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Since the time of the first investigations of the projective representations
of finite groups [4], [5] there hve been two pproches to the subject. The
first consists of the homologicl techniques originating with Schur’s fctor sets
nd the second is the relation between the projective representations of
group nd the ordinary representations of covering group. We shll give,
by combination of these methods, new short proof of theorem of Reynolds
[3]. This will be ccomplished by proving result which is of group-
theoretic nture nd of independent interest nd which gives connection
between the structure of group ad its covering groups. Reyaolds’ theorem
will then be deduced by pplying results o Bruer [1] to the ordinary repre-
sentations of these covering groups.

All groups mentioned throughout this pper will be ssumed to be finite.
If G is group then we denote its center by Z(G) nd its derived group by G’.
If H is subgroup of G then G:H is the index of H in G. The exponent of G
is the least common multiple of the orders of the elements of G. Therefore,
the exponent of G is the product of the exponents of the Sylow p-subgroups of
G s p runs over the distinct prime divisors of the order G of G.
An ordinary n-dimensional representation of G in the field F is homo-

morphism of G into the general linear group GL(n, F); proiective n-dimen-
sional representation of G in the field F is homomorphism of G into the pro-
jective general linear group PGL(n, F), the quotient of GL(n, F) by the group
of sclr mtrices. If no fieldF ismentionedthen ny representation, ordinary
or proiective, is ssumed to be written in the field C of complex numbers. Let
F be some subfield of C. If p is n ordinary n-dimensional representation of G
then we sy that p cn be written in F provided there is S in GL(n, C) such
that S-p(x)S is in GL(n, F) for 11 x in G. If p is n n-dimensional proiective
representation of G then we sy that p cn be written in F provided there is S in
PGL(n, C) such that for ech x in G the coset S-p(x)S contains elements of
GL(n, F) for ech x in F. We shll be interested in the field of m roots of
unity, which is the subfield of C generated by primitive m root of unity.
A covering group (or representation group) of G is group nd homo-

morphism of onto G such that the following two conditions re fulfilled"

(1) The kernel of is contained in Z(() a ’.
(2) If n is ny positive integer nd p is n n-dimensional projective repre-

sentation of G then there is n ordinary n-dimensional representation of
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such that p q , where is the natural homomorphism of GL(n, C)
onto PGL(n, C).

Any such representation will be said to "lift" p. A theorem of Schur [4]
asserts that every group G possesses covering groups (. Furthermore, as is
well-known, the kernel of is isomorphic to H2(G, C*), where C* is the multi-
plicative group of C. Moreover, the following assertions hold [6, Prop. 3.3.
(2) on p. 164 and (3) on p. 166) ]" If is a homomorphism of the group E onto
the group G with kernel K such that K

_
Z(E) n E’, then K is a homomorphic

image of H2(G, C*). In particular, the exponent of K divides the exponent of
H(G, C*).
We can now state the results of this paper, the first of which is a purely

group-theoretic result"

THEOREM 1. If G is a finite group then the product of the exponents of
Z( G) n G’ and G/Z( G) n G’ is a divisor of the index of Z( G) a G’ in G.

This has the following immediate consequence, in as much as the exponent
of G divides the product of the exponents given in the theorem.

COROLLARY. If G is a finite group then the exponent of G is a divisor of the
index of Z( G) n G’ in G.

This latter result is all that we shall need for the application to projective
representations. It is interesting to note that, whereas the theorem is proved
by homological methods, the corollary has a direct proof using the commutator
calculus. For this reason, we shall give a sketch of this alternative procedure.
Our other result is as follows:

THEOREM 2. (Reynolds [3]) Any projective representation of a finite group G
may be written in the field of the gth roots of unity, where g is the order of G.

