A CHARACTERIZATION OF THE GROUPS LF(2, q)

BY
Koicuiro HarADA

1. Introduction
Let G be a finite group satisfying the following condition ( % ):

G has a subgroup S such that
(%) (1) the centralizer of any non-identity of element A is A,
(2) the order of the normalizer of A is 2-| A |, where | A | denotes the
order of A.

We call a finite group G satisfying the condition ( # ) simply a ( ¥ )-group.
The letter A always denotes a subgroup of G which satisfies (1) and (2) of the
condition ( #). We call A a special subgroup of G. We first remark that A
is an abelian subgroup of G and its order is odd, since 4 has a fixed-point-free
automorphism of order 2.

As is well known, the classical groups LF(2, q) and the Suzuki groups Sz(q)
are ( % )-groups. In fact, if ¢ = 2" > 2, the cyclic subgroups of LF(2, q) of
order ¢ + 1 and of order ¢ — 1 satisfy the conditions (1) and (2). If
q = £ (mod 4), where ¢ = =1, then the cyclic subgroups of order (g + ¢) of
LF(2, q) are special. The cyclic subgroups of order ¢ — 1 of the Suzuki group
of order ¢’(¢ — 1)(¢® + 1) also have the property ( #). Besides examples
mentioned above, the Sylow 5-groups of LF(3, 4) are special. In any case
their special subgroups are cyclic.

In this paper we shall first prove the following Theorem A and Theorem A’'.

Tueorem A. If G is a solvable ( % )-group, then there exists a nilpotent
normal subgroup N of G such that G/N is isomorphic to o generalized dihedral
group.

Here a generalized dihedral group is defined as follows. Let H be an abelian
group and 7 be an automorphism of H such that if h ¢ H, k" = k™", where " de-
notes the image of h by . TUnder these conditions holomorph of H by 7 is
called a generalized dihedral group.

TuaeoreM A’. If G is a non-solvable ( # )-group, then G has a nilpotent
normal subgroup N such that G/N is a simple ( ¥ )-group.
In case of a non-solvable ( # )-group G we shall add another condition:

(1) @ has two non-conjugate special subgroups A, and Az or

(i) 1G] <4(JA]+1)°
We remark here that LF(2, 2") (2" > 2) have the property (i) and LF(2, q)
(g > 3) have the property (ii). We shall prove
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TueoreEM B. Let G be a simple (% )-group. If G satisfies the condition (i),
then G is isomorphic to LF(2, 2"), where 2" > 2.

TueoreMm C. Let G be a simple ( % )-group. If G satisfies the condition (ii),
then G 1s isomorphic to LF(2, q), where ¢ = p" > 3.

Before proving our Theorem B and Theorem C, we shall prove Theorem 1
which will be stated in Section 3. Our idea to prove Theorem 1 is essentially
the same as that of R. Brauer, M. Suzuki and G. E. Wall [1]. In their paper
[3], W. Feit and J. G. Thompson have considered the simple groups satisfying
the condition ( # ) with |4 | = 3, and they have proved that LF(2, 5) and
LF(2, 7) are the only such groups. Therefore in this paper we assume
| A| > 5, and this restriction is rather essential in our proof. The argument
of this paper relies heavily on the theory of group characters. Most of the
notation are standard. All groups considered are finite.

Finally, the author wishes to express his thanks to Prof. M. Suzuki for his
kind encouragement and advice. Due to his suggestions the proof of Theorem
B was made considerably shorter than the author’s original one. Moreover
the author expresses his thanks to Dr. T. Kondo for his helpful guidance
throughout this work.

2. Proof of Theorem A and Theorem A’

LEmMA 1. Let G be a ( ¥)-group and A a special subgroup of G. Then
(a) AtsaT.l set*in G,

(b) A s a Hall subgroup of G,

(¢) Ng(A) s a generalized dihedral group,

(d) Na(B) = Na(A) holds for any subgroup B = 1 of A.

Proof. 1If a conjugate subgroup Az of A contains an element a 7% 1 of A4,
then the centralizer C'¢({a)) of (a) contains both A and z"Az. By the con-
dition (1) of (#),xeNg(A). Hence Aisa T.I.setin G. Ng(A) is clearly
a generalized dihedral group, since a” = a™ forae A, r e Ng(A) — A. The
last statement of Lemma, 1 is easy to prove, since A isa T.I.setin G. 4 isa
Hall subgroup of G, since Ng(P) = Ng(A) for any p-Sylow subgroup of 4.

