QUADRATIC MAPS AND STABLE HOMOTOPY GROUPS OF SPHERES

BY
Paul F. Baum

The original proof [4] of the Bott periodicity theorem used Morse theory. Recent work on this theorem has, however, been algebraic in nature [1], [2], [3], [7]. The new proofs of the Bott periodicity theorem center around showing that a stable homotopy class can be represented by a specially simple sort of polynomial map. In [1] Atiyah and Bott ask whether it might be possible to use this approach on other homotopy problems. Is there, for example, some specially simple class of polynomial maps which carries the stable homotopy of spheres? As a possible first step towards selecting such a class we shall indicate that probably one wants to examine the properties of quadratic maps. In detail, we shall show that:

1. The stable J-homomorphism can be interpreted as an algebraic operation which converts a linear map into a quadratic map.
2. Any element of a k-stem can be represented by a quadratic map $q: R^{n} \rightarrow R^{l}$ such that $q\left(S^{n-1}\right) \subset R^{l}-\{0\}$.

In view of these results it is not surprising that many classical examples of non-trivial maps from S^{n} to S^{k} are quadratic. The Hopf map $S^{3} \rightarrow S^{2}$ is, for instance, given by
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow\left(2 x_{1} x_{3}-2 x_{2} x_{4}, 2 x_{1} x_{4}+2 x_{2} x_{3},-x_{1}^{2}-x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)$.
We remark that the results given here are mainly suggestive. No actual computations of k-stems are done. But perhaps eventually the k-stem may be envisaged as a group of equivalence classes of quadratic forms.

Our main technical lemma is 2.9. The proof of this lemma describes a procedure for lowering the degree of a polynomial map. This procedure resembles the linearization procedure of [1].

The general idea of this paper is due to M. F. Atiyah. It is a pleasure to thank Professor Atiyah for several most enjoyable conversations. Thanks go also to N. Steenrod for his interest and comments.
R. Wood has also, independently, proved that any element in a k-stem can be represented by a quadratic map.

1. The J-Homomorphism

1.1. Notation. $R=$ the real numbers.
$R^{n}=$ the space of all n-tuples $a, a=\left(a_{1}, \cdots, a_{n}\right) a_{i} \in R,\|a\|=$ $\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}$.
$S^{n-1}=\left\{a \epsilon R^{n} \mid\|a\|=1\right\}$.
$\pi_{k}=\lim _{n \rightarrow \infty} \pi_{k+n}\left(S^{n}\right)$.
$L(n, m)=$ the vector space of all $n \times m$ matrices of real numbers.
$O(n)=$ the group of all $n \times n$ orthogonal matrices.
$\pi_{k}(O)=\lim _{n \rightarrow \infty} \pi_{k}(O(n))$.
$C_{k}=$ the k th Clifford algebra over R. This is an algebra with generators $e_{1}, e_{2}, \cdots, e_{k}$ subject to the relations $e_{i}^{2}=-1, e_{i} e_{j}+e_{j} e_{i}=0$ if $i \neq j$. For Clifford algebras see [2]. As a vector space over R, C_{k} has dimension 2^{k}.
R^{k+1} shall be identified with the subspace of C_{k} spanned by $1, e_{1}, \cdots, e_{k}$. The identification is given by

$$
\left(a_{1}, a_{2}, \cdots, a_{k+1}\right) \leftrightarrow a_{1} \cdot 1+\sum_{i=1}^{k} a_{i+1} \cdot e_{i} .
$$

$R^{n} \times R^{l}$ shall be identified with R^{n+l}. The identification is given by

$$
(a, b) \leftrightarrow\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{l}\right)
$$