Actually, Reynolds has proved a stronger result" he has given further details
concerning the relevant factor sets. However, our approach does not yield any
of this additional information.
We shall first derive Reynolds theorem from the corollary. Let p be an

n-dimensional projective representation of the group G and let ( be a covering
group of G. Let be an n-dimensional ordinary representation of ( which
lifts p. We know, by Brauer’s theorem [1], that may be written in the field
F of eth roots of unity, where e is the exponent of G. Thus, there is an element
T of GL(n, C) such that T-I(x)T is an element of GL(n, F) for all x in (.
Hence, S-lp(y)S is an element of PGL(n, F) for all y in G, where S is the
natural image of T in PGL(n, C), and so we have shown that p may be written
in the field F. In order to complete the proof we need only show that F is
in fact, a subfield of the field of the gt roots of unity, where g is as in the
theorem. However, this will holdprovidedthat e divides g. An application of
the corollary to ( shows the e is a divisor of "Z(() n (’ I. This index is, in
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turn, a divisor of g, in as much as the kernel of the homomorphism of onto G,
which defines ( as a covering group of G, is contained in Z() n ’.
We now turn to the proof of Theorem 1. Let H G/Z(G) G’ be of order

h and exponent e and let f be the exponent of Z(G) G’. We must show that f
divides h/e so that, by the remarks before Theorem 1, it suffices to demonstrate
that H(H, C*) is of exponent dividing h/e. For each prime divisor p of h
let H be a Sylow p-subgroup of H and let h and e be the order and exponent
of H, respectively. Thus h II h, e II e as p runs over the distinct
prime divisors of h. Hence, since H2(H, C*) is a direct sum of subgroups of
the groups H2(H, C*) [2], it is enough to establish that, for each prime p, the
exponent of H(H, C*) divides h/e. However, H is of order a power of p
so there is a cyclic subgroup K of H, whose order is e. The composition of
the restriction homomorphism of H(H, C*) to H(K, C*) and the transfer
homomorphism of H(K, C*) to H(H,, C*) is the endomorphism of
H(H, C*) given by multiplication by H:K [2], which is, of course, h,/%.
Therefore, we need only prove that this composition is the zero map. How-
ever, H2(K, C*) 0 since K is cyclic and the theorem is proved.
We now conclude by sketching the direct proof of the corollary. We first dis-

cuss the case of a p-group P. Let A Z(P) a P’ so that we wish to show that
the exponent of P divides P’A [. Let P P1, P’ P2, P3, denote the
lower central series of P. Let A P A, for each positive integer i, so that
A A1 A2. Finally, letQ (PA)P+l,for each/_> 1, sothat Qisa
subgroup of P containing Pi+l and Q

Therefore, A i/A+ Q/P+ and so

Hence

P’A IF
Denote P:Q pn and let pei be the exponent of P/P.. Since the expo-
nent of P is a divisor of I-I pe we need only establish that e

_
Z n.

We shall, in fact, prove the following two assertions, which give a stronger
result"

(a) e + e

_
n,

(b) e

_
n_,for/_> 3.

If P is cyclic these statements are clear so that we shall assumeP is not cyclic.
Thus, PIP’ is not cyclic so there exist m elements, m 1, x, x of P such
that the cosets P’xi form a basis of P/P. Let Px have order p where we
assume a _> _> a. Thus, el a and n a. Furthermore,
P/P3 is generated by the elements Pa[x, x], 1

_
i < j

_
m. However,

Pa[x, x] has order at most p" so that e

_
as. Hence

and (a) is proved
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As for (b), P/P+I is generated by all the elements P+[x, g] where x is in
P_ and g is in P. Since P_/Q_ has order pn_l we have x- zy where
z is in A and y is in P. However, z is in Z(P) so it follows that P+l[x, g] has
order at most p-i-. Thus e

_
n_ and (b) is established.

We now consider the general case of the corollary. In view of the above dis-
cussion and since the exponent of G is the product of the exponents of the
Sylow subgroups, it suffices to show that the following assertion holds" If SiS a
Sylow subgroup of G then

Z(G) n G’ S

_
Z(S) S’.

Let x be an element of the subgroup on the left so that x is in Z(S). However,
since x is in Z(G), the image of x under the transfer homomorphism of G into
SIS’ is S’x where n G" S ]. Therefore, if x is not in S’ then x is not in G’
and the proof is complete.
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