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Let be a tame, simple closed curve in the interior of the 3-manifold and
suppose h: S D --+ M is a tame imbedding into the interior of M with
h(S 0) C. Let K be the simple closed curve in V S D indicated
by the figure. Then h(K) is a double of C in M.
The fundamental group Q l( V K) is presented by

Q a, m, l: a laalalal, m lala [,

where of course n and the second relation may be deleted ( x-l). We
keep them in the presentation since m, generate vl(T) where T S X Sl,
and therefore ml lm. The mapping a I-- , m [-- 1, [--+ 1 of generators to
elements of the infinite cyclic (multiplicative) group Z generated by extends
to a unique epimorphism Q --. Z and the composition

Q -- Z ---. Z/Z
is an epimorphism e Q Z to the cyclic group of order r.

Applying Fox’s version [1] of the Reidemeister-Schreier algorithm, we ob-
tain a presentation for vl(F), where ] is the r-fold cyclic branched cover-
ing space of V branched along K, corresponding to the kernel of e:

where the subscripts i g (the integers mod r), and [x, y] xyF.. Again the
generators m and second class of relations may be deleted, but they are left
in the presentation, since for each i the m, l generate the fundamental group
of a boundary component of the boundary of ].
Now we see that each of the is non-trivial since the image [/] of l under the

epimorphism

( --+ (/[(, ] H free abelian group on r generators

is non-trivial (the [/] form a basis for H). Actually we see much more;
namely,

has image [l]’+[l_l]-’[l+l]-’ in H. If r > 1 this is trivial iff p q 0.
Hence if r > 1, m’ l is trivial iff p q 0. This means that for r > 1 the
inclusion induced homomorphisms l() --+ l() are monomorphisms for
each i.
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Note now that rl(M h(K) is the direct limit of the following diagram of
groups and homomorphisms"

vl(M h( V) - (h(T) -- r(h( V K)

vl(M C)

The homomorphisms

I(M C) -- 1,

u(T) u,(V- K) Q.

n(T)--*l, n(V- K) Q--Zr

yield a unique compatible epimorphism s’’n(M h(K)) --. Zr. This
leads in turn to a branched r-fold cyclic covering of M branched over h(K).
Because of the choice of sP, 2r may be viewed as with r copies 2 of

M h( V) attached to along its corresponding boundary components
We call a simple closed curve C in the interior of M non-trivial if the inclu-

sion-induced homomorphism

(h(T) --. n(M h( V) r(M C)

is a monomorphism.
saying C is knotted.

For C in a simply connected M this is equivalent to

THEOREM. If C is non-trivial in M and K is any double of C as above with
I the r-fold cyclic branched covering of M over K as above, r > 1, then n(l)

contains r pairwise non-conjugate copies of rl(M C). These may be chosen to
be the images of the inclusion-induced homomorphisms n() rl( I) which
are monomorphisms.

Proof. First note that v(3)) is the direct limit of the following diagram of
groups and homomorphisms"

But since C is non-trivial, the homomorphisms n() - rl() are mono-
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morphisms; furthermore, we showed above that the other homomorphisms
1(i) --* 1(17) are monomorphisms since r > 1. Therefore the canonical
homomorphisms (i) --. (r) are monomorphisms, where each
n(/) (M C). The statement on non-conjugacy will follow if we
show that l is not conjugate to any m l in 1(17) where i j. If these
elements are coniugate in , then they must have equal images in H. Hence
we must have

[] [.]+[._]-[.+]-
and therefore p 0, q 1, i j. The theorem follows.

COROLLARY. No double of a knotted simple closed curve in a simply con-
nected 3-manifold has a simply connected r-fold cyclic branched covering for
r>l.

Proof. Observe that a knotted simple closed curve in a simply-connected
3-manifold is non-trivial and apply the theorem.
Hence it is impossible to find counterexamples to the Smith coniecture by

looking at the cyclic branched coverings of doubled knots.
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