where $a=\left(a_{1}, \cdots, a_{n}\right), b=\left(b_{1}, \cdots, b_{l}\right)$.
All rings are associative and have a unit element 1. 1 acts as the identity on all modules. If Λ is a ring then $\Lambda\left[X_{1}, \cdots, X_{n}\right]$ denotes the ring of all polynomials in the indeterminates X_{1}, \cdots, X_{n} with coefficients in Λ. If Λ_{1} and Λ_{2} are rings with $\Lambda_{1} \subset \Lambda_{2}$ and W is a Λ_{2}-module, then $W \mid \Lambda_{1}$ denotes the Λ_{1}-module obtained by considering W to be a Λ_{1}-module.
1.1. Lemma. Let Λ_{1} be a ring such that every Λ_{1}-module is projective. Let Λ_{2} be a ring with $\Lambda_{1} \subset \Lambda_{2}$ and suppose that as a $\Lambda_{1}-$ module Λ_{2} is finitely generated. Then if V is any finitely generated Λ_{1}-module there exists a finitely generated $\Lambda_{1^{-}}$ module U and a finitely generated Λ_{2}-module W such that $W \mid \Lambda_{1}$ is isomorphic to $V \oplus U$.

Proof. Let $W=\Lambda_{2} \otimes_{\Lambda_{1}} V$.
1.2. Definition of H_{k}. Identifying $e_{i} \in C_{k}$ with $e_{i} \epsilon C_{k+1}, i=1,2, \cdots, k$ gives an inclusion $C_{k} \subset C_{k+1}$. If V_{1} and V_{2} are two finitely generated $C_{k^{-}}$ modules set $V_{1} \sim V_{2}$ if and only if there exist finitely generated C_{k+1}-modules W_{1} and W_{2} such that

$$
V_{1} \oplus\left(W_{1} \mid C_{k}\right) \cong V_{2} \oplus\left(W_{2} \mid C_{k}\right)
$$

H_{k} is the set of equivalence classes. The operation of forming the direct sum of two modules makes H_{k} into an abelian semi-group. The existence of an additive universe follows from the preceding lemma, so H_{k} is an abelian group.
1.3. Lemma. If V is a finitely generated C_{k}-module then it is possible to choose a norm for V such that $\|a v\|=\|a\| \cdot\|v\|$ for all $a \in R^{k+1}, v \in V$.

Proof. Let Pin (k) be as in [2]. Pin (k) is a compact group. Let \langle,
be any inner product for V and set

$$
\left\langle v_{1}, v_{2}\right\rangle^{\prime}=\int_{\operatorname{Pin}(k)}\left\langle x v_{1}, x v_{2}\right\rangle d x
$$

where the integral is taken with respect to the normalized Haar measure on $\operatorname{Pin}(k)$. Then for any $x \in \operatorname{Pin}(k),\left\langle x v_{1}, x v_{2}\right\rangle^{\prime}=\left\langle v_{1}, v_{2}\right\rangle^{\prime}$. It may now be easily checked that in fact $\left\langle x v_{1}, x v_{2}\right\rangle^{\prime}=\left\langle v_{1}, v_{2}\right\rangle^{\prime}$ for every $x \in S^{k}$.
1.4. Definition of a homomorphism $\eta: H_{k} \rightarrow \pi_{k}(O)$. Given a finitely generated C_{k}-module V choose a norm for V such that $\|a v\|=\|a\| \cdot\|v\|$ for all $a \epsilon R^{k+1}, v \in V$. Let v_{1}, \cdots, v_{n} be an orthonormal R-basis for V. For each $a \epsilon R^{k+1}$ let $T(a)$ be the matrix of $v \rightarrow a v$ with respect to the basis v_{1}, \cdots, v_{n}. Then $T: R^{k+1} \rightarrow L(n, n)$ is a linear map of R-vector spaces. Since $T\left(S^{\kappa}\right) \subset O(n), T$ determines an element of $\pi_{k}(O)$. It is straightforward to verify that:
(i) This element of $\pi_{k}(O)$ depends only on the isomorphism class of V^{\cdot}
(ii) If $\eta(V)$ denotes the element of $\pi_{k}(O)$ determined by V, then

$$
\eta\left(V_{1} \oplus V_{2}\right)=\eta\left(V_{1}\right)+\eta\left(V_{2}\right)
$$

(iii) If W is any finitely generated C_{k+1}-module, then $\eta\left(W \mid C_{k}\right)=0$.

