MEASURES ON NON-SEPARABLE METRIC SPACES

BY
R. M. DubpLEY!

1. Introduction

The main purpose of this note is to give a simpler and more general defini-
tion of “weak” or ‘“weak-star” convergence of certain measures on non-
separable metric spaces, and to prove its equivalence with the convergence
introduced in [1] for the cases considered there.

Let (S, d) be a metric space. Let & or & (S) be the class of all Borel sets in
S, i.e. the smallest s-algebra containing all the open sets. One can safely
assume that a finite, countably additive measure on ® is concentrated in a
separable subset [2]. It has seemed useful to consider finite, countably additive
measures on metric spaces, not concentrated in separable subsets, defined on
some, but not all, Borel sets [1]. Specifically, one can use the s-algebra U or
U (S) generated by the open balls

Bz, &) = {yeS:dx,y) <ég

for arbitrary z in S and ¢ > 0. Examples of finite measures on Ul not con-
centrated in separable subsets are the probability distributions of distribution
functions of “empirical measures” [1]. For a simpler example, let S be un-
countable and d(z, y) = 1 for z  y. Then U consists of countable sets,
which we give measure 0, and sets with countable complement, which we give
measure 1.

If S is separable, then all open sets are in U by the Lindelof theorem, hence
U = @ I don’t know whether U is always strictly included in ® for S non-
separable, but it is in the cases mentioned above, and under the following
conditions:

ProposiTioN.  Suppose that the smallest cardinal of a dense set in S is ¢
(cardinal of the continuum). Then U has cardinal ¢ and ® has cardinal 2°.
Hence A 1s strictly included in ®.

Proof. Let A be a dense set in S of cardinal ¢. Let G be the class of balls
B(x, r) with x in A and r (positive) rational. We show that G generates .
LetzeS,r > 0. Letz,eA,x,— 2. Wecanassumed(x,,x) < r for all n.
Let r, be positive rational numbers such that r, > randr, < r — d(x,, )
for all n. Then

B(z,r) = Una B, ),

showing that G generates al.
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Let w be the cardinal of the set of all integers. Then G has cardinal at most
wc, and we = ¢. Hence the class of complements of sets in G has cardinal at
most ¢. The class of countable unions of elements of G has cardinal at most
equal to ¢, and

¢’ = (29)¢ =2 =2 =¢.
Using transfinite induction, we obtain that the cardinal of U is at most Nic
(where N; is the least uncountable cardinal; we are assuming the axiom of
choice, but not the continuum hypothesis). Now Nic = ¢. Since each one-
point set in S clearly belongs to U, the cardinal of U is exactly c. The cardinal
of ® is exactly 2° [3, Remark 3.7 p. 106] and ¢ < 2°. Thus U is properly in-
cluded in ®, qg.e.d.

If in the statement of the above proposition we replace ¢ by another un-
countable cardinal e, then the proof goes through except that possibly & < o,
which will happen e.g. if a = N, [3, p. 100], but not if « = 2° for some (in-
finite) 8. When U and ® have the same cardinal, it remains unclear whether
they are equal.

It should be noted that the s-algebras U in non-separable metric spaces
have certain unpleasant properties. For example, they are not always pre-
served by homeomorphisms or even by uniform isomorphisms. Also, they
are not always preserved by “relativization” to a subset of S with the same
metric. Finally, if one takes a cartesian product of two metric spaces S and
T, with any of the usual metrics for the product topology, U (S X T) may
not even contain all “rectangles” A X B where A ¢ A(S), B ¢ U(T).

The Borel s-algebras are superior in all these respects, although ® (S X T')
may not be generated by the rectangles whose sides are Borel sets.  Of course,
the Borel cs-algebras are generally too large to carry a finite measure with
non-separable support. One might hope for a ¢-algebra which, like U, would
allow such measures, but which had better “functorial’” properties.

2. Measures on U

Let M (S, 1) be the set of all finite, countably additive, real-valued set
functions (signed measures) on U, M T (S, ) the set of elements of M (S, U)
with nonnegative values, and P (S, ) the set of elements of M (S, w) with
total mass 1 (probability measures).

