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This pper presents the first prt of systematic study of the fmily of
closed ideals invrint under given positive linear operator T on C(X), where
X is a compact Husdorff spce. (The special relationship of positive opera-
tors nd ideals of the lgebm C(X) is due to the identity of closed lgebric
ideals nd closed order ideals when the scalars .re rel, cf. 1.) This study
draws much of its motivation from the properties of irreducible positive
operutors discovered in [9], in prticulur, properties of the spectrum. The
notion of mximl T-inwrint ideal is the key device to utilize these properties
for more general positive operators, even in rbitrry Bnch lttices (cf. [6]
and [10, Appendix, 3]).
1 of the present pper gives survey of the tools to be used in the sequel.

2 is concerned with bsic techniques for the study of closed ideals invrint
under T (briefly, T-ideals) nd gives representation theorem for mximl
T-ideals (Thin. 1). 3 exhibits the biiective correspondence, for ergodic
Mrkov operators on C(X) (3, Def. 3), between the fmily of mximl T-
ideals nd the extreme points of the set of positive, normalized, T-invriunt
measures on X (Thm. 2). A dual result (Thm. 3) characterizes, in similar
fshion, the set of ll (non-trivial) minimal closed order ideals in L’() that
re invrint under given ergodic nd stochastic operator T.

It is perhaps not entirely unnecessary to point out that the spces C(X)
include ll spces L() nd, fter the diunction of unit, spaces of ll con-
tinuous functions on locally compact space that vnish t infinity. Also,
studying ideals invrin under T is the sme s studying ideals inwrint
under the semigroup of operators generated by T. More generally, mny of
the techniques used in this paper ca be employed to study the family of
ideals invrint under given semigroup of positive operators.

1. Preliminaries

Let X be compact (Husdorff) spce. We denote by C(X) the Bnch
lgebr (under the stadrd aorm) of coatinuous complex-wlued fuactions
on X. The rel sublgebr C(X) of rel-vlued functions is Bach
lttice; if Ill denotes the function --+ f($)l, f-+ J/I is mpping of C(Z)
into C(X), nd C(X) ca be considered to be the complexifiction of C(X).

It is well kown that the closed ideals J in C(X) re sets of the form
J {f f(t) 0 for ll e S}, where S is compact subset of X uniquely
determined by J d clled the support of J. Such a i,del ca therefore
be equally characterized s closed vector subspce J of C(X) such that
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f e J implies g e J whenever gi --< If ]. In particular, in CR(X) the closed
algebraic ideals are identical with the closed order ideals.
We denote by M(X) the Banach space of all complex Radon measures on

X; that is, M(X) is the strong dual of the Banach space C(X). M(X) is the
complexification of the (real) Banach space MR(X) of real Radon measures
on X; each element of M(X) is a linear combination (with complex coeffi-
cients) of measures of the form

f + ig---) b(f) + it(g)

where f, g CR(X) and e MR(X). By a positive Radon measure we under-
stand a Radon measure e MR(X) such that (f) >- 0 whenever f -> 0.
The strong dual of M(X) is a Banach space that can be identified with a

Banach space C(Z), where Z is an extremally disconnected compact space,
and there exists a continuous, surjective map q Z -- X such that f -- f o q
is an isometric isomorphism of the Banach algebra C(X) into the Banach
algebra C(Z). Moreover, for the topology of uniform convergence on the
order intervals in M(X), C(Z) is a complete locally convex vector lattice in
which C(X) is dense. (For details, see [10, Chap. V 7, 8].)
We shall employ the following notation. Elements of X will be denoted by

s, t,-.- elements of C(X) by f, g,... elements of MR(X) by , k,
The point measure (unit mass) at s X is denoted by e,. If MR(X), the
support of is denoted by S. Each >= 0 generates an ideal

I,, {f 4,(Ill) O}

whose support is identical with the support S of . If I is a closed ideal in
C(X), the quotient algebra C(X)/I will be canonically identified with C(
The annihilator I of I in MR(X) is a weakly closed band.
Throughout the paper, T will denote a positive linear operator in C(X),

that is, a (necessarily continuous) linear map of C(X) into itself such that
f >- 0 implies Tf >- O. It is clear that the restriction To of such an operator
to CR(X) is a positive linear operator and that, conversely, each positive
operator To on CR(X) has a unique linear extension T on C(X) defined by

T f + ig To f + iTo g (L a c,,(x)).