Lumma 2. There exists a nilpotent normal subgroup N of G such that the factor
group G/N is isomorphic to

(i) a generalized dihedral group of order 2| A |, or

(ii) o simple ( ¥ )-group.

Proof. Let M be a maximal normal subgroup of G.

Case (I) (|M|, |A]|) # 1. Let p be a prime number dividing (| M |,
| A]), and P be a p-Sylow subgroup of M. Using Frattini argument we have
N(P)M = @. Since A is a Hall subgroup of G by Lemma 1, we can suppose

1 A subset H of @ is called a T.I. set in G, when H satisfies the following condition:
if e Gand Hn H® > {1} then H* = H, (cf. [4]).
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Pc A. ByLemmal, N(P) = N(A). Hence |G/M| = 2 or p’, where p’
is a prime number dividing | A |. Let us assume | G/M | = p’. Then all the
involutions in G are contained in M. In particular 7 e M for re N(4) — A.
Hence 7* = ra’e M for a e A, and o’ ¢ M holds. Since 4 is a group of odd
order, we have M D A. This contradicts with |G/M | = p’. Therefore we
have |G/M | = 2. Next we will show that 2 ¢ M and A n A® # {1} imply
zeA. Since |G/M| = 2and @ = M-N(A), we have N(A)nM = A.
Since A is a T.I. set, A n A" {1} implies that x ¢ N(4). Then
xeN(A)nM = A, as required. By Frobenius’ famous theorem there exists
a characteristic subgroup N of M which satisfies M/ = A-N and A n N = {1}.
The nilpotency of N follows from a theorem of Thompson [10]. The nor-
mality of N in @ is obvious. Since G/N =< N(A), we have proved the lemma
in this case.

Case (II) (|M|,|A|) = 1. Since an element of A — {1} induces on M
a fixed-point-free automorphism, M is nilpotent (Thompson [10]). We shall
show that the factor group G = G/M is a ( % )-group. Put Ng(4) = (r, A).
If re M, then [r, A] € AnM = 1. This is a contradiction. Hence 7 ¢ M.
Let a be an element of A — {1} and & be an element of C5(d). Since x normal-
izes the group (a, M) and ([(@)|, | M |) = 1, we have (a)° = (a)’, y e M by
Schur’s splitting theorem. Hence 2y~ ¢ N({a)) = N(A) and z € (7, A) holds.
However 7 # I and 7 does not centralize @. Hence ¢ A. This proves the
condition (1) of ( #). As for the condition (2), using the same argument
above, we can easily prove that [Ng(4):4] = 2. Changing the letter M into
N in this case, we have proved the lemma.

Theorem A and Theorem A’ are easy consequences of this lemma.

3. Character theory

The theory of exceptional characters has been developed by R. Brauer, M.
Suzuki (ecf. [6], [7]) and others. In this section we apply it to compute the
order of G. 'We summarize here their results which are necessary to our proof.

Let G be a finite group, and let G have a subgroup A satisfying the following
condition:

A s the centralizer of every element #1 of A. (In M. Suzuki’s paper [7], the
theory has been constructed under a more general condition.)

Let n denote the order of A, m the index [Ne(A):A] and put w = n — 1/m.
If w > 1 then there exist exactly w irreducible characters (exceptional charac-
ters associated with A4, or simply 4-characters cf. [6]) such that X is not con-
stanton A — {1} forz =1, --- ,w. If an element « is not conjugate to any
element of A — {1}, then we have X,(z) = Xi(«z). If anirreducible character
Y is non-exceptional, Y takes a constant value ¢ on A — {1} and degree
Y = ¢ (modn). We have a linear eombination

1+ eXs+aD X+ 2, cY

which vanishes on elements not conjugate to an element of A — {1}. Here 1
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is the principal character of G, ¢ = 1, a is a certain integer and the second
summation ranges over all the non-exceptional characters except 1. We have
moreover

1+ @+l +(w—-1d+ > =m+1.
Now we apply the above results to our ( # )-group G. In this case
[N(A):4] = 2, |A] = n.

