LUSTERNIK-SCHNIRELMANN CATEGORY AND STRONG CATEGORY

BY
T. GANEA!

1. Introduction

The purpose of this note is to compare the following two numerical homotopy
invariants of a topological space.

DerintTioN 1.1  The Lusternik-Schnirelmann category, cat B, of a topo-
logical space B is the least integer &k > 0 with the property that B may be
covered by k& + 1 open subsets which are contractible in B; if no such integer
exists, cat B = .

Derinttion 1.2. The strong category, Cat B, of a topological space B is
the least integer k£ > 0 with the property that B has the homotopy type of a
CW-complex which may be covered by k + 1 self-contractible subcomplexes;
if no such integer exists, Cat B = .

The first definition is classical; the second is the homotopy invariant version
of an earlier definition due to Fox [3, §IV] and was introduced in [4]. Since a
CW-pair has the homotopy extension property and since a CW-complex is
locally contractible, the CW-complex, say B’, described in 1.2 satisfies
cat B < k. Therefore, and since category is a homotopy type invariant, one
has cat B < Cat B for any space Bj; in particular, Cat B = o« if B fails to have
the homotopy type of a CW-complex. Our main result is expressed by

TueoreM 1.3. Let B be an (n — 1)-connected CW -complex with cat B < k
(k>1,n2>2). IfdimB < (k+ 2)n’— 3, then also Cat B < k.

It is well known that cat B < 1 if and only if B isan H’-space, and it follows
from 2.1 below that Cat B < 1 if and only if B has the homotopy type of a
suspension. Hence, 1.3 may be considered as a generalization of the following
result: any (n — 1)-connected H'-space B of dimension < 3n — 3 has the
homotopy type of a suspension. Under the additional assumption that the
homology of B is finitely generated, this last result was first proved in [1], and
an example therein reveals that 1.3 yields the best possible result at least when
k = 1. The proof to follow is essentially different from that given in [1]. In
the final section, we show that our approach leads to a substantial simplifica-
tion of the main geometric result in [6] which relates category to the differ-
entials in certain spectral sequences.

The preceding two definitions, as stated in terms of coverings by certain sub-
sets, do not dualize in the sense of [2]. Nevertheless, it is possible to dualize
the main results of the paper. Thus, the dual of 2.2 below yields a satisfactory
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definition of cocategory [5, §6], and the dual of 2.1 may be used as an inductive
definition of strong cocategory (omit 0-connectedness in both 2.1 and 2.2 when
dualizing). Then, the dual of 1.3 extends to arbitrary values of k the fact,
first proved in [8] and corresponding to the case k = 1, that any (n — 1)-
connected H-space A with m,(A4) = 0 for ¢ > 3n has the homotopy type of a
loop space. We will not give the details. The dual of 4.2 is equally valid and
will be discussed elsewhere.

2. Alternative characterizations of category and strong category
A triple

45 x -1

of based spaces and based maps is a cofibration if d is an inclusion map with the
based homotopyextension property and C results from X by shrinking the sub-
set A to a point; f is the identification map. Let & > 0 be any integer.

ProrosiTion 2.1.  Let B be a 0-connected topological space. Then Cat B =0
of and only if B s contractible, and Cat B < k -+ 1 if and only if there is a co-
Sfibration

445 x-L ¢

such that
(i) C has the free homotopy type of B,
(i) A and X have the based homotopy type of CW-complexes,
(iii) X s 0-connected and Cat X < k.