The spectral radius of T is the smallest real number p >- 0 such that Xl _-< p
whenever ), e a(T), and is denoted by r(T). The peripheral spectrum of T
is the set

{hen(T) :l] r(T)}.

For Xta(T), we writeR(X) (), T)-1. Let us note thatr(T) ca(T)
for each positive operator T. In fact, for each complex h, [,[ > r(T), and
each f e C(X) we have
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By the principle of uniform boundedness, the assumption r(T) e a(T) would
imply that X --+ R(X)]] is uniformly bounded in the region X > r(T), which.
is obviously impossible.
We shall now list three important results on positive operators in C(X)

that will be used repeatedly in the sequel. For the convenience of the reader
proofs wilt be given.

EIGENVALJE THEOREM [5]. Let T be a positive operator on C(X) with
spectral radius r. Then r is an eigenvalue of the adjoint T’ for which there exists
a measure >= 0 satisfying r T’.

Proof. We can restrict attention to the real spaces CR(X) and MR(X).
Since r a(T) a(T’) (see above), there exists a measure b >- 0 for which
R’(h)b ( -T’)-1 is not bounded as ), $ r. Setting

the directed family (x)x>r has a weak adherent point e MR(X). Since
R’(X) (X > r) is a positive operator oa M(X), it follows that >= 0 and
hence that >= 0. Denoting by e the constantly-one function on X, we have
1 I111 =(e);thusl]ll =(e) 1. On the other hand,

limx-,r X T’fx O,

hence r T’4 since T’ is weakly continuous.

The following result is a special case of a heorem due to H. Lotz [6]. Re-
call that the approximate point spectrum of T consists of those elements X
e (T) for which there exists a normalized sequence (fn) in C(X) such that
lima f,, Tf,, O.

IM.DDIG THEOREM. There exists a compact space Y such that C(X) is
isometrically isomorphic with a subalgebra of C(Y) containing the unit of C(Y),
and such that each bounded linear operator U on this subalgebra has an extension
U1 to C(Y) possessing the following properties:

(i) IlUill=llUII
(ii) a(U) (U) and the approximate point spectrum of U is identical

with the point spectrum of Uj

(iii) UI is positive if (and only if) U is positive.

Proof. Put E C(X), and denote by E0 the vector space of all bounded
sequences (f,) (f, e E, n e N). With multiplication defined coordinatewise
and endowed with the norm (fn)II sup= f" ]], E0 is a Banach algebra of
type C(W) [10, p. 247]. In fact, if W0 denotes the topological direct sum of a

sequence of copies of X then E0 is the space of all bounded, continuous func-
tions on the locally compact space W0. Hence E0 is isomorphic with C(W),
W denoting the Stone-(ech compactification of W0. The subset I of all



06 H.H. SCHAEFER

null sequences in E0 then corresponds to the ideal in C(W) whose elements
vanish on W\Wo. Defining Y W\Wo, C(Y) thus is isomorphic with the
B-algebra of E-valued bounded sequences modulo null sequences, and if
/ is an equivalence class containing the sequence (f) we have

] lim sup f II.
It is clear that the mapping f --+ , where ] is the class containing the sequence
(f, f, f, ), is an isometric isomorphism of C(X) into C( Y); in particular,
the image of e is the unit of C(Y).

For any bounded linear operator U on C(X), we define U0 on E0 by
Uo(f,,) (Uf,,). Since Uo(I) c. I, Uo induces a bounded operator Uj on
E, C(Y). Clearly, 11 U II II U1 and U1 is positive if U is (the converse
is also true). It is clear from the construction of C(Y) that each approxi-
mate eigenvalue of U is an eigenvalue of U1, and that each approximate
eigenvalue of U1 is an approximate eigenvalue of U (hence actually an eigen-
value of U1). On the other hand, if X e (U) is not an approximate eigen-
value of U, then X U is an isomorphism of E onto a closed proper subspace
H. Hence if g e H, we have

inf]l(X-- V)f,-g[[ -> > 0

for each sequence (f) e E0 which shows that (X UI)] 0 --> for each
]eC(Y), and hence that X e a(U). The proof that X ca(U1) implies
X e a(U) is similar.
A positive operator T on C(X) is called a Markov operator if Te e. The

uaimodular eigenfunctions of these operators have a special property which
we record in the following lemma [9, p. 307].

