MEASURES ON NON-SEPARABLE METRIC SPACES

BŸ

R. M. DUDLEY¹

1. Introduction

The main purpose of this note is to give a simpler and more general definition of "weak" or "weak-star" convergence of certain measures on nonseparable metric spaces, and to prove its equivalence with the convergence introduced in [1] for the cases considered there.

Let (S, d) be a metric space. Let \mathfrak{G} or $\mathfrak{G}(S)$ be the class of all Borel sets in S, i.e. the smallest σ -algebra containing all the open sets. One can safely assume that a finite, countably additive measure on \mathfrak{G} is concentrated in a separable subset [2]. It has seemed useful to consider finite, countably additive measures on metric spaces, not concentrated in separable subsets, defined on some, but not all, Borel sets [1]. Specifically, one can use the σ -algebra \mathfrak{U} or $\mathfrak{U}(S)$ generated by the open balls

$$B(x, \varepsilon) = \{ y \in S : d(x, y) < \varepsilon \}$$

for arbitrary x in S and $\varepsilon > 0$. Examples of finite measures on \mathfrak{U} not concentrated in separable subsets are the probability distributions of distribution functions of "empirical measures" [1]. For a simpler example, let S be uncountable and d(x, y) = 1 for $x \neq y$. Then \mathfrak{U} consists of countable sets, which we give measure 0, and sets with countable complement, which we give measure 1.

If S is separable, then all open sets are in \mathfrak{U} by the Lindelöf theorem, hence $\mathfrak{U} = \mathfrak{B}$. I don't know whether \mathfrak{U} is always strictly included in \mathfrak{B} for S non-separable, but it is in the cases mentioned above, and under the following conditions:

PROPOSITION. Suppose that the smallest cardinal of a dense set in S is c (cardinal of the continuum). Then \mathfrak{U} has cardinal c and \mathfrak{B} has cardinal $2^{\mathfrak{c}}$. Hence \mathfrak{U} is strictly included in \mathfrak{B} .

Proof. Let A be a dense set in S of cardinal c. Let G be the class of balls B(x, r) with x in A and r (positive) rational. We show that G generates \mathfrak{A} . Let $x \in S, r > 0$. Let $x_n \in A, x_n \to x$. We can assume $d(x_n, x) < r$ for all n. Let r_n be positive rational numbers such that $r_n \to r$ and $r_n < r - d(x_n, x)$ for all n. Then

$$B(x, r) = \bigcup_{n=1}^{\infty} B(x_n, r_n),$$

showing that G generates \mathfrak{U} .

Received July 1, 1966.

¹ This research was supported in part by a National Science Foundation grant, and was presented to the International Congress of Mathematicians in Moscow, August 1966.

Let ω be the cardinal of the set of all integers. Then G has cardinal at most ωc , and $\omega c = c$. Hence the class of complements of sets in G has cardinal at most c. The class of countable unions of elements of G has cardinal at most equal to c^{ω} , and

$$c^{\omega} = (2^{\omega})^{\omega} = 2^{\omega^2} = 2^{\omega} = c.$$

Using transfinite induction, we obtain that the cardinal of \mathfrak{U} is at most $\aleph_1 c$ (where \aleph_1 is the least uncountable cardinal; we are assuming the axiom of choice, but not the continuum hypothesis). Now $\aleph_1 c = c$. Since each onepoint set in S clearly belongs to \mathfrak{U} , the cardinal of \mathfrak{U} is exactly c. The cardinal of \mathfrak{B} is exactly 2^c [3, Remark 3.7 p. 106] and $c < 2^c$. Thus \mathfrak{U} is properly included in \mathfrak{B} , q.e.d.

If in the statement of the above proposition we replace c by another uncountable cardinal α , then the proof goes through except that possibly $\alpha < \alpha^{\omega}$, which will happen e.g. if $\alpha = \aleph_{\omega}$ [3, p. 100], but not if $\alpha = 2^{\beta}$ for some (infinite) β . When \mathfrak{U} and \mathfrak{B} have the same cardinal, it remains unclear whether they are equal.