Proof. The first statement is obvious. Let
a:L—-A and §: X—>K

be based homotopy equivalences, where L and K are CW-complexes of which
K is the union of & + 1 self-contractible subcomplexes K; (we may assume &
to be a based homotopy equivalence according to (ii) and [11, E, p. 333]).
According to [9, Th. 2] we may assume L and the (k¥ + 2)-ad (K; Ky, -+ -,K3)
to be simplicial in the weak topology. Let M be the reduced mapping cylinder
of a simplicial approximation ¢ : L—> K of £od o a;letj : L — M bethecanoni-
cal inclusion and let J result from M by shrinking the subset j(L) to a point.
It follows from [11, Hilfssatz 7] that C has the based homotopy type of J, and
the latter is a CW-complex consisting of & -+ 2 self-contractible subcomplexes:
the reduced cone over L and the mapping cylinders of themaps ¢, : L; = K;
defined by ¢, where L; = ¢ '(K;). Therefore, Cat B < k + 1. Conversely,
suppose B has the free homotopy type of a CW-complex J which is the union
of &k + 2 self-contractible subcomplexes J;. Let X = Ut J; and
A = X nJya. Since J is connected, we may obviously assume the J; re-
numbered so that also X is connected; for the same reason, 4 is non-void.
Obviously, Cat X < k and, with C = X/A resulting from X by shrinking 4



LUSTERNIK-SCHNIRELMANN CATEGORY AND STRONG CATEGORY 419

to a point, the triple A — X — C is a cofibration. The inclusion map
(X, A) — (J, Jrs1) induces a homeomorphism of C onto J /Ji41 and, since Ji41
is self-contractible, the latter has the free homotopy type of J and, hence, of B.
Let now B be an arbitrary topological space with base-point *. Define a
sequence of fibrations
5, : Iy —— E,—2>B for & >0
as follows. & is the standard fibration @B — PB — B, where PB is the space
of all paths in B emanating from *, po sends every path into its end-point, @B
if the loop space, and 7, the inclusion. Assuming & to be defined, let Cyyy =
Ej, u CFy, result from E;, by erecting a reduced cone over the subset F, and let
Ts4+1 ¢ Cry1 — B extend py, by mapping the cone into . Then, convert 7441 into
a homotopically equivalent fibre map pri1 with total space Eyyi, fibre
Fir1 = prta(*), and inclusion 444 ; explicitly,

Epp = {(2,B8) €Crpn X B’ | Tepa(2) = 5(0)} and pru(z, g) = 3(1),

whereas the map hpy @ Copn — Eppn, given by hpu(z) = (x, B,) with
B(s) = ra(x) for all sel, is a homotopy equivalence satisfying
Prt1 © hey1 = 7141 . This sequence is related to that giving the classifying space
of a loop space.

ProrosiTioN 2.2. Let B be a based connected CW-complex. Then,cat B <k
if and only of §i has a cross-section.

Proof. It follows easily from [9] that F), and E} , hence also the reduced
mapping cylinder M, of 4 , have the based homotopy type of CW-complexes
for any k£ > 0. Since Cat E, = 0, consideration of the cofibrations Fy_; —
M1 — Cjyreveals, by 2.1, that Cat E;, < kforany k > 0. The presence of a
cross-section in &, implies that B is dominated by Ej so that cat B < k. Con-
versely, we may assume that B is covered by k + 1 subcomplexes B, , each of
which contains * and is contractible rel. xin B. Let 4 = U2} B,, and
D=AnB,,wherel <n < k,and letj : A u B,— Bbetheinclusion. Since
the subcomplex B, is contractible rel. » in B, there is a homotopy

Jit: AuB,— B with jo=j,j1u(Ba) = % ji*) = =

Suppose there is a based map v : A — E,_; satisfying p,10v = j| 4; this
certainly happens if n = 1 since j | A is then nullhomotopic rel. *. Since Py
is a fibre map, there results a homotopy

vii A= E,y with vo= v, paaov:=Ji| A, v%) =

Then, v1(D) C F, and, since the reduced cone CF,_, is contractible, the map
D — F,_; defined by ~v: extends to a map 8 : B, — CF,_;. The map

¢:AUBn~>.En__1UCFn_1,
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given by ¢ | A = v;1and ¢ | B, = 8, satisfies 7, o ¢ = j; hence
pﬂ°h‘”°¢ =j1:

whereh, : E,1u CF,_, — E, isthe homotopy equivalence described before 2.2.
Since p, is a fibre map, there results a based map I' : A u B, — E, satisfying
pnoI' = j, and the second part of 2.2 now follows by induction.

