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1. Introduction

Let G be a finite group satisfying the following condition % ):

G has a subgroup S such that
(1) the centralizer of any non-identity of element A is A,
(2) the order o the normalizer of A is 2. A I, where lAJdenotes the

order of A.
We cull a finite group G satisfying the condition simply % )-group.

The letter A always denotes a subgroup of G which satisfies (1) and (2) of the
condition $ ). We call A a special subgroup of G. We first remark that A
is an abelian subgroup of G and its order is odd, since A has a fixed-point-free
automorphism of order 2.
As is well known, the classical groups LF( 2, q) and the Suzuki groups Sz(q)

are )-groups. In fact, if q 2 > 2, the cyclic subgroups of LF(2, q) of
order q - 1 and of order q 1 satisfy the conditions (1) and (2). If
q e (rood 4), where 1, then the cyclic subgroups of order 1/2(q ) of
LF(2, q) are special. The cyclic subgroups of order q I of the Suzuki group
of order q(q 1) (q -t- 1) also have the property ). Besides examples
mentioned above, the Sylow 5-groups of LF(3, 4) are special. In any case
their special subgroups are cyclic.

In this paper we shall first prove the following Theorem A and Theorem A’.
THEOREM A. If G is a solvable ()-group, then there exists a nilpotent

normal subgroup N of G such that GIN is isomorphic to a generalized dihedral
group.

Here a generalized dihedral group is defined as follows. Let H be an abelian
group and r be an automorphism of H such that if h e H, h h-, where h de-
notes the image of h by . Under these conditions holomorph of H by r is
called a generalized dihedral group.
TgEOaEM A’. If G is a non-solvable ()-group, then G has a nilpotent

normal subgroup N such that GIN is a simple )-group.

In case of a non-solvable ( )-group G we shall add another condition:

(i) G has two non-conjugate special subgroups A and A or
(it) IaJ <_ 4([AI-t- 1).

We remark here that LF(2, 2) (2 > 2) have the property (i) and LF(2, q)
(q > 3) have the property (it). We shall prove
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THEOREM B. Let G be a simple ( )-group. If G satisfies the condition (i),
then G is isomorphic to LF(2, 2), where 2 > 2.

THEOaE C. Let G be a simple )-group. If G satisfies the condition ii
then G is isomorphic to LF( 2, q), where q p’* 3.

Before proving our Theorem B and Theorem C, we shall prove Theorem 1
which will be stated in Section 3. Our ideu to prove Theorem 1 is essentiully
the same as that of R. Brauer, M. Suzuki and G. E. Wall [1]. In their paper
[3], W. Feit and J. G. Thompson have considered the simple groups satisfying
the condition ( % with [A 3, and they have proved that LF(2, 5) and
LF(2, 7) are tJhe only such groups. Therefore in this paper we assume
A -> 5, and this restriction is rather essential in our proof. The argument

of this paper relies heavily on the theory of group characters. Most of the
notation are standard. All groups considered are finite.

Finally, the author wishes to express his thanks to Prof. M. Su.uki for his
kind encouragement and advice. Due to his suggestions the proof of Theorem
B was made considerably shorter than the author’s original one. Moreover
the author expresses his thnks to Dr. T. Kondo for his helpful guidance
hroughout this work.

2. Proof of Theorem A and Theorem A’
LEMMA 1. Let G be a )-group and A a special subgroup of G. Then
) A is a T.I. set in G,
(b A is a Hall subgroup of G,
(c) Na(A is a generalized dihedral group,
( d Na(B No(A) holds for any subgroup B 1 of A.

Proof. If conjugate subgroup x-Ax of A coatias u element a I of A,
then the centralizer Ca((a}) of (a} contains both A and x-Ax. By the con-
dition (1) of ), x Na(A). Hence A is a T.I. set in G. Na(A) is clearly
a generalized dihedral group, since a a- for a e A, e Na(A) A. The
last stutement of Lemmu I is easy to prove, since A is a T.I. set in G. A is u
Hall subgroup of G, since Na(P) Na(A) for any p-Sylow subgroup of A.