In [1], “weak-star”’ convergence of a sequence in MT (S, a) to a Borel
measure u was defined as convergence of the upper and lower integrals of
every bounded continuous function f to [fdu. Here we define a natural
convergence in M (8, W) and prove that if S is complete, the new convergence
agrees with the old one whenever the latter is defined (if p has separable
support, which, as noted above, practically follows from u being a Borel
measure).

Let €(8) be the Banach space of all bounded, continuous, real-valued func-
tions on S with supremum norm || (.. Let C(S, a) be the closed linear
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subspace of U-measurable elements of €(S). Then any uin M (S, U) defines
a bounded linear functional

f—*ffdu

on C(S,U). Then on M (8, U), we have the “weak-star” topology of point-
wise convergence on C(S, U). (Note that M (S, U) is a proper subset of the
dual space @ (S, u)* unless § is compact.)

Given a real-valued function f and a measure u we define the usual upper
and lower integrals:

[ - inf{[hdp, D h Zf,fhdpdeﬁned},

f*fd" = sup{fgdp, ] Sf,fgdu deﬁned}.

TaEOREM. Suppose (S, d) is a complete metric space, {ua} is a sequence of
elements of M* (S, W) and u in M (S, W) ds concentrated in a separable sub-
space. Then p, — u for the weak-star topology on M (8, U) if and only if

tim [ 7o = tim [ faun = [ 7an

n->0

for every f in €(S).

Proof. “If” holds since the upper and lower integrals of functions in
C (8, U) are integrals.

To prove “only if”’, suppose u, — p on €(S, U) and f is in €(8). Since u
has separable support it has a natural extension to all Borel sets. We may
assume || f|l, < 1and u,(S) < 1foralln. Letebegiven, 0 < ¢ < 1. By
Ulam’s theorem [4], there is a compact set K such that u(S ~ K) < e. Choose
8 > 0sothat d(z, y) < é and 2 in K imply |f(z) — f(y) | < e. Let C be
countable and dense in K. Let

d(y, K) = infex d(z, y) = infee d(z, y).
Then d(-, K) is U-measurable and continuous (in fact,
for all y and z). Let

g(y) = min (1, 4d(y, K)/5).
Then g € €(S, U), so

fgdp,,-—afgdp,<£.

Let F be a finite subset of K such that for any = in K, d(z, 2) < §/4 for some
zin F. Let
o) = et/s, 0<1t<6/2



452 R. M. DUDLEY

= 2, t >0
and let ¢ also be linear in the interval [6/2, 6]. Let
u(z) = min (1, min (f(2) + ¢ + ¢(d(z, 2)) : 2¢ F)),
v(z) = max (—1, max (f(z) — e — ¢(d(x,2)) : 2¢F)).
Then clearly u, v e €(S, U). Let
W = {z:d(z, w) < /4 for some w in K}.
For any « in W, d(x, 2) < 8/2 for some 2z in F, so

[f@) —f(2)| <e and ¢(d(z,2)) < e
Thus

u(@) < f() + 2 < f2) + 3

Given z, let G, be the set of all 2z in F such that d(z, z2) < 6. Then f(z) <
f@) + eforall zin G,, while for zin F ~ G,, ¢(d(x, 2)) = 2. Thus
f(@) < u(z) for all x in W. Likewise

f@) > v(x) > flx) — 3¢
for all x in W. Now since W e,

[ 1au < [ v+ wls~mw),
[1am> [ vau—wis~m),
.
lim sup f f du, < lim sup fw U dpn + &,

liminfffd/.zn > liminf[ v du, — &
and ’ "
lim supf (w — v) dp. < 6e,
80 "

E3
lim sup f £ dyy — lim inf f £ dp < 8e.
*

Since an upper integral is greater than a lower integral of the same function,
the limits of [*f du, and [« f du, exist and are equal. These limits are also
approached by [w f du as € — 0 (of course, W depends on ¢), thus they equal
[ fdu, q.e.d.
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