By the assumption n > 5 we have w = (n — 1/2) > 2. There are w ex-
ceptional characters associated with A, namely X;, -+, X,,. We have a
linear combination ¥ of irreducible characters of weight 3, which vanishes on
elements not conjugate to any element of A — {1}. ¢ contains the principal
character of G with multiplicity 1, and at least one exceptional character.
Since ¢(1) = 0, we have

v =1—eX;+ €Y (e = £1),

where Y is an irreducible character of G.
Let Dg(X) denote the degree of a character X of G. Since (1) = 0,
Dg(X;) = Dg(Y). Hence Y is non-exceptional. We have

Dg(Y) =kn+¢e and Y(a) =¢ if 1#aed,

where & is a non-negative integer. Then Dg(X;) = kn + 2. All the ir-
reducible characters of G other than 1, X;, .-, X, and Y have degrees
divisible by n and vanishon A — {1}. We summarize the results in the follow-
ing lemma.

LeMMA 3. Let G be a (% )-group and A o special subgroup of G. Thereis a
generalized character
v=1—eX;+ €Y (e = £1)

which vanishes on the set of all those elements which are not conjugate to any element
of A — {1}. X,is an A-character and Y is a non-principal, non-exceptional ir-
reducible character. We have

Dg(X,) =kn + 2¢ and Dg(Y) = kn + ¢

for some non-negative integer k, and

Y(a) = ¢ if aeAd — {1}.

Moreover if Z is an irreducible character of G other than 1, X1, -+ , Xuand Y,
then

Dg(Z) = nz and Z(a) =0, aeA — {1}.

Let G be a ( # )-group, and D the set of elements in G which are conjugate
to an element 1 of A.

LemMma 4. Under the same notation as above
(1) Xa(g) = -+ = Xu(9), Y(g9) = Xa(9) — ¢ for geG— D
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(i) Xa(h) + -+ + Xu(h) = —¢,
Xi(h) - Xa(BY) + - + Xu(h) - Xu(h™) =n —2 for heD.

Proof. (i) is an immediate consequence of the theory exceptional characters
and of Lemma 3. From the orthogonality relations of group characters follow
two equalities

Zfﬂ(h)’fu(l) = 0, heD,
2= su(h) - su(hT) = | Ca(h)| = m, heD,

where {, ranges over all the irreducible characters of G. (ii) is an easy conse-
quence of these equalities.

The following argument on the group algebra is essentially due to Brauer
and Fowler [2].

Let T' be the group algebra of a ( # )-group G over the field of rational num-

and

bers. Let R, - - - , & denote the classes of conjugate elements of G such that
fo51and &, --- , 8 contain at least one element of A — {1}. Let ¢; de-
note a representative element of ;. Let K;denote the sum of the elements in
f:;then K, , - -+ , K, form a basis of the center of I'.  In particular, we have an
equation

(3) K=Y 50cK; for 0<i<s.

It follows easily from the basic properties of the group characters that the co-
efficients c¢; in (3) are given by the formula

i |G| . g'n(gi)z‘fn(g;l)
GO =

where {, ranges over all the irreducible characters of G.

LeMMA 5. Under the same notation as above we have

o 1G10n+ & — ¥(g))
P [Clgi) [Pk + 2€)(kn + €)

wherel <t < w,w+1<j< s and

i—g. Y(ga):l
G =m [1+kn+23X(g’)+lm+s

wherel < i< w,w+1<Lj7< s

Proof. First,forl <7< w,w+ 1 <7< s, wehave

i — IGI Xi(g; Y(g;)e
¢l |C(g,~)|2|:1+lm+2 ZX(g.) + E].

By Lemma 4
2taXi(g)) = —e and Xi(g)' = (Y(g;) + &)
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Hence

;_ 16| (¥(g) + &) (¥(g)'e
°"‘|0<g,->|2[1+ o Ot Icn+£:|

_ 1@l (kn+ & — (¥Y(g)"
[C(g5)|? (kn + 2¢)(kn + &)

Secondly for1 <7< w,w + 1 <j < s, we have by Lemma 4,

i _ 16| [ n—2 , Y(gj)]
%= oL T e 1 T e

The next corollary is due to M. Suzuki [8].

CoroLLARY 1. If G is a stimple ( # )-group, then all the involutions in G are
contained in a single conjugate class of G.

Proof. We first remark that in a generalized dihedral group of order 2n
(n odd) all the involutions are contained in a single class.

Let u be any involution of G. If we can prove that there exist z, y e Gsuch
that u-4" = o fora e A — {1}, then u is contained in N(A4)?. This follows
from a** = (a’)”". Hence u is conjugate to r, where 7 is an involution in
N(4). On the other hand, by Lemma 5 and the simplicity of G, we have
ct#0forl <i<w,w+1<j<s Henceour corollary is proved.