LEMMA ON UNIMODULAR EIGENFUNCTIONS, Let T be a Markov operator.
If o, are unimodular eigenvalues of T and g, h are corresponding unimodular

gh T(gh*).eigenfunctions, then * *

Proof. In fact, for each f e C(X) we have Tf(s) f f(t) d8(t) where
8 is a positive Radon measure of mass 1 (precisely, 8 T’ es). Now if
ag(s) f g(t) d,(t) then

f g(t)
1 =Jag(s)d,(t).

Since >- 0, ,(e) i and the integrand is of absolute value 1, it follows that
it must be identically 1 on he support of 8. The same argument applies
to and h, so we have g(t)h*(t) a*g(s)h*(s) for all in the support of ,.
Therefore

,*g(s)h*(s) fg(t)h*(t) d,(t),

and the lemma is proved.

The asterisk denotes complex conjugates.
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2. Maximal ideals

We suppose in the sequel that X is a non-empty compact space.
we begin with a definition.

As usual,

DEFINITION 1. Let T be any positive operator on C(X). By a T-ideal
we understand a closed proper ideal in C(X) which is invariant under T. A
T-ideal is maximal if it is not properly contained in any other T-ideal.

PROPOSITION 1. Every positive operator T on C.(X) possesses at least one
maximal T-ideal, and each T-ideal is contained in some maximal T-ideal.

Proof. The family of T-ideals is not empty, since it clearly contains (0).
Let us show that this family is inductively ordered under set inclusion c.
In fact, if (In) is a non-empty, totally ordered subfamily then the family
(S,) of the respective supports has non-empty intersection S, since X is
compact. The ideal with support S is clearly invariant under T and hence
the least upper bound of the given subfamily. The assertions follow now from
an application of Zorn’s lemma.

Examples. 1. If X [0, 1] andT is theVolterra operatorgivenby Tf(s)
ff(t) dr, then each T-ideal is of the form

!a {f’f(s) 0 for all s,.0 =< s-<_ a},
where a e [0, 1]. The only maximal ideal is I0 (a 0).

2. Let X be the one-dimensional torus, represented by the complex unit.
circle F. Define T on C(I) by Tf(z) f(az), a e F.
The T-ideals are exactly those ideals in C(I’) whose support is invariant

under z ---. az. There are essentially two different cases:
(a) a is a root of unity, and hence a primitive nth root of unity for some

n e N. There exist infinitely many T-ideals, and the maximal T-ideals are
exactly those whose support forms a configuration of n points which is in-
variant under the rotation through 2’/n.

(b) a is not a root of unity. Then (0) is the only T-invariant ideal,
hence maximal. In fact, since the set (an)n, is dense in F, each invariant
ideal J must satisfy Sj F, thus J (0).

3. Let X be finite and P a permutation matrix (viewed as a positive
operator on C(X) ). If (cl) (c) (c) is the decomposition of the corre-
sponding permutation into independent cycles, the P-ideals are those whose
support is the set of all elements occurring in certain cycles (c1), (cm).
Any one cycle determines a maximal P-ideal, and this exhausts the supply of
maximal P-ideals.

The preceding examples suggest the following definition2

DEFINITION 2. The positive operator T is called irreducible if there exist
no T-ideals distinct from (0).

In [9] and [10], the term irreducible is used in a slightly different sense.
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If J is a T-ideal ia C(X), T induces a positive operator T ca C(X)/J
C(S).
Poposo 2. Let J be a fixed T-ideal and denote by q the canonical map

C(X) C(X)/J. Then I q(I) is a bijective map of the set of all T-ideals
containing J onto the set o all T-ideals. In particular, a T-ideal I J is
maximal i and only i q(I) is a maxima T-idea.