We shall also need a modification of the sequence of fibrations F. Let
N > 2Dbe an arbitrary integer. Define new fibrations

Fu(N) : P — @, > B for k>0

as follows. Fo(N) is the same as Fo. Assuming F,(N) to be defined, let 4, be
the (N — 1)-skeleton of the singular polytope of Pj and let j, : Ax — Pj be the
restriction of the canonical map. Let Ry = Qi u CA4; result by attaching to
@Q: the reduced cone over 4; via the map % © ji , and let 7541 ¢ Rry1 — B extend
Px by mapping the cone to the basepoint. Finally, F11(N) results by con-
verting 11 into a homotopically equivalent fibre map pit1 .

We denote by H,(X) the ¢-th reduced singular homology group of X with
integral coefficients.

ProrosiTioN 2.3. Let B a 1-connected CW-complex. Then, for any k > 0,
m(Qr) = 0, Cat Qv < k, Hy(Qy) is free and Hy(Qx) = 04 ¢ > N. In case
dim B < N, cat B < k if and only if (N ) has a cross-section.

Proof. Introduce the cofibrations 4,1 — M1 — R, where M} is the
reduced mapping cylinder of 7 o j, . Since @y is contractible and dim 4, <
N — 1, the last two asserted properties of @ follow by induction using 2.1 and
the exact homology sequence of a cofibration. Next, we prove that there are
N-connected maps ¢, and ¢ such that the diagram

F(N) : Po—> Q2> B

(23 J €k
Tk j 23

F,: F,— E,—B

(1)

commutes. Let ¢o and & be the identity maps. Suppose that 7 (Qr) =
m1(Ey) = 0 and that (1) behaves as asserted for some k£ > 0. In the diagram

A2 0 — Quu 04— B

@ o Jx l &k j\l/ku
v i

Thkt1

B
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the first square commutes. Hence, it induces a map 41 yielding commuta-
tivity in the second and, obviously, also in the third square. According to
[5,1.1], F has the homotopy type of the join of k£ + 1 copies of @B. Therefore,
and since m(B) = 0, F} is certainly 0-connected; since ¢ o ji is (N — 1)-
connected and N > 2, also 4; is 0-connected. Hence, it follows from [11,
Hilfssatz 9] that

7I'1(QkU CAk) = 1r1(EkU CFk) = 0.

Since ¢ o j» and & are (N — 1)- and N-connected respectively, use of the
5-lemma in the first two squares reveals that ¥y is homology, hence also
homotopy, N-connected. When converting the maps 7441 into homotopically
equivalent fibre maps, Y41 induces the desired map &1 which, in turn, defines
¢r+1 ; the connectivity of the latter follows from the 5-lemma applied for
homotopy groups in (1) with &k replaced by k£ + 1. Finally, any cross-section
in () yields, by composition with & , a cross-section in F ; conversely, since
&, s N-connected, any cross-section in &, lifts to a cross-section in Fx(N) if
dim B < N, and the last statement in 2.3 follows from 2.2.

3. Creating cofibrations

‘We work with spaces of the based homotopy type of a CW-complex. If E
is such a space, we denote by dim F the least of the dimensions of all CW-com-
plexes in the homotopy type of E.

LevMma 3.1.  Let the top row in the diagram

cl-x 4

N

B<L—w<Z-4

be a cofibration and let g be any map. Let A, X, C, and B be 0-connected and let
m(B) = m(X) = 0. Suppose that g is m-connected, f is c-connected,
dmA <m+c¢c—1l,anddimB <m+c(m > 2,¢c>1). Then, thereis a
1-connected space W and maps o, v, o such that
(i) the diagram homotopy-commuites,

(ii) v is m-connected and dim W < m + ¢,

(ili) ¢oa = * and the extension W u CA — B of ¢ which maps the cone into
* 18 @ homotopy equivalence.