LMM 2. There exists a nilpotent normal subgroup N of G such that the factor
group GIN is isomorphic to

(i) a generalized dihedral .group of order 21A ], or
(ii) a simple )-group.

Proof. Let M be maximal normal subgroup of G.
Case (I) (Iil, AI) 1. Letp be a prime number dividing (IMI,
A I), and P be a p-Sylow subgroup of M. Using Frattini argument we hve
N(P)M G. Since A is a Hall subgroup of G by Lemm 1, we can suppose

A subset H of G is called a T.I. set in G, when H stisfies the following condition:

if x G and H fl H > {1} then H H, (cf. [4]).
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PCA. ByLemmal, N(P) N(A). HencelG/M 2 orp’,wherep’
is a prime number dividing ]A I. Let us assume G/MI p’. Then all the
involutions in G are contained in M. In particular r e M for r e N(A) A.
Hence r ra e M for a e A, and a e M holds. Since A is a group of odd
order, we have M A. This contradicts with G/M p’. Therefore we
havelG/MI 2. Next we will show thatxeMandAnA {1} imply
xeA. Since IG/MI 2 and G M.N(A), we have N(A) nM A.
Since A is a T.I. set, AA {1} implies thatxeN(A). Then
x e N(A) M A, as required. By Frobenius’ famous theorem there exists
a characteristic subgroup N of M which satisfies M A.N and A n N 1}.
The nilpotency of N follows from a theorem of Thompson [10]. The nor-
mality of N in G is obvious. Since GIN N(A), we have proved the lemma
in this case.

Case(II) (IMI, IAi) 1. Since an element ofA {1} inducesoaM
a fixed-point-free automorphism, M is nilpotent (Thompson [10]). We shall
show that the factor group G G/M is a ( )-group. Put Na(A) (r, A).
If r e M, then [r, A] c A n M 1. This is a contradiction. Hence r M.
Let a be an element of A 1 and be an element of C(g). Since x normal-
izes the group (a, M) and (l(a)l, M I) 1, we have (a) (a), y e M by

X
--1Schur’s splitting theorem. Hence y e N((a)) N(A) and x e (, ) holds.

However i and does not centralize d. Hence e . This proves the
condition (1) of ). As for the condition (2), using the same argument
above, we can easily prove that [N()’fi_] 2. Changing the letter M into
N in this case, we have proved the lemma.
Theorem A and Theorem A’ are easy consequences of this lemma.

3. Character theory
The theory of exceptional characters has been developed by R. Brauer, M.

Suzuki (cf. [6], [7]) and others. In this section we apply it to compute the
order of G. We summarize here their results which are necessary to our proof.

Let G be a finite group, and let G have a subgroup A satisfying the following
condition"
A is the centralizer of every element 1 of A. (In h/I. Suzuki’s paper [7], the

theory has been constructed under a more general condition.)
Let n denote the order of A, m the index [N(A)" A] and put w n l/re.

If w > 1 then there exist exactly w irreducible characters (exceptional charac-
ters associated with A, or simply A-characters cf. [6]) such that X is not con-
stant on A 1} for i 1, w. If an element x is not conjugate to any
element of A 1/, then we have X(x) X(x). If an irreducible character
Y is non-exceptional, Y takes a constant value coa A {1} and degree
Y c (mod n). We have a linear combination

which vanishes on elements not conjugate to an element of A 1}. Here 1
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is the principal character of G, e 4-1, a is a certain integer and the second
summation ranges over all the non-exceptional characters except 1. We have
moreover

1-t- (a-e)2-t- (w- 1)a2+ c2- m- 1.

Now we apply the above results to our )-group G. In this case

[N(A)’A] 2, A n.