Proof. Clearly, if I J is T-ideal hen q(I) is T-idel, since q is
homomorphism nd since T o q q o T. (Note h q(I), which cn be
identified wih he Bneh lgebm I/J, is closed in C(X)/J.) Likewise, if
K is T-idel, hen q-(K) is n ideal invrint under T. The mpping is
bijeetive, since clearly q(q-(K)) K (for q is surjeetive), nd since
q-(q(I)) I (for q-(0) J I). The remainder is now obvious.

Coox. Let J be a T-ideal in C(X). Then J is maximal if and only
i T is irreducible on C S

Our first heorem concerns he representation of mximl T-ideals. Recall
th e denotes he eonsn-one function on X.

To. 1. Let T be any positive operator in C(X). Every maximal
T-ideal is o the form I If" (I f I) OI for a suitable normalized eigen-
vector > 0 of the adjoint operator T" T’. Here 0 occurs if and
only i is a point measure e such that Te(s) O.

Proof. Le I be mximl T-ideal. By Proposition 2, Corollary, Tz is
irreducible on C(S). Denote by the spectral rdius of Tz. I follows
from the eigenvlue theorem (1) ht there exists positive mesure on
S stisfying p T. Clearly I$ is a T-ideal; hence I (0), since T
is irreducible. Ca the other hand, if q is the canonical map C(X) C(S),
then 5 o q is a positive measure on X for which I I and such that
PC T’4.

If where T(8) 0 then, clearly, T’ 0. Conversely, suppose
that I is maximal and T’ O. (Te) 0 shows that the support of is
contained in So {s e X Te(s) 0}. On the other hand, each closed ideal
whose support is contained in So is a T-ideal (immediate verification). Thus
I defines a maximal ideal of the algebr C(So) (Prop. 2), and hence is
necessarily of the form , for some s e So, Q.E.D.

PnOPOSTON 3. If I, J are distinct maximal T-ideals, then S n S .
In particular, if I I and J It then the measures , are orthogonal.

Proof. If S S n S were non-empty, S would be the support of a T-ideal
K containing both I and J. Since I, J are maximal and distinct, it follows
that S is empty.

Orthogonal as elements of the Banach lattice M(X).
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PROPOSITION 4. Suppose that a( T) is nowhere dense in the real interval
[0, r(T)]. If 1, 2 are positive eigenvectors of T belonging to distinct eigen-
values pl p2 (>- 0), then 1+1 I. In particular, if I1 and I are both
maximal T-ideals then (1 J- 2o

Proof. Suppose that I1 I. I. Then 1, 2 define strictly positive
measures on S such that pi T i (i 1, 2). If p denotes the spectral
radius of T, then, clearly, we have 0 <- p2 < pl <- p <- r(T). Since a(T) is
nowhere dense in [0, r(T)] there exists k, p < k < pl, for which R(k)
(k T)-1 exists. On the other hand, the C. Neumann’s series

converges for every element b M,(S) such that bl =< c. for some c > 0;
in fact, since T’ is positive, we have

and certainly S R’(k)q for these . It follows that R’ (k) is a positive
operator on the closed order ideal B c M,(S) generated by. Since . is
strictly positive on (the positive cone of) C(S), it follows by taking polars
that the positive cone of B: is weak* dense in the positive cone of M(S) and
hence that R’ (), being weak* continuous, is a positive operator on M,(I).
But this contradicts the resolvent equation

R’(#) R’(k) (u k)R’(u)R’(),)

when applied to # > r(T); in fact we would have R’(t) -< R’(k), and hence
R’()II <= R’(k)]I, for all > r(T) which is impossible because of

r(T) +a(T)(l).

Consequently, we must have

PROPOSITION 5. Let T be any positive operator in C(X), and let T be the
positive operator induced by T on C(Y) (see the imbedding theorem, 1).
Then the correspondence

11 I C(X) n I
maps the set of all maximal Trideals onto the set of all maximal T-ideals.

Proof. If I is a maximal T-ideal, then (identifying C(X) with a subalgebra
of C(Y) the ideal in C(Y) generated by I is T-invariant and contained in a
maximal Trideal 11 (Proposition 1). Clearly I C(X) n 11, since I is
maximal. On the other hand, if 11 is a maximal Tl-ideal, then i C(X)n I
is a T-ideal in C(X) which is proper, since I but e C(X). It remains
to show that I is maximal. To this end we show that for every T-ideal
J I, the closed ideal K in C(Y) generated by J A- I is proper; since K is
clearly T-invariant, the maximality of I then implies J I.