Proof. Upon replacing B and X by homotopically equivalent spaces and
retaining the notation, we may assume that g and f are fibre maps. We shall
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refer to the diagram

(XuCA) uCX«——XuCA

x lp \
CuCXe— 0l X ;

~J

(3) 0 ¥ g 3 Fef A

o

-

Bu (Z<«— B« 7

p r

(ZuCA) v CZ——Z u (A

where Z = {(b,z) e B X X | g(b) = f(x)}, B and £ are the projections, and F
is the fibre of f with < as inclusion. Clearly, 3 is a fibre map with fibre F and
inclusion given by j(z) = (%, ). When converting f into a fibre map, the
relation f od = *survives and yieldsa map e with20e = d. Also £1is a fibre
map and has the same fibre as g. Hence, £ is m-connected and, since m > 2,
m(Z) = 0. In (3) the cones are attached in the obvious way and the un-
labelled arrows denote inclusions. Let ¢ be induced by g and ¢ Since F is
the common fibre of f and B, the connectivities of f and ¢ imply, by the relative
Serre theorem (see for instance [10, 1.6]), that ¢ is (m + ¢ + 1)-connected.
Let p and r extend f and 8 by mapping the cones to the base-points, let = and p
be induced by p and r, and let 8 be induced by £  Clearly, (3) commutes.
Since the top row in (2) is a cofibration, p isa homotopy equivalence and,
hence, so is 7. Upon shrinking CZ and CX to the base-points, 0 is converted
into the identity map of the suspension A and is, therefore, a homotopy
equivalence. As a consequence,the connectivity of ¥ implies that p is (m + ¢)-
connected and hence, by the 5-lemma, that r is (m =+ c¢)-connected.” Since
H,..«(B) is free, so is its subgroup Im B4 and, by [1, 2.1], there is a 1-connected
CW-complex W with dim W < m + cand a map w : W — Z such that

Wy : Hy(W) — Hy(Z) is isomorphic for ¢ < m + ¢,
Bxowy : H(W) — Im B, is isomorphic for ¢ = m + c.

We replace W by a homotopically equivalent space so as to convert w into a
fibre map. Then, since w is (m + ¢ — 1)-connected whereas dim A <
m + ¢ — 1, there is a map a: A — W satisfying woa = joe. Form
W u CA upon attaching the cone by means of «, and let

n:WuCA—->ZuCA andr: (WuCA)uCW —(ZuCA)u(CZ

be induced by w. By the 5-lemma, # induces isomorphisms of homology
groups in dimensions < m 4+ ¢ — 1 and, therefore, so does r o . Since 7 is

2 This could also be derived from [10, 2.4].
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homotopically equivalent to the identity map of ZA4, 74 is always isomorphic;
since 7o 6 in (3) is a homotopy equivalence, px is always monomorphic and,
hence, isomorphic in dimension m -+ ¢. Then, 74 o 94 is isomorphic in di-
mension m + ¢ as shown by the 5-lemma in the diagram

0 = Hm+c(A)"'>Hm+c(W)">Hm+c(WUCA)9Hm+c((WUCA)UCW)—>Hm+c—1(W)

J' lﬁ* o Wk 17’* o Nx lp* o Tx l'U)*

0——Im 6*——’Hm+c(B) '—_)Hm-l-c(BUCZ)_”———”——_)Hm-i—c-—l(Z) .

Sincedim 4 <m +c¢—1,H,(Wu C4A) =0forqg>m 4+ csothatronisa
homotopy equivalence. To obtain the result, it only remains to set ¢ = Bow
and v = £ow.