By the assumption n >_ 5 we have w (n 1/2) >_ 2. There are w ex-
ceptional characters associated with A, namely X1,... X. We have a
linear combination b of irreducible characters of weight 3, which vanishes on
elements not conjugate to any element of A {1}. contains the principal
character of G with multiplicity 1, and at least one exceptional character.
Since (1) 0, we have

’l; 1 eX "Jr- sY e 4-1),

where Y is an irreducible character of G.
Let Dg(X) denote the degree of a character X of G. Since (1) 0,

Dg(Xi) Dg(Y). Hence Y is non-exceptional. We have

Dg(Y) kn-t-e and Y(a) e if l#aeA,

where k is a non-negative integer. Then Dg(Xi) kn -+- 2e. All the ir-
reducible characters of G other than 1, X1, X and Y have degrees
divisible by n and vanish on A 1}. We summarize the results in the follow-
ing lemma.

LEMMA 3. Let G be a $ )-group and A a special subgroup of G. There is a
generalized character

@ 1-- eXWeY (e 4-1)

which vanishes on the set of all those elements which are not conjugate to any element
of A {1}. X is an A-character and Y is a non-principal, non-exceptional ir-
reducible character. We have

Dg(X) kn- 2e and Dg( Y) kn

for some non-negative integer k, and

Y(a) if aeA {1}.

Moreover if Z is an irreducible character of G other than 1, X X,o and Y,
then

Dg(Z) nz and Z(a) O, a e A {1}.

Let G be a ( $ )-group, and D the set of elements in G which are conjugate
to an element 1 of A.

LEMM. 4. Under the same notation as above
(i) X(g) Z(g), Y(g) Z(g) e for gG- D
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(ii) Xl(h) +.." + Xw(h) --e,
X(h).X(h-) + + Xo(h).X(h-) n-- 2 for heD.

Proof. (i) is an immediate consequence of the theory exceptional characters
and of Lemma 3.
two equalities

From the orthogonality relations of group characters follow

2 .(h)..() 0, heD,

,(h).,(h-1) Co(h)l n, he D,

where ’, ranges over all the irreducible characters of G. (ii) is an easy conse-
quence of these equalities.
The following argument on the group algebra is essentially due to Brauer

and Fowler [2].
Let P be the group algebra of a $ )-group G over the field of rational num-

bers. Let 0, 8 denote the classes of conjugate elements of G such that
0 1 and, contain at least one element of A {1}. Let g de-
note a representative element of. Let Kdenote the sum of the elements in

then K0, K, form a basis of the center of P. In particular, we have an
equation

(3) g =0cg for 0 i s.

It follows esily from the bsic properties of the group characters that the co-
efficien c. in (3) re given by the formul

,) .(7)
c(a,)I E

where , rnges over 11 the irreducible characters of G.

LMMA 5. Under the same notation as above we have

C(g)I(kn + 2e)(kn + e)

where l i w,w + l j s, and

G[ n-2 X(g)+ Y(g)c = 1+ kn + 2 kn +
wherel g i w, wW 1 j s.

Proof. First, forl i w,w+ 1 j s, wehave

c(a)i = x,(a,) + +
By Lemma 4

=, Xt(g,) --e and X,(g) (Y(g) W e).
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Hence

C(g.)l + (-) + +
G (kn -F (Y(g))

C(g)I + 2e)(kn + )

Secondly for 1 i w, w 1 j s, we have by Lemma 4,

The next corollary is due to M. Suzuki [8].

Coov 1. If G is a simple )-group, then all the involutis in G are
ctained in a single cjugate class of G.

Proof. We first remark that in a generalized dihedral group of order 2n
(n odd) all the involutions are contained in a single class.
Let u be any involution of G. If we can prove that there exist x, y e Gsuch

that u.u a for a e A 1}, then u is contained in N(A). This follows
from a" (a)-1. Hence u is conjugate to r, where r is an involution in
N(A). On the other hand, by Lemma 5 and the simplicity of G, we have
c 0 for 1 i w, w + 1 j s. Hence our corollary is proved.