Recall the construction of Y (1): Y W\Wo where W is the Stone-
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Cech compactification of the topological sum W0 of an infinite sequence of
copies of X. Suppose that K is not proper; then it follows that J -t- 11 con-
rains a strictly positive function ]. The equivalence class ] contains a se-
quence (f - gn) where f >= O, gn 0 are in C(X) and such that f(t) + g(t)
>__ 3ti for some i > 0 and all n e N; in addition, f e J and (gn)^ e 11. (There
exists i > 0 with 3tt < inf{ ](t) Y}, for any representative ] C(W) of. Now the set {t e W "](t) _<_ 3ti} is compact and contained in W0.) It
follows that g(t) >_- 2 for all n e N and e U, where U is a suitable open
neighborhood of the support Sj c X of J. An application of Urysohn’s
theorem yields the existence of h e C(X) such that 0 _-< h __< g. for all n, and
such that h(t) >= whenever Sj. Hence the stationary sequence (h) de-
fines a continuous function on W whose restriction to Y, , belongs to 11.. Thus

(f -f- h)"e(J + I1) C(X) J + I J;
but this is contradictory, since f + h does not vanish on S, and hence K is a
proper ideal in C(Y),

3. Ergodic Markov operators
We have seen (2, Theorem 1) that each maximal T-ideal I can be ob-

tained, by means of the correspondence -- I, from an eigeavector => 0 of
T’. Supposing to be normalized (i.e., 1), is uniquely determined
by I? By transition to the quotient C(X)/I, the problem is seen to be equiv-
alent to this" Does the adjoint T of an irreducible operator T (Definition
2) have a unique (normalized) positive eigenvector? Further, what particu-
lar properties distinguish the eigenvectors >__ 0 of T that determine maximal
T-ideals I, from other positive eigenvectors of T? These questions do not
appear to have simple or easy answers for the most. general positive operators
T on C(X), but we can obtain a complete answer for a rather wide class of
operators that are important in applications. These are the ergodic Markov
operators.

DEFINITION 3. A bounded operator U on a Banach space E is called ergodic
if for each x e E, the convex closure K(x) of the orbit (x, Ux, U2x, con-
tains a fixed vector x0 of U.

It is well known and follows from standard arguments of ergodic theory
[3, pp. 8-11], that whenever {U n N} is equicontiuous, then Xo K(x) is
unique, and x --+ x0 is projection P onto the space of fixed vectors of U.
More precisely, limn ]l M, x Px 0 where Ms is the n-th average,

Mn n-l(I U + un-).
If U T is a positive operator and P exists, then P is a positive projection
and PC,(X) is a sublattice of C(X). We shall also have use for a stronger
notion of ergodicity.

Usually it is the semigroup (U) that is called ergodic.
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DEFINITION 3a. U is called uniformly ergodic if (Mn) is a Cauchy se-
quence for the uniform operator topology.

PROPOSITION 6. If T >= 0 has spectral radius r( T) 1 and

limxl(k- 1)R(k)

exists for the strong (or even weak) operator topology, then T is ergodic.

Proof. If the limit exists for one of the topologies mentioned, it is clearly
a positive linear operator P, hence bounded. Also, for any f e C(X) we have
Pf e K(f), and it is readily seen from the definition of the resolvent R(k) that
PT TP P; hence Pf is a fixed vector of T.

Examples. 1. Let T be weakly compact, and r(T) 1. Then T is com-
pact (theorem of Dunford-Pettis); hence k 1 is pole of the resolvent.
If this pole is of order 1, then T is uniformly ergodic; this is, for example, true
whenever (Tn) is bounded.

2. Let T be the operator defined in 2, Example 2(). Here P is the
projection defined by

Pf(z) n-l(f(z) + f(az) - +
As each periodic operator, T is uniformly ergodic. (T is called periodic if
there exists an integer n _-> 1 such that T I.)

3. If T is the operator defined ia 2, Example 2(b), T is ergodic and

Pf lim M,, f (fr f s ds) e.

Thus P is of rank 1.