Proof of 1.3. 'We assume B to be an (n — 1)-connected CW-complex with
cat B<kanddimB < (k+2)n—3 (k>1,n>2) Let N=(k+2)n—3
and introduce the diagram

fa

Qe Q1 «— Apa

(4) o] = H (¢21)

g1
B, —— By

Ags

with top row taken from the definition of the fibrations F,(N ) given in the pre-

ceding section; we may obviously regard the top row as a cofibration. Accord-

ing to [5, 1.1], the fibre F,_; in the fibration F,, has the homotopy type of the

join of ¢ copies of QB and is, therefore, (¢n — 2)-connected. The map
Jo1t Aga—> Py

in the definition of F,(N) is (N — 1)-connected, and

¢g-1: Py — Foq

in (1) is N-connected. Therefore, A, is (¢gn — 2)-connected if ¢ < k, and
Py 1is (gn — 2)-connected if ¢ < k + 1. By 2.3, m(Q¢—1) = m(Q,) = 03
therefore, f, is certainly (n — 1)-connected if 1 < ¢ < k. Letc¢ =n — 1.
Since cat B < k, 2.3 yields a cross-section g : B — @ in §4(N ), and the con-
nectivity of Pj readily implies that g is ((k + 1)n — 2)-connected. Let
m = (k 4+ 1)n — 2. Starting with B, = B and ¢ = g, consecutive applica-
tion of 3.1 in (4) yields a sequence of spaces

B =B, By« -+« By« By
in which every B, has the homotopy type of B, u CA,; so that, by 2.1,
Cat B, < CatB,3+1 and CatB < CatB,+ k — 1.
We now prove that Cat By < 1. Consider (4) with ¢ = 1. Convert a, into
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a fibre map and let L be its fibre with inclusion ! : L — A,. The map go,
given by 3.1, is m-connected and @, is contractible; therefore, Byis (m — 1)-
connected. Since 4ois (n — 2)-connectedand m — 1 > n — 2, Lis (n — 2)-
connected. By [5, 2.1], the map 4,u CL — By, which extends «, by mapping
the cone into *,is (m + n — 1)-connected and, by the 5-lemma, the resulting
map ¢ : ZL — B, is homology (m + n — 1)-connected. Since dim By <
m + n — 1, it follows from [1, 2.1] that there is a connected CW-complex Ly
and a map A : Lo — L such that ¢ o Z\ : =Ly — By induces isomorphisms
of homology groups in all dimensions. Since m(ZLy) = m(Bi) = 0,
¢ o 2\ is actually a homotopy equivalence, and 1.3 is proved.

Remark 3.2. The space E; in §; has the homotopy type of PBu CaB. If
B has the homotopy type of a CW-complex, we may shrink the contractible
subspace PB to a point without altering the homotopy type of E1. The re-
sulting space is ZQB and p, is, then, equivalent to the map R : 2B — B given
by R{s, w) = w(s). Suppose now that B is an H’-space with comultiplication
7 : B— B V B satisfying

Jor~A,

where J : B V B — B X B is the inclusion of (B X *) u (* X B) in the
Cartesian product and A : B — B X B is the diagonal map. Then, as is well
known, cat B < 1 with a homotopy cross-section I' : B — ZQB satisfying

Rol'~1 and r~(R V R)ogoT,
where o : ZQB — ZQB V ZQB is the comultiplication given in any suspension
by
a(s, y) = ({2s, ), *) if 0<2s<1,
= (%,(2s—1,y)) if 1< 28<2.

Suppose now that dim B < 3n — 3 and consider (4) with ¢ = 1, B; = B,
Ao the (3n — 4)-skeleton of @B, @, = Z4,, and g, resulting, as in the proof of
2.3, by compressing I' : B — ZQB into £4,. Let R, be the restriction of R to
ZAq so that Ry o g3 >~ 1. In the diagram

sL 4 B 9 34,

|- I I+
SLVIL Y%, BvB =29 54, v 24,
RoV Ro
the maps ¢ and ! defined at the end of the proof of 1.3 satisfy
gro ¢ =~ =l
Since ZI commutes with ¢ and since g; is the compression of T' one has
7o~ (RyV Ry)ogogiod

~ (RoV Ro)o(g1 Vg1)o(¢p V ¢p)oc~(¢ V ¢)oo.
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As a consequence, thehomotopy equivalence ¢ o Z\ : ZLy— B is primitive with
respect to comultiplication in the H’-space B and the suspension ZLo. Hence,
1.3 generalizes the full result of [1, Th. A].

