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1. Introduction

The min purpose of this note is to give simpler nd more general defini-
tion of "wek" or "weak-str" convergence of certain measures on non-
separable metric spces, nd to prove its equivalence with the convergence
introduced in [1] for the cses considered there.

Let (S, d) be metric spce. Let or (S) be the class of ll Borel sets in
S, i.e. the smallest z-lgebr containing 11 the open sets. One ca sfely
ssume that finite, countbly dditive mesure on
separable subset [2]. It hs seemed useful to consider finite, countbly dditive
measures on metric spces, not concentrated in separable subsets, defined on
some, but not ll, Borel sets [1]. Specifically, one ca use the z-lgebm or
t (S) generated by the open blls

B (x,

for arbitrary x in S and e > 0. Examples of finite measures on t not con-
centrated in separable subsets are the probability distributions of distribution
functions of "empirical measures" [1]. For simpler example, let S be un-
countable and d(x, y) 1 for x y. Then t consists of countable sets,
which we give measure 0, and sets with countable complement, which we give
measure 1.

If S is separable, then all open sets are in by the LiudelSf theorem, hence
t 5. I don’t know whether t is always strictly included in 5 for S non-
separable, but it is in the cases mentioned above, and under the following
conditions"

PROPOSITION. Suppose that the smallest cardinal of a dense set in S is c
(cardinal of the continuum). Then has cardinal c and qt has cardinal 2.
Hence is strictly inclvded in (.

Proof. Let A be a dense set in S of cardinal c. Let G be the class of balls
B (x, r) with x in A and r (positive) rutionul. We show thut G generutes
Let x S, r > 0. Let x A, x -- x. We can assume d (x,, x) < r for all n.
Let r be positive rational numbers such that r -- r and r < r d (x., x)
for all n. Then

B (x, r) U:_ B (x, r),

showing that G generates
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Let be the cardinal of the set of all integers. Then G has cardinal at most
c, and c c. Hence the class of complements of sets in G has cardinal at
most c. The class of countable unions of elements of G has cardinal at most
equal to c, and

c= (2) 2’= 2= c.

Using transfinite induction, we obtain that the cardinal of t is at most
(where R1 is the least uncountable cardinal; we are assuming the axiom of
choice, but not the continuum hypothesis). Now Rlc c. Since each one-
point set in S clearly belongs to t, the cardinal oft is exactly c. The cardinal
of 6t is exactly 2 [3, Remark 3.7 p. 106] and c < 2. Thus t is properly in-
cluded in 6t, q.e.d.

If in the statement of the above proposition we replace c by another un-
countable cardinal a, then the proof goes through except that possibly a <
which will happen e.g. if a [3, p. 100], but not if a 28 for some (in-
finite) t. When t and’ ( have the same cardinal, it remains unclear whether
they are equal.

It should be noted that the a-algebras t in non-separable metric spaces
have certain unpleasant properties. For example, they are not always pre-
served by homeomorphisms or even by uniform isomorphisms. Also, they
are not always preserved by "relativization" to a subset of S with the same
metric. Finally, if one takes a cartesian product of two metric spaces S and
T, with any of the usual metrics for the product topology, (S X T) may
not even contain all "rectangles" A X B where A ’tt(S), B ’tt(T).
The Borel a-algebras are superior in all these respects, although (B (S X T)

may not be generated by the rectangles whose sides are Borel sets. Of course,
the Borel a-algebras are generally too large to carry a finite measure with
non-separable support. One might hope for a a-algebra which, like t, would
allow such measures, but which had better "functorial’" properties.

2. Measures on

Let M (S, t) be the set of all finite, countably additive, real-valued set
functions (signed measures) on t, M+ (S, ) the set of elements of M (S, t)
with nonnegative values, and P (S, ) the set of elements of M+ (S, ) with
total mass 1 (probability measures).

In, [1], "weak-star" convergence of a sequence in M+(S, ) to a Borel
measure was defined as convergence of the upper and lower integrals of
every bounded continuous function f to f f d. Here we define a natural
convergence in M (S, t) and prove that if S is complete, the new convergence
agrees with the old one whenever the latter is defined (if t has separable
support, which, as noted above, practically follows from being a Borel
measure).

Let (S) be the Banach space of all bounded, continuous, real-valued func-
tions on S with supremum norm I[. Let C (S, ) be the closed linear
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subspace of -measurable elements of ( (S). Then any t* in M (S, ) defines
a bounded linear functional

f---, f fdt,

on (S, t). Then on M (S, ), we have the "weak-star" topology of point-
wise convergence on a (S, t). (Note that M (S, q) is a proper subset of the
dual space a (S, q)* unless S is compact.
Given a reM-vMued function f and a measure we define the usual upper

and lower integrals"

s" {: i d}f d inf h dr, h >_ f, h dt define

f, fd,= sup(fgd’g <_f, fgddefined}.
THEOREM. Suppose (S, d) is a complete metric space, {t*,} is a sequence of

elements of M+ (S, ’tL) and t* in M+ (S, q) is concentrated in a separable sub-
space. Then t,, ----> t for the weak-star topology on M (S, qL if and only if

f* f, flim f dw lim f dw f
for every f in e S

Proof. "If" holds since the upper and lower integrals of functions in
( (S, qL) are integrals.
To prove "only if", suppose -- t on e(S, t) and f is in e(S). Since

has separable support it has a natural extension to all Borel sets. We may
assumellfl]_< land(S) _< lforalln. Let e be given, 0 < e < 1. By
Ulam’s theorem [4], there is a compact set K such that (S K) < e. Choose
ti > 0sothatd(x,y) < tiandxinKimply [f(x)-f(y) < e. LetCbe
countable and dense in K. Let

d(y, K) inf,K d(x, y) inf,c d(x, y).

Then d (., K) is at-measurable and continuous (in fact,

for all y and z). Let

Then g (S, q), so

d(y, K) d(z, K) <- d(y, z)

g(y) =mill (1, 4d(y, K)/).

f g f g < e.

Let F be a finite subset of K such that for any x in K, d (x, z) < U4 for some
z in F. Let

6(t) et/6, 0 < <_ it/2
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=2,

and let also be linear in the interval [/2, ]. Let

u(x) min (1, min (f(z) - e- (d(x, z))’z F)),

v(x) max (-1, max (f(z) e-(d(x,z)) "zeF)).
Then clearly u, v (S, ). Let

W {x’d(x,w) < /4 for some w in K}.
For any x in W, d (x, z) < /2 for some z in F, so

If(x) -f(z)] <
Thus

u (x <_ f (z T 2 <_ f (x -t- 3.
Given x, let G be the set of all z ia F such that d (x, z)
f(z) + forallziaG,whileforzinFG,(d(x,z)) 2. Thus
f(x) _< u (x) for all x in W. Likewise

f(x) >_ v(x) >_ f(x)- 3
for all x in W. :Now since W e t,

f d, < . + .(S W).

f, f d# >_ vd, ,(S,-.., W),

lim sup f dn __< lira sup

liminff, fd,.>_liminfvd#.-e.

so

lim sup f (u v) d#n <_ 6e,

f* /,lim sup f dun lim inf f dn _< 8e.

Since n upper integral is greater than a lower integral of the same function,
the limits of f*f dn and f. f dun exist and are equal. These limits are also
approached by fwfd as e -- 0 (of course, W depends on e), thus they equal
f f du, q.e.d.
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