LEMMA 6. U G is a $ )-group, then the order of G is written in the form

Gi n(kn + 2e)(kn + e)
kn + e-

where r is an involuti in N(A ).
_w+lProof. Suppose r e+, Then c 0 for 1 i w, since

a for aeA {1}"r.r .ra 1,
_w+lFrom the theorem (4A) of R. Brauer and K. A. Fowler [2], the integer c is

the number of elements of order 2 which satisfy the equation
--1 --1a az a ae for 1 i w.

By Lemma 1, N(A) N((ai)). Hence
W+l n ]N(A) A].

From this follows the lemma.
Throughout the rest of this paper r denotes a fixed involution of N(A), and

we put

IC()!m
kn + e- Y()I"
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LEMMA 7. Under the same notation as in Lemma 6, m is an integer and

m 1 (modn).

Proof. From Dg( Y) ]n - c, Dg( Xi) kn -t- 2c and from the fact that
n, kn 2, kn - are relatively prime to each other follows that GI is
divisible by n(kn + 2)(]n -4- e). Hence m is an integer.
From the equality

GI (Dg(,))2-- 1 - (n 1/2)(kn -- 2c) -- (kn -- ) (mod n2)
we get

Hence
2nm =-- 2n (mod n).

m 1 (modn).

Throughout the rest of this section, we assume that G is a non-solvable
g )-group. In particular, we assume k > 0 in Lemmas 3-9.
We set

r0 {p prime number such that pin},

rl {q prime number such that q lkn A- 2e},

r2 {r prime number such that r lkn + e}.

LEMMA 8. Let G be a non-solvable g )-group. Suppose m 1; then G con-
tains only ro-, 7r-, 2-elements, and the centralizer of a ri-element is a ri-subgroup
ofGfori 0, 1,2.

Proof. Let p, q be primes such that piton -+- 2, q lkn -- . If G has an
element x of order pq, then x is both a p-singular element and a q-singular one.
Since Xi belongs to a p-block of defect 0 and Y belongs to a q-block of defect 0,
we have Xi(x) 0 and Y(x) O. Hence (x) 1 0. This is a contra-
diction, because x is not coniugate to any element of A /1}. By the con-
dition (1) of $ and by the fact above, we have proved the lemma.
Throughout the rest of this section, we assume that m 1.
Let a aw b bt c Cu be representative of the coniugate

classes of 0-, -, 2-elements respectively. From the theory of modular
characters we have

Xl(b) Xw(bj) 0, for 1 _< j _< t.
Using we obtain

Y(bj) -, for 1 < j _< t.
In the same way we obtain

X(c) X(c) , and Y(c) O, forl < /<U.

By Lemma 1,

Y(ai) and Z(zi) O, for 1 _< i _< w.
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TABLE 1

al

el

1

kn -- 2 kn + 2s

Zl

nZl

Zr

nzr

Let E be a subset of G which consists of all the -elements in G.

LEMMA 9. Under the same notation as above we have

EI kn(kn - 2s).

Proof. From the orthogonMity relations of group characters we have

xe Zl(x) Y(x) O.
Hence we get

Z(a) -.
Therefore we conclude

0 Z(x) (n + 2) (n + 2)(n + ) + IEI.
This proves the lemma.

THEOREM 1. Let G be a non-solvable )-group. If m 1 and k 1 or
2, then G is isomorphic to LF( 2, q) where q p > 3.

Proof. Case(I) k 1. In this case

G] n(n + 2)(n -t- ).

Sincen + eiseven, Y(r) 0. Hence

C() In+-Y()l=n+.

By Lemm 9, EI n(n + 2). Since the centrMizer of -element is a
-subgroup of G, this implies that Co(r) has only one coniugate class in G.
Therefore C(r) is an elementary abelian 2-group. Let B be a cylcic subgroup
of G of even order; then B 2. Since G has no linear character other than
the principal character, G coincides with its commutator subgroup. Hence all
the conditions of the theorem of Brauer, Suzuki and Wall [1] are satisfied.
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Since C(r) is an elementary ubelian 2-group, we conclude that G
_

LF(2, 2")
where a > 1 is an integer.

Case(II) ]c 2. In this case

G n(2n - 2c)(2n - c).