LeMMA 6. If G is a ( #)-group, then the order of G is written in the form

where T is an involution in N(A4).
Proof. Suppose 7 € Rp41. Then ™ 5 0 for 1 < 4 < w, since
vt =110 = d # 1, for aed — {1}

From the theorem (4A) of R. Brauer and K. A. Fowler [2], the integer ¢t is
the number of elements of order 2 which satisfy the equation

a0 = a7,  aiefi for 1<i<w.
By Lemma 1, N(A) = N({a:)). Hence
M =n=|N(A) — A]|.

From this follows the lemma.
Throughout the rest of this paper r denotes a fixed involution of N(A4), and
we put

_ |C(r)]
"= te— YO
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Lemma 7. Under the same notation as in Lemma 6, m is an integer and
m'=1 (modn).

Proof. From Dg(Y) = kn + ¢, Dg(X,;) = kn + 2¢ and from the fact that
n, kn + 2¢, kn + & are relatively prime to each other follows that | G| is
divisible by n(kn + 2¢)(kn + ¢). Hence m is an integer.

From the equality

|G| = 2 (Dg(s)’ =1+ (n — 1/2)(kn + 2¢)* + (kn + &)* (mod 2%

we get
2nm® = 2n  (mod n’).
Hence
m* =1 (modn).

Throughout the rest of this section, we assume that G is a non-solvable
( #)-group. In particular, we assume k& > 0 in Lemmas 3-9.
We set
w0 = {p | prime number such that p | n},

m = {q| prime number such that ¢ | kn + 2¢},
w2 = {r | prime number such that r | kn + ¢&}.

LemMA 8.  Let G be a non-solvable ( ¥ )-group. Suppose m = 1; then G con-
tains only wo-, m1-, ma-elements, and the centralizer of a wi-element is a w-subgroup
of Gfori = 0,1, 2.

Proof. Let p, q be primes such that p | kn 4+ 2¢, ¢|kn + e. If G has an
element z of order pq, then z is both a p-singular element and a g-singular one.
Since X ; belongs to a p-block of defect 0 and Y belongs to a g-block of defect 0,
we have Xi(z) = 0and Y(z) = 0. Hencey(x) = 1 # 0. Thisis a contra-
diction, because z is not conjugate to any element of A — {1}. By the con-
dition (1) of ( # ) and by the fact above, we have proved the lemma.

Throughout the rest of this section, we assume that m = 1.

Letay, < ,Gp b1, ,bi;a, -, c be representative of the conjugate
classes of -, m-, ms-elements respectively. From the theory of modular
characters we have

X1(b;) = -+ = Xu(b;) = 0, forl1 <5<t
Using ¢ we obtain
Y(b;) = —¢, for1 <5<t
In the same way we obtain
Xi(e)) = - = Xu(cr) = ¢, and Y(ec:) = 0, forl <1< .
By Lemma 1,

Y(a;) = ¢ and Z(z;) =0, forl <7< w.
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TABLE 1

1 X X Y Z Z,
1 1 kn +2¢ .- kn + 2¢ kn + ¢ nzy nz,
a 1 € 0 0
w | 1 : o 0
1',1 1 0 0 —
b1 o 0 —
o | 1| e e 0
ou 1 e e 0

Let E be a subset of G which consists of all the m-elements in G.
LemMA 9. Under the same notation as above we have

|E| = kn(kn + 2¢).
Proof. From the orthogonality relations of group characters we have

Zzea Xi(z)Y(z) = 0.

Z;'u=1 Xl(ai) = —¢&.

Hence we get

Therefore we conclude
0= D e Xa(x) = (kn + 2¢) — e(kn + 2¢)(kn + &) + ¢|E|.
This proves the lemma.

THEOREM 1. Let G be a non-solvable (% )-group. Ifm = land k = 1 or
2, then G 1s isomorphic to LF (2, q) where ¢ = p* > 3.
Proof. Case (I) k = 1. In this case

|G| = n(n + 2¢e)(n + ¢).
Since n + ¢ is even, Y(7) = 0. Hence
Clr)y =|kn+¢e—Y(r)| =n+ e

By Lemma 9, | E | = n(n + 2¢). Since the centralizer of a ms-element is a
me-subgroup of @, this implies that C¢(7) has only one conjugate class in G.
Therefore C(7) is an elementary abelian 2-group. Let B be a cylcic subgroup
of G of even order; then | B| = 2. Since G has no linear character other than
the principal character, G coincides with its commutator subgroup. Hence all
the conditions of the theorem of Brauer, Suzuki and Wall [1] are satisfied.
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Since C(7) is an elementary abelian 2-group, we conclude that G =2 LF(2, 2%)
where a > 1 is an integer.
Case (II) k = 2. In this case

G = n(2n + 2¢)(2n + &).

