Definition 2 of the homotopy relation. The direct
product of a family (X,), is the object X,, X, of $p. To. see this, one
uses Definition 1 of the homotopy relation.

PROPOSITION 3.3. In the category p each object possesses a well-defined
multiplication of group-object and a well-defined comultiplication of associative
comonoid object.
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Proof. For any object X of p, F(X) is a group-object in Sp. Then
we consider the following multiplication of X:

X X X
i(x) i(x)z F(X) X F(X) F(X) j(x) X,

where g is the multiplication given by the group structure of F(X), j(X)
is the homotopy inverse of i’(X) which exists according to 1. The inverse
is given by

X=
i(z)

4 F(X) F(X) -J(X)_ X,

where is the passage to the inverse in the group F(X). It is readily verified
that this defines a structure of group-object on X.
For any object X of p, there exists a comultiplication defined as follows"

i(x)
X F(X) F(X) F(X) F(X /X)

where 0 is the comultiplication in the category Sp defined by O(x) xx,
xx being a "word" in the free product F(X). F(X). F commutes with
wedges because, for instance, it admits the functor I as a right-adioint functor.

is a comultiplication of an associative comonoid in the category Sp [3].
It is easy to check that it remains so in the category gp. Using Proposition
3.1, it follows that the above, comultiplication turns X into an associative
comonoid obiect.
Remark. Any morphism f: X --* Y in $p is a homomorphism of group

objects (of associative comonoid objects), for the multiplication (resp.
comultiplication) just defined.

THEOE 3.4. The category p is additive..

Proof. By Theorem 4.17 in [2], the multiplications on Hom (X, Y)
given by-the group structure of Y and the comonoid structure of X coincide
and are abelian. This implies also the bilinearity of the composition of
morphisms.

4. The Puppe sequence in p
LEMMA 4.1. For any object X ofps CX has trivial homotopy groups.

Proof. Let r:CX --, ,. We shall prove that r is a weak homotopy
equivalence. To this end it is sufficient to prove that

i( CX) X --, F( CX)

is null homotopic (see for instance, [6, (A.15)]). We shall prove that we can
define map h C(CX) -- CX such that h induces the identity on the "base"
of C(CX). The definition of h is as follows:

h(a, (,x)) (a + ,x) fora,>_O, xeX.
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It is shown straightforwardly that h commutes with the d’s and the si’s
and that the "base", i.e. the simplices of the form (0, (, x)) are sent onto
(t, x).

PROPOST,ON 4.2. The square

F(SX) + F(SY)
F()

is homotopy anticommutative in Sp,.

Proof. It is sufficient to show that

(i(SY) o Sf ,, p)(i(SY) o q o f") C], F(SY)

is extendable to C(Cf,) (using Definition 2 of the homotopy relation and
Theorem (A.15) of [6], which asserts that if v X’ X is a weak equivalence,
then v* [X, Z] [X’, Z] is a one-to-one correspondence, where Z is any
group spectrum).
To do this, we define a map of spectra

C(C],) F(SY)
by setting"

(% (a,y)) F(-t- a,y) for %a >_ 0, yeY

(, (,x)) F(. + ,f(x)) for,,_> O, xeX.

Clearly this map is well defined and degree-preserving. We now check
that it commutes with the operators d. We have

d(/, (a, y)) (, 1, (a, y))

(% (a- 1, y))

(% (a, d__.y))

di(% (, x) (’ 1, (, x)

(’, ( 1, x))

(% (,

__
x))

Therefore we have by our definition

+ d(,, (a, y)) F(- -t- a 1, y)

F(,- a-- 1, y)

F(, + a, d__, y)

if/ ,
if/ => % i-’ < a,

otherwise.

if/< ,
if i_> ,i- <,
otherwise.

if/ ,
if i>_ , i " < a,

otherwise.
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Cd(, (, x)) F( +/ 1, f(x)) if i < ,
F( -f- 1, f(x)) if i

_
, i "v < fl,

F(’v + , f(d__ x)) (. + , d__f(x)), otherwise.