By Lemma 9, we have EI 2n(2n 2). Since the centralizer of a
.-element is a 2-subgroup of G, we can conclude that 2n is a power of odd
prime p and there exist two conjugate classes of p-element. Put 2n p.
Let P be a Sylow p-subgroup of G. Next argument on the structure of P and
No(P) and on the conclusion of our theorem is due to Brauer, Suzuki and Wall
[1]. For the reader’s convenience sake, we quote their argument, modifying
to our case.

First we shall prove that P is abelian. If P consists of the identity and two
real classes, then from the theorem (4D) of Brauer and Fowler [2] we can con-
clude that P is abelian.

If P consists of the identity and two non-real classes, we apply the Lemma
(II.0) of R. Brauer, M. Suzuki and G. E. Wall’s paper [1], which we quote
here.

LEMMA 10, Let G be any finite group. Let p be a prime dividing the order of
G. Let us assume the following properties;

a) If a is an element of prime order q > 1 and p q then the order of C((r)
is not divisible by p;

b A generalized quaternion group does not appear as a subgroup of G.
Then either the p-Sylow group of G is normal in G or any two distinct p-Sylow

groups have intersection 1.

In our group G, under the condition m 1 and non-solvability, assumption
(a) holds by Lemma 8. As for (b), if we can prove that for any p-subgroup
P 1 of G, N(P)I is not divisible by 2, then the proof of Lemmu 10 is
available (cf. [1]). However p-Sylow group P of G has no real element in G
and an involution of G does not commute with any p-element, hence N(P)I
is not divisible by 2. Clearly P is not normal subgroup of G, so we have
proved that p-Sylow groups of G is a T.I. set in G.

Let P be a Sylow p-subgroup of G, and p be any element 1 of P. Since
C(p)] pa, we hve C(p) P, x G. Since P P p, we hve x eN(P).
Thus we have proved that P is abelian.
From Lemma 8, the centralizer of any element 1 of P is P. Hence two

elements of P are conjugate in G, if and only if they are conjugate in N(P).
Since P consists of the identity und two classes we have

[N(P):P] (p- 1)/2 (2n-t-- 1)/2.

It follows that G has a representation as a transitive group of permututions in
2n letters in case c -1 and 2n -t- 2 letters in case 1 respectively. Ob-
serving Table 1, we can conclude that the character of this permutation
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representation is 1 + Y. Hence this represeatation 0 is doubly transitive and
no element except the identity leaves three letters fixed, and the order of the
subgroup of G leaving two letters fixed is n 1 (p 1)/2 in case 1,
and n (p- 1)/2 in case e i respectively.
We now pply Zussenhaus’ theorem (cf. [11], [1]). Thus we can conclude

that
G . LF( 2, p) (p > 3).

4. Proof of the main theorem

In this section G denotes always a simple )-group. We shall prove that
the hypothesis of Theorem 1 is satisfied if G satisfies one of the following con-
ditions"

G has two non-conjugate special subgroups A and A
(ii) IGI <_ 4(IAI + 1).
We first assume that G satisfies the condition (i). Put

A n and A n where n >n _> 5.

Let X (1 _< i _< w n 1/2) be A-characters and Y 1 be the non-
exceptional irreducible character which does not vanish on A {1}. Let
X 1 _< j _< w n 1/2) and Y be defined for A in the same way as in the
case of A. Put

Dg(X kn -+- 2 Dg( Y kn -+- c -+-1

Dg(X) kn + 2e, Dg(Y) kn + e, e. -4-1.

Since G has only one conjugate class of involutions (Corollary 1) we can set

where r is an involution in N(A).
By Lemma 6 we have two equalities

GI n(kn + 2e)(kn + e)m,

]G[ n2(k2n2-+- 2:2)(k2n2 - :2)m2.

LEMMA 11. Under the same notation as above we have
(i) y y2, k k2.= 1, e -e2 -1, m m2,n-n2 2,

(ii) Do(X) n-- 2, Dg(Y) n- 1, Dg(X) n,

(iii) yl(a) --1 for a eA {1},

Y(a) 1 for a e A {1},

(iv) GI n(n- 1)(n- 2)m.
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Proof. By Lemma 3 and/ > 0 we first remark that if an irreducible char-
acter W of G has same degree as X (or X), then W is an element of

{X,I _< i_<

(or {X, i _< j _< w.} and if W has same degree as y1 (or Y) then W y1
(or y2).
Let 1, X (1 _< i _< wl), y1, X (1 <: j <_. w2), U1, U be all the ir-

reducible characters of G. Assume y1 y.. Since Y X for 1 _< i _< wl,

we have Y U Hence by Lemma 3, Dg(X y11) and Dg( are divisible by
n. This is impossible, since kl n + 2el and kl nl + el are relatively prime to
each other. Thus y1 y and so

Therefore ml m. Since

Dg(X) k.n2 + 2 k nl + 1 + . 0

we obtain

Since

(mod n),

(4) kl nl + 2el k n2 d- e2 d- e k n,

we obtain

(5)

Since k2 n2 - 2e2 k nl, we get

(6)
G n2 Inl(/2n2 -" el)m2

n2klnl(klnl Jr" 81)ml.

By (5) and (6) we have kl 2.
From (4) follows

Hence we have

and
kl I, nl--n 2, I --1,

GI nl(nl- 1)(nl- 2)m.

Thus the lemma is proved.
Now we take off the suffix 1 of A1, nl, m, X (1 _< i _< Wl) and y1. Let F

be a subset of G which is consisted of elements which are conjugate no elements
of A {1} or A {1}.
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Next we shall prove

LEMMA 12.

(i)

(ii)

(iii)

Proof.
and g e for g e F. By Lemma 5 we have

[G’ Iin-2x(g)_l_:(g)llc= n--Y n-2

(n- 2)m2Y(g) >_ 0

(i) follows from the fact above and the simplicity of G.
the orthogonality relation

_,gF y(g) y(g-1) _, y(g)S

(iii)

0

_
Y(g) < n lforgeF,

j",, y(g)2= (m._ 1)(n- 1) s,__,, Y(g) (m- 1)(n- 1).

Use the same notation as in Section 3 and let a e 1 (a e A 1}

forg F.

(ii) follows from

IGI- (n- 1)- G___ (n- 1)
2n 2(n- 2)

(ms- 1)(n- 1)s.
follows from

(n- 3)

G G_, Y(g) -(n-- 1)-- -(n- 1)1-
2(n-- 2)

(ms- 1)(n- 1).

(n 3)e

Now we shall show that m 1. By (ii), (iii) of Lemma 12 we get,,, Y(g)(n 1 Y(g) O.

By(i) of Lemma12 we have Y(g 0forgeF. Hencem 1. Thus we
have proved that G is isomorphic to LF(2, q) (q 2" > 2).
Next we assume the condition (ii)"

--<  (IAI+ 1)

By the assumption A n >_ 5 and by Lemma 7 we have

m 1 or m >_ 16.
Assume m 1. Then

G >- 16n(Ion + 2) (kn -t- ).

By the condition (ii) above, we have

(n+ 1)3-4n(kn+ 2)(/cn+) >_ 0.
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Since] > 0wehave(n 1)3- 4n(n- 2)(n- 1) >_ 0, namely

-3n(n 5) 5n - 1 >_ 0.

This is a contradiction. Hence we hve m 1.
Next we shall show k 1 or 2. In fact, if ] _> 3 then

n(3n + 2)(3n + ) _< 4(n + 1)
Hence

and we get
n(3n- 2)(3n- 1) _< 4(n + 1)

5n(n- 5) -}-4n(n- 5) -- 10n- 4 _< 0.

This is a contradiction.
Thus we hve proved, by Theorem 1, that G is isomorphic to LF(2, q)

(q=pa> 3).
Combining these results and Theorem A, Theorem A’, we have proved the

theorems stated in the introduction.
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