PROPOSITION 7. Suppose T is positive and satisfies T II-- r(T) 1.
Then the set of real T-invariant measures is a (non-trivial) weakly closed vector
sublattice of MR(X), and each of these measures has its support in

M [seX’Te(s) 1}.

Proof, It follows from the eigenvalue theorem (1) that the set F of
measures in question is non-trivial, and evidently F is weakly closed. The
condition ]IT]] 1 is equivalent to (Te <-_ eandM t). Now ifeF
(that is, T’), then ]1 -< T’I 1; thus

rhl (e) <= lap ](Te) <-_ rh I(e).
Therefore, (e Te) 0 which shows that S M and T’I l ! I.

Since F is weakly closed ia the adjoint L-space MR(X), the set of measures
>- 0 in F is a convex cone with compact base

{eF’->_ 0,(e) 1}.
In fact, T>=0 implies that the unit ball [-e, e] of CR(X) is mapped by T into the

(bounded) interval [-Te, Tel.
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By the theorem of Krein-Milman, is the weakly closed convex hull of its
subset A of extreme points. The much stronger theorem of Choquet-Bishop-
de Leeuw (see, e.g., [1]) asserts that each e(I) is the barycenter of a prob-
ability measure m OD that is concentrated on h. Under the assumptions of
Proposition 7, is even a simplex and hence m unique [1]. Let us recall that
a positive operator T on C(X) is called a Markov operator if Te e. The
following theorem is the principal result of this section.

THEOREM 2. Suppose T is an ergodic Markov operator on C(X), and denote
by the (weakly compact) set of all positive, normalized T-invariant measures
on X. Then --, I is a bijection of the set h of extreme points of onto the
family of all maximal T-ideals. Moreover, every T-ideal of the form I ( e)
is the intersection of all maximal T-ideals containing it.

Proof. First, a lemma.

LEMMA. If A and b is a T-invariant measure contained in the weakly
closed band [ c MR(X) generated by , then b c c R).

In fact, suppose first that 0

_
b __< , 0. Then we have -t-

( ) which is consistent with the extreme point property of only when
b c, 0 < c =< 1. If, more generally, 1 is majoried by some multiple of

then + ad - re non-negative multiples of by the preceding; hence
c (c e R). Now let P lim M (strong operator topology) denote the

positive projection onto the space of fixed vectors of T. The adioint P’
maps MR(X) onto the space of iavariant measures (cf. Proposition 7).
Obviously, P’O , hence, by the preceding, P’ maps B (the bnd ia M(X)
generated by ) onto the one-dimensional space F {c’c R}. Since
P’ is weakly continuous and F complete for the weak topology, it follows that
P’(/) F. This proves the lemma, because P’ .

Let us show that --, I, is injective on A, with range in the set of maximal
T-ideals. Suppose e A and denote by T the operator induced on C(S) --C(X)/I. The dual of C,(S) is/ ,and by the lemma above we know that

is the only normalized, positive T-invariant measure on S. Since is
strictly positive on S, it follows from Theorem I that T4 is irreducible, hence
from the corollary of Proposition 2 that. 14 is maximal. Now if e h is ,
then either S St or S n St 0, since It also is maximal. If we had
S St we would have e B4, hence b by the lemma above. Thus
14 It.
We show that each maximal T-ideal is an Ix, ), e A. By the remarks preced-

ing Theorem 2 there exists, for each e , a (unique) probability measure m
on which is concentrated on A, that is, for which m(S) 0 whenever
S c is a Borel set not intersecting A. We shall prove that
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where Sm c is the support of the Radon measure m on .
f>_- 0and),(f) 0forallkeAnSm;if

In fact, let

S {’re (I, ,r(f) > 0},

then S n (A n S) 0 so S n S is a Borel set not intersecting A, whence
m(S n S) 0. This implies, clearly, that (f) ff dm 0; thus f
Conversely, if f e I, then r(f) 0 for all r e Sm thus ),(f) 0 for all h e Sm
n A which proves the above formula. Now because each Ix (h e A) is maxi-
mal and Ixl # Ix for hi # h by the first part of the proof, I, ( e ) is a
maximal T-ideal if and only if ), for some X e A. More generally, we
have shown that each I, ( e ) is the intersection of all maximal T-ideals
containing it, and Theorem 2 is proved.