On the other hand, we may write

d(% (a, y)) d.F(-f- a,y) =F(+a- 1, y) if i < + a

F( + a, d__, y) otherwise

d(’v, (,x)) dE(’v + ,f(x)) F(’v + 1, f(x)) if i < +
F(’ + , d__f(x)) otherwise.

A similar calculation yields the commutation of with the operators s.
This completes the proof.

PROPOSITION 4.3. p CI, --> SX is a weak homotopy equivalence.

Proof. We have the sequence

CY CI, P- C,\CY SX

where ] is the canonical injection. According to Proposition (5.5) in [5],
this sequence is a fibration in p. By the exact homotopy sequence of this
fibration [5, p. 245] and by Lemma 4.1, p induces isomorphismsfor the
homotopy groups.

THEOREM 4.5. In the diagram in gpE

F(X) F($) F(Y) -($’);

F(C]) F(C],) -.($’-") F(C],,) ..F($"), F(C,,,) ;’"

F(.) (1) F() .t’(]’)

wherel exF (p), m erF(q), n ec F(r), thetriangle (0) is commutative,
the squares (I) and (II) are anticommutative and l, m, n are isomorphisms.

Proof. The theorem follows from 2, and Propositions 1.4, 4.2 and 4.3.

5. Weak kernels and cokernels
DEFINITION. Let be an additive category. The morphism u X -- Y

in is said to be a weak kernel of the morphism v Y --+ Z if
1. Vu----O
2. For any morphism w U - Y in such that vw 0, there exists a

(not necessarily unique) morphism U -. X such that ut w.

The dual definition gives the weak cokernel.
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LEMMA 5.1. If A is a subspectrum of X and

j A ---* X, s X---* X\A
are the canonical morphisms, then in the sequence

F(A F(j)_ F(X) F(s___) F(X\A )

F(j) is a weak kernel of F( s) and F( s) is a weak cokernel of F(j) in gp.
Proof. F(j) is a weak kernel. Let B a spectrum and v B F(X) such

that F(s)v O. According to the covering homotopy theorem in 1 there
exists a map v’ B F(X) such that F(s)v’ 0 and v v’. Thus v’ fac-
torizes through Ker F(s) and, by using Proposition 1.3 we infer that there
exists a morphism w B ---. F(A) such that F(j)w v.

F(s) is a weak cokernel. Consider the commutative diagram

F(A) F(j)_ F(X) F(s___) F(X\A)

A -- X X\A.

Let u F(X) --* G be such that u F(j)
__

O, where G is group-spectrum
(the ssumption that G is group spectrum does not restrict the generality).
Then ui(X)j 0 nd, ccording to the homotopy extension theorem (see 1),
there exists u’ X --. G such that uj 0 nd u’ ui(X). This implies that
there exists w’ X\A G such that w’s u’. We set w / o w’, where k
is the homotopy inverse of i(X\A).

PROPOSITION 5.2. Every morphism in the category p has a weak kernel
and a weak cokernel and every morphism in gp is a weak kernel and a weak
cokernel.

Proof. Let f X -o Y be an arbitrary morphism in
We consider the sequence

F(71) F(-I)- F(X) :if(S), F(Y) F(/’)
We shall prove that F(f’) is a weak cokernel of F(f), F(-) is a weak

kernel of F(f), F(f) is a weak kernel of F(f’), and F(f) is a weak cokernel
of F(-I). This is clearly sufficient, in view of the commutative diagram

X Y

i(X)[ li(Y)
F(X) .F(.fiz F(Y),

where i(X) and i(Y) are isomorphisms.
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1. F(f’) is a weak cokernel of F(f). This is equivalent with the asser-
tion that F(fi’) is a weak cokernel of F(f"), by Theorem 4.4. Consider the
diagram

F(C(CI,))

f(b)

(2) F(CI,) F(C,,) F(C.,,,)

F(C],,\C],) ,, F(CI,,,\CC,)

where f’ and b are inclusions, and a are indentification maps. According
to Lemma 4.1, F(a) is an isomorphism in SpE. According to Lemma 5.1,
F(1) is a weak cokernel of F(f"), whence it follows that F(fiv) is a weak
cokernel of F(f’).