It should be noted that the σ -algebras \mathfrak{U} in non-separable metric spaces have certain unpleasant properties. For example, they are not always preserved by homeomorphisms or even by uniform isomorphisms. Also, they are not always preserved by "relativization" to a subset of S with the same metric. Finally, if one takes a cartesian product of two metric spaces S and T, with any of the usual metrics for the product topology, $\mathfrak{U}(S \times T)$ may not even contain all "rectangles" $A \times B$ where $A \in \mathfrak{U}(S)$, $B \in \mathfrak{U}(T)$.

The Borel σ -algebras are superior in all these respects, although $\mathfrak{B}(S \times T)$ may not be generated by the rectangles whose sides are Borel sets. Of course, the Borel σ -algebras are generally too large to carry a finite measure with non-separable support. One might hope for a σ -algebra which, like \mathfrak{U} , would allow such measures, but which had better "functorial" properties.

2. Measures on u

Let $M(S, \mathfrak{U})$ be the set of all finite, countably additive, real-valued set functions (signed measures) on $\mathfrak{U}, M^+(S, \mathfrak{U})$ the set of elements of $M(S, \mathfrak{U})$ with nonnegative values, and $P(S, \mathfrak{U})$ the set of elements of $M^+(S, \mathfrak{U})$ with total mass 1 (probability measures).

In [1], "weak-star" convergence of a sequence in $M^+(S, \mathfrak{U})$ to a Borel measure μ was defined as convergence of the upper and lower integrals of every bounded continuous function f to $\int f d\mu$. Here we define a natural convergence in $M(S, \mathfrak{U})$ and prove that if S is complete, the new convergence agrees with the old one whenever the latter is defined (if μ has separable support, which, as noted above, practically follows from μ being a Borel measure).

Let $\mathfrak{C}(S)$ be the Banach space of all bounded, continuous, real-valued functions on S with supremum norm $\| \|_{\infty}$. Let $C(S, \mathfrak{A})$ be the closed linear subspace of \mathfrak{U} -measurable elements of $\mathfrak{C}(S)$. Then any μ in $M(S, \mathfrak{U})$ defines a bounded linear functional

$$f \rightarrow \int f \ d\mu$$

on $\mathfrak{C}(S,\mathfrak{U})$. Then on $M(S,\mathfrak{U})$, we have the "weak-star" topology of pointwise convergence on $\mathfrak{C}(S,\mathfrak{U})$. (Note that $M(S,\mathfrak{U})$ is a proper subset of the dual space $\mathfrak{C}(S,\mathfrak{U})^*$ unless S is compact.)

Given a real-valued function f and a measure μ we define the usual upper and lower integrals:

$$\int^* f \, d\mu = \inf \left\{ \int h \, d\mu \, : \, h \ge f, \, \int h \, d\mu \, \text{defined} \right\},$$
$$\int_* f \, d\mu = \sup \left\{ \int g \, d\mu \, : \, g \le f, \, \int g \, d\mu \, \text{defined} \right\}.$$

THEOREM. Suppose (S, d) is a complete metric space, $\{\mu_n\}$ is a sequence of elements of $M^+(S, \mathfrak{U})$ and μ in $M^+(S, \mathfrak{U})$ is concentrated in a separable subspace. Then $\mu_n \to \mu$ for the weak-star topology on $M(S, \mathfrak{U})$ if and only if

$$\lim_{n \to \infty} \int^* f \, d\mu_n = \lim_{n \to \infty} \int_* f \, d\mu_n = \int f \, d\mu$$

for every f in $\mathfrak{C}(S)$.

Proof. "If" holds since the upper and lower integrals of functions in $\mathfrak{C}(S, \mathfrak{U})$ are integrals.