By Lemma 9, we have |E| = 2n(2n + 2¢). Since the centralizer of a
mo-element is a me-subgroup of G, we can conclude that 2n + ¢ is a power of odd
prime p and there exist two conjugate classes of p-element. Put 2n + ¢ = p°.
Let P be a Sylow p-subgroup of G. Next argument on the structure of P and
N¢(P) and on the conclusion of our theorem is due to Brauer, Suzuki and Wall
[1]. For the reader’s convenience sake, we quote their argument, modifying
to our case.

First we shall prove that P is abelian. If P consists of the identity and two
real classes, then from the theorem (4D) of Brauer and Fowler [2] we can con-
clude that P is abelian.

If P consists of the identity and two non-real classes, we apply the Lemma
(I1.0) of R. Brauer, M. Suzuki and G. E. Wall’s paper [1], which we quote
here.

LemMA 10. Let G be any finite group. Let p be a prime dividing the order of
G. Let us assume the following properties;

(a) If o is an element of prime order " > 1 and p # q then the order of C(a)
1s not divisible by p;

(b) A generalized quaternion group does not appear as a subgroup of G.

Then either the p-Sylow group of G is normal in G or any two distinct p-Sylow
groups have intersection 1.

In our group G, under the condition m = 1 and non-solvability, assumption
(a) holds by Lemma 8. As for (b), if we can prove that for any p-subgroup
Py % 1 of G, | N(Py)| is not divisible by 2, then the proof of Lemma 10 is
available (e¢f. [1]). However a p-Sylow group P of G has no real element in G
and an involution of @ does not commute with any p-element, hence | N(Py)|
is not divisible by 2. Clearly P is not a normal subgroup of G, so we have
proved that p-Sylow groups of G is a T.I. set in G.

Let P be a Sylow p-subgroup of @, and p be any element 1 of P. Since
|C(p)] = p°, we have C(p) = P*,xeG. Since P°n P 5 p, we have z e N(P).
Thus we have proved that P is abelian.

From Lemma 8, the centralizer of any element 1 of P is P. Hence two
elements of P are conjugate in G, if and only if they are conjugate in N(P).
Since P consists of the identity and two classes we have

[IN(P):P] = (® = 1)/2 = (2n + ¢ — 1)/2.

It follows that G has a representation as a transitive group of permutations in
2n letters in case ¢ = —1 and 2n + 2 letters in case ¢ = 1 respectively. Ob-
serving Table 1, we can conclude that the character of this permutation
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representationis 1 + Y. Hence this representation © is doubly transitive and
no element except the identity leaves three letters fixed, and the order of the
subgroup of G leaving two letters fixedisn — 1 = (p® — 1)/2incase e = —1,
andn = (p® — 1)/2in case ¢ = 1 respectively.
We now apply Zassenhaus’ theorem (ecf. [11], [1]). Thus we can conclude
that
G = LF(2,p°) (»* > 3).

4. Proof of the main theorem

In this section G denotes always a simple ( # )-group. We shall prove that
the hypothesis of Theorem 1 is satisfied if G satisfies one of the following con-
ditions:

(1) @ has two non-conjugate special subgroups A, and A, ,
(i) |Gl <44+ 1)%

We first assume that @ satisfies the condition (i). Put
Ay =n and A4; = ny where n; > ny > 5.

Let X3 (1 < ¢ < wy = m — %) be Aj-characters and Y' 5 1 be the non-
exceptional irreducible character which does not vanish on A, — {1}. Let
X2 (1 £j < wp=mny — %) and Y be defined for A, in the same way as in the
case of A;. Put

Dg(Xi) = kamy + 261, Dg(Y') = kymy + &, &= =+1
Dg(X3) = kang + 262, Dg(Y?) = kemo + &2, & = :I:l.’
Since G has only one conjugate class of involutions (Corollary 1) we can set
m = |C(D)|/|lam + & — Y(7)|,  me = [C(r)|/| kama + &2 — Y(7)|

where 7 is an involution in N(A4;).
By Lemma 6 we have two equalities

|G| = n(kimy + 2e1) (kimy + e1)mi,
|G| = na(kang + 2e)(kang + &)ms .