2. F(-I) is a weak kernel of F(f). This is equivalent to the assertion
that F(f’) is a weak kernel of F(f"). This results from arguments similar
to those at 3

3. F(f) is a weak kernel of F(f’). This is equivalent to the assertion
that F(f") is a weak kernel of F(fv), and this follows from diagram (2) and
Lemma 5.1.
4. F(f) is a weak cokernel of F(c-1). This is equivalent to the assertion

that F(f") is a weak cokernel of F(f’) and this follows from arguments
similar to those at 1.

6. The main theorem

THEOREM 6.1. There exists a full embedding J of the category $pE into an
abelian category ap having the following properties:

1. ap has enough injectives and projectives and the injectives and projec-
tires coincide.

2. Every object of the form J(A) with A gp is injective (and projective)
and every injective (or projective) object of ap is isomorphic with an object
of the form J(A ).

3. The category ap verifies the conditions AB3, AB4 and their duals
(in the sense of Grothendiecl).
4. For any abelian category ( and for any additive functor T p -- (

.there exist functors R, M, L ap ---+ a, each of them unique up to an isomor-
phism, which extend T and such that R is right exact, L is left exact and M pre-
serves images.

5 The following assertions are equivalent:
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a) The sequence

J(X) J(Y) J(Z)
of ap is exact.
(b g is a weak cokernel off in ps.
( c) f is a wealc kernel of g in ps.

6. If ( is an abelian category there exists a one-to-one correspondence be-
tween the exact functors G (ps ----> ( and the functors H ps a which
transform the sequence

f(Z) F(---UIL/) F(Y) --, f(C )

into an exact sequence for each f.
Proof. The assertions 1, 4, 5 as well as the following assertion (contained

in 2)
2’. Any object of the form J(A) where A e gp is injective (and projec-

tive) and any object of agp admits an injective (or projective) resolution by
objects of the form J(A), are immediate consequences of a general theorem
of Peter Freyd [7], according to which each additive category having weak
kernels and cokernels and in which each morphism is a weak kernel and a
weak cokernel admits an embedding into an abelian category with the proper-
ties 1, 2’, 4, 5.

Since the work of Freyd is not yet published, we give brief indications about
these facts for the convenience of the reader. The objects of the category
ap are morphisms

A I-B
in gp the morphisms from

are equivalence classes of couples of morphisms (u, v) such that the diagram

A -B

.4’--- B’

is eommutagive, ghe equivalence being defined as follows" (u, v) is equivalen
with (u’, v’) if f’u f’’ (or, equivalently, if vf

Added i Proof. Freyd’s papers [7] and [8] have now appeared in ghe Proceedings
of he Conference on Categorical Algebra, I.,a Jolla, 196, Springer-erlag, New York
1966.
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The functor J sends the object A of p onto the object

of agp.
Every diagram of the form

represents a monomorphism (resp. an epimorphism) in ap.
Given

A- B

A_’ ---- B’
/,

leg K -- A be a weak kernel of vf (B’ K’ a weak eokernel of

K-, B _. ’1l l resp" l
A ---> B A’ ----’, K’/

is a kernel (resp. cokernel) of (u, v).

Then

The definition of the functors R, L, M is as follows"

R(A ----> B) Coker (T(K) ----> T(A)),

where K -- A is a weak kernel of A -- B.

M(A -- B) Im (T(A) T(B))

L(A ----> B) Ker (T(B) ----> T(C))

where B - C is a weak cokernel of A B.
We now complete the proof of the theorem.
For assertion 3, it is straightforward to verify that if

(A/- B),

is a family of objects of ap, then

@iaA @aB

is the direct sum, where the existence of @ A and @ iz B is guaranteed by
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Proposition 3.2. Likewise, the direct product of this family is

The existence of direct sums and products implies in an abelian category the
existence of arbitrary inductive and projective limits.
To show that the direct sum of a family monomorphisms is a monomorphism

let (u, v)

Ai f-Ai
u+_l + i I)

B+ B’
g

be a family of monomorphisms. This diagram may be decomposed as

The diagram I represents a monomorphism, since (u, v) is a monomorphism;
moreover, diagram I represents an epimorphism, as noted above. Thus I is
an isomorphism. Hence, to prove that

+:++ (u+:, v+) +,:,++- u+:,

is a monomorphism, it is sufficient to show that @++j,- u+, @+++1.+) is a mon-
omorphism, which is indeed the case since

Remark. Analogously, the sum of a family of epimorphisms is an epimor-
phism. Dually, it can be shown that a product of a family of epimorphisms
(monomorphisms) is an epimorphism (monomorphism).