To prove "only if", suppose $\mu_n \to \mu$ on $\mathfrak{C}(S, \mathfrak{A})$ and f is in $\mathfrak{C}(S)$. Since μ has separable support it has a natural extension to all Borel sets. We may assume $||f||_{\infty} \leq 1$ and $\mu_n(S) \leq 1$ for all n. Let ε be given, $0 < \varepsilon < 1$. By Ulam's theorem [4], there is a compact set K such that $\mu(S \sim K) < \varepsilon$. Choose $\delta > 0$ so that $d(x, y) < \delta$ and x in K imply $|f(x) - f(y)| < \varepsilon$. Let C be countable and dense in K. Let

$$d(y, K) = \inf_{x \in K} d(x, y) = \inf_{x \in C} d(x, y).$$

Then $d(\cdot, K)$ is \mathfrak{U} -measurable and continuous (in fact,

$$|d(y, K) - d(z, K)| \leq d(y, z)$$

for all y and z). Let

$$g(y) = \min (1, 4d(y, K)/\delta).$$

Then $g \in \mathfrak{C}(S, \mathfrak{U})$, so

$$\int g \ d\mu_n \to \int g \ d\mu < \varepsilon.$$

Let F be a finite subset of K such that for any x in K, $d(x, z) < \delta/4$ for some z in F. Let

$$\phi(t) = \varepsilon t/\delta, \quad 0 \le t \le \delta/2$$

R. M. DUDLEY

 $= 2, \quad t \ge \delta$

and let ϕ also be linear in the interval $[\delta/2, \delta]$. Let

$$u(x) = \min (1, \min (f(z) + \varepsilon + \phi(d(x, z)) : z \in F)),$$

$$v(x) = \max (-1, \max (f(z) - \varepsilon - \phi(d(x, z)) : z \in F)).$$

Then clearly $u, v \in \mathfrak{C}(S, \mathfrak{U})$. Let

$$W = \{x : d(x, w) < \delta/4 \text{ for some } w \text{ in } K\}.$$

For any x in W, $d(x, z) < \delta/2$ for some z in F, so

$$|f(x) - f(z)| < \varepsilon$$
 and $\phi(d(x, z)) < \varepsilon$.

Thus

$$u(x) \le f(z) + 2\varepsilon \le f(x) + 3\varepsilon.$$

Given x, let G_x be the set of all z in F such that $d(x, z) < \delta$. Then $f(x) \le f(z) + \varepsilon$ for all z in G_x , while for z in $F \sim G_x$, $\phi(d(x, z)) = 2$. Thus $f(x) \le u(x)$ for all x in W. Likewise

$$f(x) \ge v(x) \ge f(x) - 3\varepsilon$$

for all x in W. Now since $W \in \mathfrak{U}$,

$$\int_{w}^{*} f \, d\mu_{n} \leq \int_{W} u \, d\mu_{n} + \mu_{n}(S \sim W),$$
$$\int_{*} f \, d\mu_{n} \geq \int_{W} v \, d\mu_{n} - \mu_{n}(S \sim W),$$
$$\limsup \int_{w}^{*} f \, d\mu_{n} \leq \limsup \int_{W} u \, d\mu_{n} + \varepsilon,$$
$$\liminf \int_{*} f \, d\mu_{n} \geq \liminf \int_{W} v \, d\mu_{n} - \varepsilon,$$

and

$$\limsup \int_{W} (u - v) \ d\mu_n \leq 6\varepsilon,$$

 \mathbf{SO}

$$\limsup \int^* f \, d\mu_n - \lim \inf \int_* f \, d\mu_n \leq 8\varepsilon.$$

Since an upper integral is greater than a lower integral of the same function, the limits of $\int^* f \, d\mu_n$ and $\int_* f \, d\mu_n$ exist and are equal. These limits are also approached by $\int_W f \, d\mu$ as $\varepsilon \to 0$ (of course, W depends on ε), thus they equal $\int f \, d\mu$, q.e.d.

References

 R. M. DUDLEY, Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces, Illinois J. Math., vol. 10 (1966), pp. 109-126.

452

- 2. E. MARCZEWSKI AND P. SIKORSKI, Measures in nonseparable metric spaces, Colloq. Math., vol. 1 (1948), pp. 133-139.
- 3. A. H. STONE, Cardinals of closed sets, Mathematika, vol. 6 (1959), pp. 99-107.
- 4. S. ULAM AND J. C. OXTOBY, On the existence of a measure invariant under a transformation, Ann. of Math., vol. 40 (1939), pp. 560-566.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS