
THE LOGARITHMIC POTENTIAL OPERATOR

BY

JOHN L. TROLITMAN

Introduction
Let 0 be bounded open plane set (not necessarily connected) with bound-

ury components consisting of smooth Jordan curves. Let ( denote the open
set complementary to (.
The classical eigenwlue problems associated with the solutions of the

differential equation

Xv + 0
4

in 0, arise from prescribing boundary values for or its normal derivative,
or more generally, a relation between them [1].
However, it is also possible to ask for those solutions of the equation which

are related to solutions of another equation in the complementary set 0
through prescribed matching conditions at the common boundary.
Some properties of the solutions to the following problem of this type will

be obtained as one of the results of the present paper:
Find those solutions of the given differential equation which admit a con-

tinuously differentiable extension to harmonic function(s) in the comple-
mentary set 0, having the development

(z) k log z + 0 (1/I z near infinity

Application of Green’s identity to an annulus centered at any point z in
the complex plane E, yields after a standard limiting argument, the equation

X$(z) 2flog[z_ fJ$(’)drr
o

where r denotes two-dimensional Lebesgue measure. Thus b is seen to be an
eigenfunction to an operator of integral type having as its kernel

(2/r)log z " I, and defined for sufficiently smooth functions.
More generally, if S is any plane set having positive measure, consider the

associated logarithmic operator L defined by

(Lf)(z) 2 [ log lz r If(r) drr, z e S,(1)

for any f which is square integrable over S.
The integral in (1) has received considerable attention in the case where

f dr is a regular Borel measure oil S [2], [3] and is used to define the logarithmic
capacity of S. The corresponding operators in higher dimensional space have
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been analyzed in detail by Cotlar [4] through the theory of singular integrals.
However, the simpler operator presented above has several interesting prop-
erties which apparently have not been uncovered in previous investigations.
The foremost of these, is that L can have at most one negative eigenvalue,

and its existence depends solely upon the magnitude of the transfinite diam-
eter of the closure of the support of S (defined below). When suitably nor-
malized, there is a unique real eigenfunction associated with the negative
eigenvalue, and it has a continuously differentiable extension to the entire
plane, E, which is everywhere positive and subharmonic.

The support of a plane set

If S is a Lebesgue measurable set in the plane, then S*, the support of S,
is defined as follows"

S* z z S, Ar (z) n S has positive measure for any r > 0}

Ar(z) {" Iz- ’[ < r}.

If S has positive measure then S* is non-empty, and thus S S* has measure
zero. S* is relatively closed in S, and may be related to the usual definition
of the support of r restricted to S, but the above definition is more useful for
the present considerations.
Any function f which is integrable over S is integrable over S* and

f dr fs. f d’.

Hence the operator L when defined as in (1) will have the same range for all
sets S having a common support S*, and so it will be assumed hereafter,
whenever necessary, that S is itself a support set. (Observe that (S*)*
S*.) It will also be assumed that S and have the same measure.

The operator L
As is usual, let L (S) be the spce of measurable functions on S which are

Lsquare integrable over S. Forfe (S), let f Ilv (s If v dr) l/v, p 1, 2.
Application of the Schwarz inequality to (1) yields the following estimates

for f e (S), and for z, z0 in any compact set K"

i(Lf)(z)l <_ 2_ sup ([ (loglz i’l) dry)2 f112
7f" zeK

(Lf)(z) (Lf)(zo) <_ 2
log

lz dry)
< Iz-zol"i’ llfll . each a e (0, 1)

(utilizing the inequality log (1 + X) <_ X"/a for X > 0, a (0, 1)). M
is used generically to denote a positive constant which depends on the compact
set K.
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Hence L maps bounded sets of L (S) into equibounded equieontinuous sets
of C (K) for each a (0, 1) and each compact set K c E, the complex plane.
(For each a (0, 1) and each integer n 0, 1, 2, C+(S) is the space
of continuous functions on a set S, having n*h order partial derivatives in S,
which are HSlder continuous on S with exponent a.) From the Ascoli the-
orem, it follows that L is a compact operator from L (S) -- C (K) when the
latter space is supplied with the topology of uniform convergence.

Since L is compact and has a real symmetric kernel, it is well known that
its spectrum consists of at most a bounded sequence of real numbers having
zero as the only possible limit point. Each non-zero point in the spectrum
is an eigenvMue of finite multiplicity, and there is at least one such eigen-
value [5].

Let X be an eigenvMue to L, and an associated eigenfunction which may
be assumed to be real. Then, as a function in the range of L, may be ex-
tended continuously to E through the defining equation

(2) X(z) r2 fs log z l(’) drr, all z e E.

LEMMA. Let X be an eigenvalue of L, and an associated real eigenfunction.
Then for each z E and each r > O, the following formula holds:

(3) X(z) (z + re’) dO log (r) drr
7r NAt r

whereat flz-- r < r}.

Proof. From (2),

X4(z -t- re’ r2 f log lz + re’ 1() drr

_2(raar log

N{r:lz-rl>r}

Integrating over O, interchanging the orders of integration (which is permis-
sible) and subsequently utilizing the well-known formula

2 log ll aeldO rain (0, log[a

yields

xN )(z nu re) dO

2 fs lgl " rA
log z ’1 4(.) drr

which gives the desired result.
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COROLLARY 1. {0} is not an eigenvalue (not in the point spectrum) of L.

Proof. If ), 0, then (3) shows that for any possible associated eigen-
function ,

fs log (i’) dr z, r.0 for
flat r

From continuity of , it follows that 0 a.e. on S, and hence is not an
eigenfunction.

CoaoAnv 2. If an eigenfunction g L is constant in a neighborhood g a
point g S, then that constant value is zero. In particular, the eigenfutions
L cannot be constant on S.

Proof. (Recall that S is assumed to coincide with its support.) The
hypotheses are exactly those needed to arantee that the eigenfunction
has its constant value, say a, in a set S n A of positive measure. Since the
associated eigenvalue cannot be zero, (3) may again be applied to yield

a log Iz- f dr: 0
Nr r

and this gives the desired result.

Coaonv 3. Each eigenfunction to L is harmonic in , the open set corn-
plementary to S, and near infinity has the development

(4) (z) oglzl d W 0

Proof. This well-known property of logarithmic potentials follows from
(3) and the fact that for z e 3, the area integral vanishes for sufficiently smll r.
Thus has the Gauss mean value property in . The development is
trivial consequence of definition (2).

egaive eigenvalue(s) and associated

More interesting properties of the operator L emerge wheu attention is
restricted to its negative eigenvalues.

TEOaEM 1. If is a negative eigenvalue to L, and is an associated eigen-
function so normalized that fs dr O, then is positive and subharmon every-
where in E.
Prog. The development (4) together with the hypothesized normuliza-

tion fs dr 0 imply that cannot have a negative limiting value at infinity.
Thus if assumes a negative value in E, it must have a strict negative mini-
mum ut some point z0 e E. However, remains negative in a neighborhood
of z0, and so by (3)

4(zo) 4(Zo + re) dO,

for sufficiently small r ) 0.



THE LOGARITHMIC POTENTIAL OPERATOR 369

Hence cannot have a strict negative minimum at z0, and so >_ 0 every-
where in E.
To show that must be positive everywhere, consider (3) for any fixed

z e E, and for r > 0, let

M(r) - (z -+- re’) dO

(z) + n,,
loglZ- l(i.)dr.

r
Forr > r0 > 0,

M(r) M(ro) 2 ro fs () dr r0 rX(r r0) log}- nr0

log r

It is easily shown that the second term on the right approaches zero
r--+r0. Hence

or

pM(p) dp

M’ (r) <_ -(2/h)rM(r).

for any r > 0

Integrating this inequality gives

M(r) < M(ro) exp (-(r r)/) for r > r0 > 0

and hence
M(r) <_ (z) e-r’lx for any r > O.

If (z) 0 for any z E, then M(r) - 0 which implies that -= 0, a con-
tradiction.

Therefore > 0 everywhere, and again from (3)

(z) <_ - (z q- re) dO

for any z e E, r > 0. This proves that is subharmonic everywhere [6].
Finally, from the development (4), it follows that becomes logarithmically

infinite at infinity.

THEOREM 2 (uniqueness). L can have at most one negative eigenvalue, and
the associated eigenfunction when suitably normalized is unique.

Proof. Suppose there were two linearly independent real eigenfunctions
1, 2 associated with negative eigenvalues of L (not necessarily distinct).
Then it may be assumed that they are orthogonal so that 12 dr 0 and,



370 JOHN L. TROUTMAN

from the preceding theorem, that each is positive. The contradiction is
apparent.
Hence there can be within a constant factor at most one eigenfunction

associated with the negative eigenvalues of L. In particular, there can be at
most one negative eigenvalue, since the eigenfunctions associated with distinct
eigenvalues are always linearly independent.

Hereafter, the unique negative eigenvalue of L will be denoted by when
it exists, and the unique associated positive normalized eigenfunction by , i.e.

(5) f2dr 1.

Existence and relation to transfinite diameter

From Hilbert spce theory, it is known that if exists, then it stisfies the
relations

2

If" L wit f 1},
From the studies of PSly nd Seg5 [7], [2] it is known that the transfinite

diameter d of satisfies a similar inequality, vi.,

where is the class of reeler Borel measures on normalized so that
(S) 1.
The relution implied by the strong similarity of these definitions manifests

itself in the following"

TEOnEM 3. The operator L possesses a negative eigenvalue iff the transfinite
diameter d of exceeds one, in which case - < (2/) A log d, where A is the
area vf S.

Proof. Assume exists and let be the unique associated non-negative
Then the restriction of the meusure dr/ to S is in .eigenfunction.

Hence

--log d < dr dr

By he Schwarz inequality and assumed normalization of

A

wih sric inequality since is no constant. Therefore, -g < (2/) A log d
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as asserted. Moreover, log d > 0 d > 1 proving the necessity of this
condition.
To prove its sufficiency, it is necessary to resort to the general theory of

the transfinite diameter as initiated by Fekete. It is known [2] that for each
positive integer N there exist distinct points zl, z., z in S for which the
positive numbers

h 12/hr (hr--1)

define a sequence coverging to d monotonically from above.
For a given N define

r. (1/4n) min<<.<( z z. I, 1/2), for n 1, 2,
and

U Sn{z" lz- zi <_ r}, j 1,2, ,N
m.. r(U..), n 1, 2,

where r is plane Lebesgue measure. Since S is assumed to be a support set,
each m. > 0 and the Borel measures are defined through the simple func-
tions

%(z) 1/Nm, zeU., j=l, 2,...,N;n= 1,2,...

0, otherwise
by

dv f, dr, n= 1,2, ....
The measures v are absolutely continuous with respect to r by definition and
are normalized by construction. Hence each v e . For each n
1, 2, consider the integral

which may be split as follows"

I[] -f log lz-
(6)

wlere is the Borel measure on the product space X defined through
the simple function

(z, A (z)A
07

by

Note that

(z, ) U. X U..,
otherwise

i j;i,j= 1,2,...,N

k Adr X dr.

fx dX, <_ f f d, z ) d. " 1

By Alaoglu’s theorem [8], there exists a subsequence {,,} and a limit meas-
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ure h for which

limf g d,, fz
for each function g e C( X ). It is simple to verify that the limit measure

is the atomic measure which assigns to each point (z, z), i j; i, j
1, 2, N, the mass.
Following Hille [2], introduce for each M > 0 the continuous function

[log[ z ] min (log M, -logz
and note that for M > r-

lira

f [oglz- l]

-f log[z

log lz,- zl
N-1-log d.

The remaining term in (6) approaches zero as n , since for z,
it follows that [z 2r < 1In. Thus

. . z- r
< 2K r dr

o r
and so

1 fv dr"fv0
(m)

< K’(r,) 1 < K’ ()
where K, K are posigive eonsgangs. herefore ghere exisgs an so large

N-1 1

If d > 1, hen he right-hand side of he equaliy is negagive for N su-
eienly large. Nenee here exisg funegions f (S) for which

which by Hilbert spce theory mntees the existence of negative eigen-
vlue for L.
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As a result of the previous theorem, it follows that the L operator is positive
for support sets of transfinite diameter not exceeding one, while for the other
support sets, the operator of integral type with kernel

-(2/)og z 1 + (z)() (z )
is positive [5].
Of more immediate significance is the fact that for support sets of transfinite

diameter exceeding one, the eigenvalue tz constitutes a new and well-defined
functional, which is related to the transfinite diameter through the inequality-- < (2/)A log d (Theorem 3).

The dependence of this functional on the support set has also been investigated,
and the results will be presented in a subsequent paper.

Differentiability
The logarithmic operator was introduced through an eigenvalue problem

related to the solutions of the classical differential equation (X/4)V2 -t- b 0
in a bounded open set. We conclude this paper with a brief study of the
differentiability of the eigenfunctions of the logarithmic operator.

Let S be a bounded support set, and L, the logarithmic operator on L (S).
Suppose that h is an eigenvalue of L and 6 is an associated (real) eigenfunc-
tion. It has already been proven that 6 e C" (K) for each compact set K c E
and for each a e (0, 1), and that 6 is harmonic in .

Following Vekua [9], we introduce the operator T by

vf)(z) _1 f() dr

and observe that from the estimate

it follows that T is also a bounded operator from L (S) into L (K) for each
compact set K E.
Inasmuch as (Tf) (z) may be obtained by formally differentiating (-Lf(z))

with respect to z (in the complex sense), it is not difficult to show that Tf is
indeed the weak z derivative of -Lf relative to L (K) for any compact set
K E. Moreover, when f e C" (), then defining f 0 in gives

< [If( + z) f( + zo)lTf(z) Tf(zo)

<_ Mlz zol" for z, z0 e K.

CHence Tf C (K) also. In particular then, each eigenfunction ff e (E)
and is in C1+" (K) for each compact set K E and each a e (0, 1).
By resorting to the theory of singular integrals, Vekua establishes much

Cstronger results, one of which implies that if D is a disc and f e (/)) then
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C1+Tf (D ), and
O_. Tf)(z) f(z) z D
Oz

=0, zD.
Using this fact with a partition of unity yields the desired

THEOREM 4. Let S be a bounded support set. Then any eigenfution to
the loarithmic operator L on L (S) has a continuously differentiable extension to
E. Moreover is twe continuously differentiable in S (the interior of S) and
there satisfies the equation"

+ o.
CProof. Since (S) then for euch disc D c S,

where p () is C function which is radially symmetric with respect to the
center of the disc D, is unity on concentric subdisc Dt and vanishes identically
outside D. Vekua’s theorem applied to the first integral gives for z D,

X 0 -XV2= _p+0 -OOz 4

since the second integral is harmonic for z e D[. We remark that arbitrary
support sets may have empty interiors and hence the major assertion of the
theorem may be vacuuous. However, if S is open, then S* S S and
we have identified the eigenfunctions and eigenvalues of L with those of the
problem posed in the introduction.
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