So η defines a group homomorphism $H_{k} \rightarrow \pi_{k}(O)$.
1.5. Theorem (Atiyah, Bott, Shapiro [2]). For all $k \geqq 0, \eta: H_{k} \rightarrow \pi_{k}(O)$ is an isomorphism.

Proof. The theorem is verified in three steps:
(i) Periodicity homomorphisms $\pi_{k}(O) \rightarrow \pi_{k+8}(O), H_{k} \rightarrow H_{k+8}$ are defined and proved to be isomorphisms.
(ii) For $k=0,1, \cdots, 7, \eta: H_{k} \rightarrow \pi_{k}(O)$ is proved to be an isomorphism.
(iii) The diagram

is proved to be commutative where the vertical arrows are the periodicity isomorphisms.

A corollary of the theorem is:
1.6. Corollary. Any element of $\pi_{k}(0)$ can be represented by a linear map T of R-vector spaces $T: R^{k+1} \rightarrow L(n, n)$ such that $T\left(S^{k}\right) \subset O(n)$.
1.7. The Hopf construction [6]. Let $f: S^{k} \times S^{n-1} \rightarrow S^{n-1}$ be a continuous map. Extend f to a continuous map

$$
\tilde{f}: R^{k+1} \times R^{n} \rightarrow R^{n}
$$

by setting

$$
\tilde{f}\left(t_{1} a, t_{2} b\right)=t_{1} t_{2} f(a, b)
$$

for $0 \leqq t_{1}, t_{2} \in R$ and $\|a\|=\|b\|=1$. Let

$$
J(f): R^{k+1} \times R^{n} \rightarrow R^{n} \times R^{1}
$$

be

$$
J(f)(a, b)=\left(2 \tilde{f}(a, b),\|b\|^{2}-\|a\|^{2}\right)
$$

$J(f)$ maps S^{k+n} into $S^{n} . J(f)$ is the map obtained by applying the Hopf construction to f.
1.8. The J-homomorphism [6]. Let $w \in \pi_{k}(O)$. Choose a map

$$
\varphi: S^{k} \rightarrow O(n)
$$

representing w. Let $f: S^{k} \times S^{n-1} \rightarrow S^{n-1}$ be $f(a, b)=\varphi(a)(b)$. Then $J(f)$ determines an element of π_{k} and this operation defines a homomorphism $J: \pi_{k}(O) \rightarrow \pi_{k}$.
1.9. Definition. A map $f: R^{n} \rightarrow R^{l}$ is a polynomial map if for some l-tuple $\left(P_{1}, \cdots, P_{l}\right), P_{i} \in R\left[X_{1}, \cdots, X_{n}\right], f(a)=\left(P_{1}(a), \cdots, P_{l}(a)\right)$ for all $a \in R^{n}$. (If f is polynomial then the l-tuple (P_{1}, \cdots, P_{l}) is uniquely dedetermined by f). The degree of a polynomial f is the maximum of the degrees of the P_{i}. A polynomial map f is homogeneous if each P_{i} is a homogeneous polynomial and degree $P_{i}=\operatorname{degree} P_{j}$ for all i, j. A polynomial map f is quadratic if degree $f \leqq 2$.
1.10. Corollary. An element of π_{k} in the image of the J-homomorphism can be represented by a homogeneous quadratic map $q: R^{n+k+1} \rightarrow R^{n+1}$ such that $q\left(S^{n+k}\right) \subset S^{n}$.

Proof. Let $w \in \pi_{k}(O)$. Choose a linear map T of R-vector spaces

$$
T: R^{k+1} \rightarrow L(n, n)
$$

such that $T\left(S^{k}\right) \subset O(n)$ and T represents w. Then $J(T)$ gives the required q.
Thus the (stable) J-homomorphism may be viewed as an algebraic operation converting linear maps into homogeneous quadratic maps.