Remark. The assumption that T be ergodic (that is, in our terminology,
that lira M. P exists for the strong operator topology) cannot be dropped
from Theorem 2. In fact, Raimi [7] exhibits a Markov operator T on C(N*),
where N* N\N, such that each maximal T-ideal can be represented by at
least two T-invariant measures (which are both extreme points of ). In
particular, the subsequent corollary of Thm. 2 is false unless T is assumed to
be ergodic.
On the other hand, if T is a Markov operator on C(X), not necessarily

irreducible but such that the set of positive, normalized T-invariant measures
is a singleton, {$}, then T is ergodic. Indeed, if $ >__ 0 is any normalized
measure on X, each weak* limit point of the sequence

M’,, n-l(I + T’ + (T)’-I)$
is normalized and T-invariant, hence by hypothesis; more generally, for
any >- 0 the weak* limit lim M’ P exists and Pb (e). There-
fore, P is a weak* continuous projection which, in turn, implies that P
lim M exists for the weak operator topology. Thus T is .ergodic (Def. 3).

COROLLARY 1. An ergodic Mar]ov operator is irreducible if and only if there
exists a unique (normalized) positive T-invariant measure , and is strictly
positive.

We can generalize Theorem 2 somewhat by replacing the assumption
Te e by the weaker hypothesis T r(T) 1. ) is defined as before
(cf. Proposition 7).

COROLLnY 2. Suppose T >-_ 0 is ergodic and T r( T) 1. By virtue

of -- I the set A of extreme points of is in one-to-one correspondence with the
set of all maximal T-ideals whose support is contained in

M {seX" Te(s) 1}.

Proof. By Proposition 7, there exists at least one T-ideal having its sup-
port in M. Now if J denotes the intersection of all these ideals, J is a T-
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ideal. In view of Proposition 2, it suffices for the proof to apply Theorem 2
to the operator Tj on C(X)/J.

Theorem 2 has a counterpart for stochastic operators on abstract L-spaces.
Recall that a positive (linear) operator on a space L () is called stochastic
if Tf ]If I1 for each f _>- 0 and that, in LI(), a band is the same as a
closed, solid vector subspace (cf. [10, Chap V, 7, 8]).

THEOnEM 3. Let T be a stochastic and ergodic operator on a space L(),
and define h {f f >- O, Tf f, f 1}. There exist minimal T-invariant
bands (0) if and only if the set has extreme points, and the latter are in one-
to-one correspondence with the former by virtue of f B], where By denotes the
band in L1() generated by f.

Proof. We need a lemma.

LEMMA. If T is stochastic on L( and there exist no non-trivial T-invariant
bands, then the space of fixed vectors of T is at most one-dimensional.

In fact, f Tf implies If] =< TI f i; since the norm is additive oa the posi-
tive cone of L (u), we obtain

Hence, f[ T If[, that is, the fixed vectors of T form a vector sublattice of
L(u). Thus if f Tf, then f+ and f- are fixed under T; since the bands
By+ and By- are T-invariaat and lattice disjoint, our assumption implies that
either f+ 0, or else f- 0. Thus the fixed space of T is a totally ordered
vector lattice and hence, since it is Archimedean, at most one-dimensional.
This proves the lemma.

Now let f be an extreme point of and denote, as before, by P the projec-
tion which is the poiatwise limit of the averages

M, n-(I - T - - Tn-).
Clearly the band By is T-invariant. Suppose that D is a T-invariant band
such that (0) D c By. If g is any element satisfying gl <= cf (c > 0),
the extreme point property of f implies that Pg is a scalar multiple of f; this
follows exactly as in the lemma contained in the proof of Thm. 2. Again, we
conclude that P(By) is the one-dimensional subspace of LX(#) generated by
f. Thus, since D (0), it follows that Dn {f}. Hence feD and,
therefore, D B]. This shows By to be minimal.

Conversely, let B be a minimal T-invariant band (0). Clearly, the
restriction of T to B satisfies the hypothesis of the lemma above, which
implies that B n is a singleton, {f} say. (Since T is ergodic and B (0),
n B cannot be empty.) This implies in turn that f is an extreme point of, for B is solid. Finally, it is clear that B By, Q.E.D.

We consider the real space L(z), and suppose it to be(0).
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