We close this section by deriving from 2.2 and 1.3 a very short proof of a
result first obtained for category in [7] and extended to strong category in [4].

CoroLLARY 3.3. If Bisan (n — 1)-connected CW-complex with dim B <r,
then Cat B < r/n (n > 2).

Proof. Letk be the largest integer < r/n. Since FrinFris ((k+ 1)n — 2)-
connected and dim B < (k 4+ 1)n — 1, 5, has a cross-section so that cat B < k.
Since (k+ 1)n — 1 < (k+2)n — 3,Cat B <k.

4, Remarks on a spectral sequence

It has already been observed in [12] that cat B < k if and only if the k-th
fibration in a certain sequence has a cross-section, and the spectral sequence
associated with these fibrations has been investigated in [12] and [6]. All the
results contained in [6, §1 and §2] automatically transfer to the homology
spectral sequence arising from the sequence of fibrations . defined above.
Here, we shall only illustrate the advantage of the fibration-cofibration ap-
proach used in the definition of the F4’s by giving a simple proof of a geo-
metric result (Corollary 4.3 below) which immediately implies, as in [6, Th.
2.1], that d” = 0if r > cat B; the result is equivalent to [6, Lemma 2.2] of which
the proof in [6] is quite intricate.

Lemma 4.1.  Let the top row in the diagram

c L x4 4

EuCF

be a cofibration and let the second row be a fibration with a cross-section g; let j be
the inclusion and let e be any map. If

eofxgopoecf,
then
joe.ﬁ-’jogopoe,

Proof. Forany space V,let + and — denote track addition and subtraction
in the group 7(Z4, V), and let + denote the operation of #(Z4, V') on the set
x(C, V) which is associated with the given cofibration [11, 4.3]. To simplify
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notations, we omit the circle when composing maps. Since ef ~ gpef, by [11,
4.5] there is a map ¢ : ZA — FE such that

(5) €~ ¢ 1 gpe,

hence, since pg = 1,

(6) pe =~ pe T pe.

Since pg = 1, one also has p(e — gpe) >~ 0 and there resultsamap ¢ : ZA —F
such that

(7) &~ 1p 4 gpe.
Therefore,
e = (ip + gpe) T gpe by (5) and (7),
so that
Je > j(ie + gpe) T jgpe by naturality,
=~ (jip + jgpe) T jgpe
= jgpe T jgpe, since ji =~ 0,
=~ jg(pe v pe) by naturality,
=~ jgpe by (6).

We now go back to the definition of §; and introduce the composite
jk . Ek%EkUCFk—%Ek.H,

where the first map is the inclusion and the second is the homotopy equiva-
lence hyy1 ; let
.777::, =jn—1° ot °jm . Em%En

forn > mand j, = L.

TuroreM 4.2. Let B be a connected CW-complex. If cat B < k with cross-
section g : B — Ej , then jm =~ ji o g o pm for alln > k + m.

Proof. The statement is obviously true if m = 0 since both sides are then
defined on £, which is contractible. Suppose the statement to be true for some
m>0andletn > k + m + 1. The first row in the diagram

jm In

Em+1 Em Fm

B

pn—l 'n—
B N En—l (—2——1—— F n—1

Ji=

J& ey
E,
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may be considered as a cofibration, the second is a fibration and, since
n—1>k, parojr tog=prog=1. Onehas

=1 n—1 . =1 n—1 n—1 .
JE T 0goPaaofmiioin = Jk G0 Pm = jm = Jmt1°]Jm,

where the equalities are obvious, and the equivalence is valid since
n — 1 2 k 4+ m and since the statement is true for m. Hence, by 4.1,

Jrbl = Gt 0 fmil ©2 a1 0k 0 g0 Pat O fmtl = Jk ©G© P -
CorOLLARY 4.3. Under the same assumptions, the map

§ = jlz_1°g°pq By — B
satisfies ¢ 0 ji, =3 if ¢ > v > k.
Remark. Here cat * = 0 whereas in [6] cat * = 1.
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