2. Quadratic maps

2.1. Definition. A continuous map $f: R^{n} \rightarrow R^{l}$ is admissible if $f(0)=0$ and $f(a) \neq 0$ for all $a \in S^{n-1}$. If $f: R^{n} \rightarrow R^{l}$ is admissible then the i-th suspension of f, denoted $f^{(i)}$, is the map

$$
f^{(i)}: R^{n} \times R^{i} \rightarrow R^{l} \times R^{i}
$$

by $f^{(i)}(a, b)=(f(a), b)$.
2.2. Notation. $\quad M_{k, n}=$ the space of all admissible maps $f: R^{n} \rightarrow R^{n-k}$,
topologized by the compact-open topology. $f \rightarrow f^{(1)}$ gives an inclusion $M_{k, n} \subset M_{k, n+1}$.
$M_{k}=\lim _{n \rightarrow \infty} M_{k, n} . \quad M_{k}$ is topologized by the direct limit topology.
$Q_{k, n}=$ the subspace of $M_{k, n}$ consisting of all admissible quadratic maps.
$Q_{k}=\lim _{n \rightarrow \infty} Q_{k, n}$.
$[Y, Z]=$ the set of homotopy classes of continuous maps from the topological space Y to the topological space Z.
2.3. Definition. If Z_{1} and Z_{2} are topological spaces and $f: Z_{1} \rightarrow Z_{2}$ is a continuous map, then f is a weak homotopy equivalence if for every compact Hausdorff space Y, f indices a bijection of sets $\left[Y, Z_{1}\right] \rightarrow\left[Y, Z_{2}\right]$.
2.4. Theorem. For all k, the inclusion $Q_{k} \subset M_{k}$ is a weak homotopy equivalence.

Before the proof, two definitions and three lemmas.
2.5. Definition. Let Y be a topological space. A continuous map

$$
f: Y \times R^{n} \rightarrow R^{l}
$$

is admissible if $f(y, 0)=0$ for all $y \in Y$, and $f(y, a) \neq 0$ whenever $a \epsilon S^{n-1}$. The set of all admissible maps from $Y \times R^{n}$ into R^{l} can be identified, in the standard fashion [5], with the set of all continuous maps from Y into $M_{n-l, n}$. Two admissible maps $f, g: Y \times R^{n} \rightarrow R^{l}$ are ad-homotopic if as maps of Y into $M_{n-l, n}$ they are homotopic.
2.6. Definition. Let Y be a topological space and let $R(Y)$ denote the ring of all continuous real-valued functions on Y. A map

$$
f: Y \times R^{n} \rightarrow R^{l}
$$

is polynomial if there exists an l-tuple $\left(P_{1}, \cdots, P_{l}\right)$,

$$
P_{i} \in R(Y)\left[X_{1}, \cdots, X_{n}\right]
$$

such that

$$
f(y, a)=\left(P_{1}(y, a), \cdots, P_{l}(y, a)\right)
$$

for all $(y, a) \in Y \times R^{n}$. (If f is polynomial then $\left(P_{1}, \cdots, P_{l}\right)$ is uniquely determined by f.) The degree of a polynomial f is the maximum of the degrees of P_{1}, \cdots, P_{l}. If degree $f \leqq 2$, then f is quadratic. Two admissible polynomial maps

$$
f, g: Y \times R^{n} \rightarrow R^{l}
$$

are polynomially ad-homotopic if there exists an admissible polynomial map

$$
h:(Y \times[0,1]) \times R^{n} \rightarrow R^{l}
$$

such that $h(y, 0, a)=f(y, a)$ and $h(y, 1, a)=g(y, a)$ for all $(y, a) \in Y \times R^{n}$.

Polynomial ad-homotopy is an equivalence relation on the set of all admissible polynomial maps from $Y \times R^{n}$ to R^{l}.
2.7. Lemma. Let Y be a compact Hausdorff space, and let

$$
f, g: Y \times R^{n} \rightarrow R^{l}
$$

be two admissible polynomial maps. Then f and g are ad-homotopic if and only if they are polynomially ad-homotopic.