It remains to show that any projective object of the category agp is iso-
morphic with an object of the form J(A) where A e p. To do this, we use
the following two propositions.

PIOPOSITION 6.2. Any retract in the category $p admits a complement.

Proof. Let f:X -+ Y be a retract in gpz, i.e. there exists p Y --. X
such that pf lx. Consider the Puppe sequence

JF(X) JF(f)..> JF(Y) --> JF(C]) -- JF(X)
JF()

JF()



470 DAN BURGHELEA AND ARISTIDE DELEANU

which according to assertion 5 which has been proved, is exact. The exist-
ence of p implies that JF(f) is a monomorphism. Then JF(]) is also a mono-
morphism and the sequence

0 ---, JF(X) JF(]) JF(Y) - JF(Cs) ----> 0

is exact. Since JF(p) yields a splitting of this sequence, it follows that

JF(Y) JF(X) @ JF(Cs), whence F(Y) F(X) @ F(C])
(see the definition of direct sums above), i.e. the given retract has a com-
plement.

PROPOSITION 6.3 (P. Freyd [8]). If in the additive category for every ob-
ject A there exists the sum @n-_1.2.... A,, where A, A for any n, and any
retract admits a complement, then for any morphism v P P such that v v,
there exists an object Q and morphisms P ----> Q, s Q -- P such that ts 1
and st v.

To finish the proof of 2, let X be a projective object of ap. According
to 2’, there exists an epimorphism p J(P) -- X, where P e gpE the projec-
tivity of X yields a monomorphism u X J(P) such that pu lx. Thus
(up)2 up. Since J is a full embedding, there exists v P -o P such that
J(v) up. We clearly have v v. By Proposition 6.3 there exist an
object Q p and morphisms P -- Q, s" Q - P such that ts 1 and
st v. We assert that J(Q) is isomorphic with X. For, consider the din-
gram

J(P) P X
u

j(p)

J(1P) l q[ lJ(1P)
J(P) J(Q) J(P)

J(t) J(s)

where q p o J(s). We check the commutativity of this diagram.

uoq uopoJ(s) J(s) oJ(t)oJ(s) =J(s),
qoJ(t) poJ(s) oJ(t) =pouop p.

Since p is an epimorphism and J(s) a monomorphism, we infer that q is an
isomorphism.
To prove assertion 6, let H pE --, a be a functor which carries the se-

quence F(X) --, F(Y) --> F(Cs) into an exact sequence for each f. It is
immediate that H is additive. Let then L be the left-exact extension of H
provided by 4. It can be shown that H preserves epimorphisms. The
proof paraphrases that given by Freyd for the stable category (Lemma 4.1
of [7]).
ConoLnv 6.4. The ]unctors Hom J(A and Itom J(A are

exact in agp for any object A of p.
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This follows from the fact that J(A) is both injective and projective.

COROLLARY 6.5. Every representable exact functor on the category ap is
represented by an object of the form J(A), where A e gp.

This follows from assertion 2 of the theorem.

COROLLARY 6.6. The functor J carries the Puppe sequence onto an exact
sequence.

Denote by H-n(A, B) Hom (A, n) Hom (A~-n, B) and by
Hn(A, f) Hn(A, F(C]) and Hn(f, B) Hn(F(C]), B) where f" Z -- Yis a morphism in tp.

COROLLARY 6.7. The following sequences are exact:

--> Hn+I(A, f) -- Hn(A, X) -, Hn(A, Y) --, Hn(A, f) --,

(-- H’(X, A) - Hn(Y, A) - un(f, A) (-- Hn+(X, A) --Appendix A
THE EILENBERG-ZILBER LEMMA FOR SPECTRA. Let X be a semi-simplicial

spectrum and x e X. Then x can be written uniquely as

x s,l si. sr y,

where y is non-degenerate and il > i2 > > ir >_ O.