LemMmaA 11.  Under the same notation as above we have
Q) V=Y kh=k=1lLa=—a=—1,m=m,n—n=2

(i) Dy(X}) = m — 2, Dg(Y1) = m — 1, Dg(X2) = ma,
(ili) Y'(a) = —1forare Ay — {1},

Y'(as) = 1 for are Az — {1},
(iv) |G| = m(m — 1)(m — 2)mi.
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Proof. By Lemma 3 and & > 0 we first remark that if an irreducible char-
acter W of G has same degree as X (or X;), then W is an element of

(Xi,1<i< w}
(or {X%,7 < j < ws}) and if W has same degree as Y* (or Y*) then W = Y*
(or ¥%).
Let l,Xi (1 <7< wm), Y X: @1 <j <L we), U, -, U be all the ir-
reducible characters of G. Assume Y' # Y®. Since Y* # Xiforl <4 < wy,
we have Y2 = U,;. Hence by Lemma 3, Dg(X3) and Dg(Y") are divisible by

ny . This is impossible, since k; ny + 2¢; and kyny + & are relatively prime to
each other. Thus ' = ¥* and so

kying + &1 = kame + €.
Therefore m; = ms. Since

Dg(X%) = kz’nz + 26‘2 = kl'ﬂd + & + &y = 0 (modnl),

we obtain
& = —&.
Since
(4) king + 261 = keng + &2 + & = keng,
we obtain
(5) |G| = M kznz(klnl + 81)1’)7,% .

Since ks ng + 2e0 = kiny, we get

|G| = nokyni(kame + al)mg

(6)

= nakynma(kymy + &1)mi .

By (5) and (6) we have ky, = k.
From (4) follows

k1n1 - kznz = kl(m - ’I’bg) = —'26‘1 .
Hence we have
k1=1, nl—-n2=2, €1=—1,
and
|GI = ’n1(n1 - 1)(71/1 - 2)711%

Thus the lemma is proved.

Now we take off the suffix 1 of Ay, ,m1, X3 (1 <3< w)andY'. LetF
be a subset of G which is consisted of elements which are conjugate no elements
of A — {1} or 4, — {1}.
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Next we shall prove
LemMma 12,
(1) 0<Y¥(g9) <n—1forgeF,
(1) ger Y(g)* = (m* = 1)(n — 1)°,
(i)  2ger Y(g) = (m* = 1)(n — 1).

Proof. TUse the same notation as in Section 3 and let a e 3 (ae A — {1})
and g e R, for g e F. By Lemma 5 we have

1 |G| Y(g)
G =3 [1+ :|
= (n — 2)m’ Y(Q)ZO forg € F.

(1) follows from the fact above and the simplicity of G. (ii) follows from
the orthogonality relation

Za!F Y(g) Y(g_l) = ZaeF Y(g)2

G — (n— 1 =G, gy 1G]
=G| - (n—1) %(n 1) 2(n_2)(n 3)
= (m = D(n— 1>
(iii) follows from
Sr ¥(g) = =(n = 1) = g (0 = Dar = 50 (n = 3)es

(m* — 1)(n — 1).
Now we shall show that m = 1. By (ii), (iii) of Lemma 12 we get
ZoeF Y(g)(n —1—Y(g)) =0.

By (i) of Lemma 12 we have Y(g) = OforgeF. Hencem = 1. Thus we
have proved that @ is isomorphic to LF(2, ¢) (¢ = 2% > 2).
Next we assume the condition (ii):

|G| = 4(]A|+ 1)
By the assumption | A | = n > 5 and by Lemma 7 we have

=1 or m’> 16.
Assume m® ¢ 1. Then

|G| = 16n(kn 4+ 2¢)(kn + ¢).
By the condition (ii) above, we have

(n + 1)* — 4n(kn + 2¢)(kn + &) > 0.
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Since k > 0 we have (n + 1)* — 4n(n — 2)(n — 1) > 0, namely
—3n*(n — 5) —5n +1 > 0.

This is a contradiction. Hence we have m® = 1.
Next we shall show £ = 1or2. Infact,if £ > 3 then

n(3n + 2e)(3n + &) < 4(n + 1)%
Hence
n(3n — 2)(3n — 1) < 4(n + 1)},
and we get
5n*(n — 5) + 4n(n — 5) + 10n — 4 < 0.

This is a contradiction.

Thus we have proved, by Theorem 1, that G is isomorphic to LF(2, q)
(¢ =" >3).

Combining these results and Theorem A, Theorem A’, we have proved the
theorems stated in the introduction.
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