Proof. Let $\rho: Y \times[0,1] \times R^{n} \rightarrow R^{l}$ be an admissible map such that $\rho(y, 0, a)=f(y, a)$ and $\rho(y, 1, a)=g(y, a)$. By the Stone-Weierstrass approximation theorem there exists an admissible polynomial map

$$
h: Y \times[0,1] \times R^{n} \rightarrow R^{l}
$$

such that h approximates ρ on $Y \times[0,1] \times S^{n-1}$. Let

$$
h_{i}: Y \times R^{n} \rightarrow R^{l}
$$

be $h_{i}(y, a)=h(y, i, a), i=0,1$. Then h_{0} is polynomially ad-homotopic to f. A polynomial ad-homotopy is given by $(1-t) h_{0}+t f, 0 \leqq t \leqq 1$. Similarly h_{1} and g are polynomially ad-homotopic. Since h gives a polynomial ad-homotopy from h_{0} to h_{1} it now follows that f is polynomially adhomotopic to g and the lemma is proved.
2.7. Notation. $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)=$ an n-tuple of non-negative integers.
$|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.
$X^{\alpha}=X_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}} \cdots X_{n}^{\alpha_{n}}$.
If Λ is a ring and $\sum_{\alpha} c_{\alpha} X^{\alpha}=P \in \Lambda\left[X_{1}, \cdots, X_{n}\right]$, then

$$
P_{\mathrm{i}}=\sum_{\left\{\alpha \mid \alpha_{i}>0\right\}} c_{\alpha} \frac{\alpha_{i}}{|\alpha|} \frac{X^{\alpha}}{\bar{X}_{i}}
$$

2.8. Lemma. If Λ is a ring and $P \in \Lambda\left[X_{1}, \cdots, X_{n}\right]$ then

$$
P=P(0)+\sum_{i=1}^{n} X_{i} P_{\mathrm{i}}
$$

2.9. Lemma. Let Y be a compact Hausdorff space and let

$$
f_{1}: Y \times R^{n} \rightarrow R^{l}
$$

be an admissible polynomial map with $2<$ degree f_{1}. Then there is an admissible polynomial map

$$
f_{2}: Y \times R^{n+n l} \rightarrow R^{l+n l}
$$

such that $2 \leqq$ degree $f_{2}<$ degree f_{1} and f_{2} is polynomially ad-homotopic to $f_{1}^{(n l)}$.
Proof. Let $\left(P_{1}, \cdots, P_{l}\right), P_{i} \in R(Y)\left[X_{1}, \cdots, X_{n}\right]$ be the l-tuple determined by f_{1}. Let A be the $n \times l$ matrix with entries in $R(Y)\left[X_{1}, \cdots, X_{n}\right]$ given by $A_{i j}=P_{j 1}$. Consider each $a \in R^{n}$ to be a $1 \times n$ matrix and form the
matrix product $a \cdot A(y, a)$. Then by Lemma $2.8 f_{1}(y, a)=a \cdot A(y, a)$ for all $(y, a) \in Y \times R^{n}$. For $k=1,2, \cdots, n$ let A_{k} be the $n \times l$ matrix whose (i, j) entry is $A_{i j \mathbf{k}}$. Then $A=A(0)+\sum_{k=1}^{n} X_{k} A_{k}$.

Let B be the $n \times n l$ matrix

Choose a positive real number λ such that whenever $(y, a) \in Y \times R^{n}$ has $f_{1}(y, a)=0$ and $\|a\|<1$ then $\|a\|^{2}+\lambda^{-2} \cdot\|a \cdot B(y, a)\|^{2}<1$. Let I denote the $l \times l$ identity matrix and let C be the $n l \times l$ matrix

$$
C=\begin{array}{|c|}
\hline-X_{1} \lambda I \\
\hline-X_{2} \lambda I \\
\hline \vdots \\
\hline-X_{n} \lambda I \\
\hline
\end{array}
$$

Set

Let $f_{2}: T \times R^{n+n l} \rightarrow R^{l+n l}$ be $f_{2}(y, a)=a \cdot D(y, a)$. Then f_{2} is a polynomial map and degree $f_{2}<$ degree f_{1}. To see that f_{2} is admissible let $E_{t}, t \in R$, be the $l+n l \times l+n l$ matrix

and let $f_{3}: Y \times R^{n+n l} \rightarrow R^{l+n l}$ be $f_{3}(y, a)=a \cdot D(y, a) \cdot E_{1}(a)$. For all $a \in R^{n}$, $t \in R, E_{t}(a)$ is a non-singular matrix so $f_{3}^{-1}(0)=f_{2}^{-1}(0)$