Proof. We first remark that, if we have

X 8i1"’’8ir y,

then, using the commutation relations of the s’s, x may be written as

x s’l s., y,

where jl > j. > > jr >_ 0.

To prove the existence of a representation as in the lemma, let n be the
integer such that di x for i _> n. Then clearly if x ., for any represen-
tation

x s s,y, i > > ir >_ O,

we must have r <_ n + 1. This implies that there exists at least one repre-
sentation of the required form. The uniqueness of this representation is
proved in the same manner as in the case of semi-simplicial complexes.

Appendix B
Our obiective is to prove Proposition 1.4. To do this, we introduce a defi-

nition for the suspension of a semisimplicial complex in addition to the one
given in [5, p. 241].
Let K be a semisimplicial complex. The "left" suspensio of K is the com-
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plex $1 K which has as n-simplices the appropriate degeneracy of the base
point and all pairs (p, (r) such that p >_ 0, e K, . and p -t- dim n.
The degeneracy and face operators are given by

di(p, (r) (p 1, si(p, a) (p + 1, i<p,

(p, d_) (p, s,_), i > p,

whenever this has a meaning and d(p, a) otherwise.
Now, given a semisimplicial spectrum X, we associate with it two semi-

simplicial spectra 2X and 2:1X as follows: Let Ps X /X, )} be the pre-
spectrum associated to X[4, p. 468]. Consider the prespectra {SX,
and {$1X, $1 )}. (To see that IS1X, $1)} is a prespectrum, notice that
the map

(q, (a, p)) - ((q, a), p), p, q 7__ 0, a e K

establishes an isomorphism between $1SK and SS1K for every semisimplicial
complex K.)

Set
ZX Sp {SX, Sh}, i X Sp {SIX, $I

where Sp is the functor defined in [4, p. 468].
LEMMA B.1. For every spectrum X there exists a natural map

which is a weak homotopy equivalence.
Proof. Consider the prespectrum {Y} where Yi X+I. The maps ) of

the prespectrum {XI determine a map of prespectra

f: {SXi, Sh} - {Y}.
On the other hand, it is easy o show that the spectra Sp Y} and are iso-
morphic. Set x Spf. One proves without difficulty that x induces
isomorphisms for the homotopy groups of the prespectra associated to ZX
and X.
LEMMA B.2. For every spectrum X there exists a natural map

X SX
which is a weak homotopy equivalence.

Proof. Let Ps X {X} and Ps SX {(SX)}. It is straightforward to
verify that any n-simplex (p, a) of S1X is also an n-simplex of (SX).
Thus we have a map of prespectra J:/S 1X/ -- (SX)}. But Sp PsSX is
isomorphic with SX [4, p. 469]. Set bx Sp j. It can be checked readily
that Cx induces isomorphisms for the homotopy groups of the prespectra
associated to 2:1X and SX.
LEMMA B.3. For any spectrum X there exists a natural morphism in gpE

o F(X) - F(, X)
which is an isomorphism.
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Proof. Let R and Sin be the geometric realization functor and the singular
functor [4], and let Ps X {X},. Then we have maps of prespectra

f:{SX} {SinRSX,}, f:{SX} {SinRSX}

which are weak homotopy equivalences. Moreover, we have maps of pre-
spectra

g {Sin RSX} {Sin SRX}, g {Sin RS X} --> {Sin SRX}

which are isomorphisms, since by Proposition 2.3 of [4], S commutes with R
and one can verify that, for every semisimplicial complex K, the spaces RSK
and SRK are homeomorphic in a natural manner. Now, by Proposition 9.2
of [4], a map in Sp is a weak homotopy equivalence if and only if it is a
homotopy equivalence. Thus we may set in ps

F(Spf)- o F(Sp g)- F(Sp g) o F(Sp f).

To complete the proof of Proposition 1.4, it is sufficient to .set in gp
ex F(x) o -o F(x)-.
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