So $f_{3}(y, a)=0$ if and only if $f_{1}\left(y, a_{1}, \cdots, a_{n}\right)=0$ and

$$
\left(a_{1}, \cdots, a_{n}\right) \cdot B\left(y, a_{1}, \cdots, a_{n}\right)+\left(\lambda a_{n+1}, \cdots, \lambda a_{n+n l}\right)=0
$$

By the choice of λ this implies that f_{3} is admissible, and therefore f_{2} is admissible.

$$
Y \times[0,1] \times R^{n+n l} \rightarrow R^{l+n l}
$$

by $(y, t, a) \rightarrow a \cdot D(y, a) \cdot E_{t}(a)$ is an ad-homotopy from f_{2} to f_{3}.

$$
(1-t) f_{3}+t f_{1}^{(n l)}
$$

is an ad-homotopy from f_{3} to $f_{1}^{(n l)}$. This proves the lemma.
Proof of 2.4. Let Y be a compact Hausdorff space and let $f: Y \rightarrow M_{k}$ be a continuous map. For some integers n, l with $n-l=k, f$ maps Y into $M_{n-l, n}$. Let $f_{0}: Y \times R^{n} \rightarrow R^{l}$ be the admissible map so obtained from f. By the Stone-Weierstrass approximation theorem there exists an admissible polynomial map $f_{1}: Y \times R^{n} \rightarrow R^{l}$ such that f_{1} approximates f_{0} on $Y \times S^{n-1}$. f_{0} and f_{1} are ad-homotopic. An ad-homotopy is given by $(1-t) f_{0}+t f_{1}$, $0 \leqq t \leqq 1$. Suppose degree $f_{1}>2$. Then by 2.9 there is an admissible map $f_{2}: Y \times R^{n+n l} \rightarrow R^{l+n l}$ such that $2 \leqq$ degree $f_{2}<$ degree f_{1} and f_{2} is polynomially ad-homotopic to $f_{1}^{n l}$. Thus the map of Y into M_{k} determined by f_{2} is homotopic to f and $2 \leqq$ degree $f_{2}<\operatorname{degree} f_{1}$. Hence by repeated applications of 2.9 a quadratic map is obtained so $\left[Y, Q_{k}\right] \rightarrow\left[Y, M_{k}\right]$ is surjective.

Now let $g, g^{\prime}: Y \rightarrow Q_{k}$ be two continuous maps which are homotopic as maps into M_{k}. Then by 2.7 there exist integers n, l with $n-l=k$ and an admissible polynomial map $h_{1}: Y \times[0,1] \times R^{n} \rightarrow R^{l}$ such that g is given by

$$
h_{1,0}=h_{1} \mid Y \times 0 \times R^{n}
$$

and g^{\prime} is given by

$$
h_{1,1}=h_{1} \mid Y \times 1 \times R^{n}
$$

Suppose that degree $h_{1}>2$. Let $\left(\widetilde{P}_{1}, \cdots, \widetilde{P}_{l}\right)$ be the l-tuple determined by h_{1}.

$$
\widetilde{P}_{i} \in R(Y \times[0,1])\left[X_{1}, \cdots, X_{n}\right]
$$

Let \tilde{A} be the $n \times l$ matrix with entries in $R(Y \times[0,1])\left[X_{1}, \cdots, X_{n}\right]$ given by $\widetilde{A}_{i j}=\widetilde{P}_{j \mathrm{ij}}$. For $k=1,2, \cdots, n$ let \widetilde{A}_{k} be the $n \times l$ matrix whose (i, j)
entry is $A_{i j \mathbf{k}}$. Let \widetilde{B} be the $n \times n l$ matrix

$$
B=\begin{array}{|l|l|l|l|}
\hline \tilde{A}_{1} & \tilde{A}_{2} & \cdots & \tilde{A}_{n} \\
\hline
\end{array}
$$

Choose a positive real number $\tilde{\lambda}$ such that whenever

$$
(y, t, a) \in Y \times[0,1] \times R^{n}
$$

has $h_{1}(y, t, a)=0$ and $\|a\|<1$, then

$$
\|a\|^{2}+\tilde{\lambda}^{-2}\|a \cdot B(y, t, a)\|<1
$$

Let I denote $l \times l$ identity matrix and let

Let $h_{2}: Y \times[0,1] \times R^{n+n l} \rightarrow R^{l+n l}$ be $h_{2}(y, t, a)=a \cdot \tilde{D}(y, t, a)$. Then as above h_{2} is an admissible polynomial map and degree $h_{2}<$ degree h_{1}. Let

$$
h_{2,0}=h_{2} \mid Y \times 0 \times R^{n}
$$

Then as in the proof of $2.9 h_{2,0}$ is ad-homotopic to $h_{1,0}^{(n l)}$. Moreover the adhomotopy obtained as in the proof of 2.9 is given by an admissible quadratic map

$$
q: Y \times[0,1] \times R^{n+n l} \rightarrow R^{l+n l}
$$

Similarly for $h_{2,1}=h_{2} \mid Y \times 1 \times R^{n}$ and $h_{1,1}$. Hence a polynomial adhomotopy

$$
h_{2}^{\prime}: Y \times[0,1] \times R^{n+n l} \rightarrow R^{l+n l}
$$

from $h_{1,0}^{(n l)}$ to $h_{1,1}^{(n l)}$ is obtained and $2 \leqq$ degree $h_{2}^{\prime}<$ degree h_{1}. By iteration it follows that there exists an integer i and an admissible quadratic map

$$
\tilde{q}: Y \times[0,1] \times R^{n+i} \rightarrow R^{l+i}
$$

such that $\tilde{q}(y, 0, a)=h_{1,0}^{(i)}(y, a)$ and $\tilde{q}(y, 1, a)=h_{1,1}^{(i)}(y, a)$. Thus

$$
\left[Y, Q_{k}\right] \rightarrow\left[Y, M_{k}\right]
$$

is injective and 2.4 is proved.
2.10. Definition. An admissible map $f: R^{n} \rightarrow R^{n-k}$ represents $w \in \pi_{k}$ if the stable homotopy class of $S^{n-1} \rightarrow S^{n-k-1}$ by $a \rightarrow f(a) /\|f(a)\|$ is w.
2.11. Corollary. (i) For all k every $w \in \pi_{k}$ can be represented by an admissible quadratic map $q: R^{n} \rightarrow R^{n-k}$.
(ii) Two admissible quadratic maps

$$
q: R^{n} \rightarrow R^{n-k} \quad \text { and } \quad q^{\prime}: R^{m} \rightarrow R^{m-k}
$$

represent the same $w \in \pi_{k}$ if and only if there exists a positive integer i and an admissible quadratic map

$$
h:[0,1] \times R^{n+i} \rightarrow R^{n-k+i}
$$

such that $h \mid 0 \times R^{n+i}=q^{(i)}$ and $h \mid 1 \times R^{n+i}=q^{\prime(n-m+i)}$.
Proof. In 2.4 take Y to be a point.

3. Problems

Problem 1. Can every $w \in \pi_{k}$ be represented by a quadratic map

$$
q: R^{n} \rightarrow R^{n-k}
$$

such that $q^{-1}(0)=0$?
Problem 2. Can every $w \in \pi_{k}$ be represented by a quadratic map

$$
q: R^{n} \rightarrow R^{n-k}
$$

such that $q(0)=0$ and $q\left(S^{n-1}\right) \subset S^{n-k-1}$?
It can be proved that
(i) For any $w \epsilon \pi_{k}, w+w$ can be represented by a quadratic map

$$
q: R^{n} \rightarrow R^{n-k}
$$

with $q^{-1}(0)=0$.
(ii) If

$$
q: R^{n} \rightarrow R^{n-k}
$$

is a quadratic map with $q(0)=0$ and $q\left(S^{n-1}\right) \subset S^{n-k-1}$ then $q^{-1}(0)=0$.

References

1. M. F. Atiyah and R. Bott, On the periodicity theorem for complex vector bundles, Acta Math., vol. 112 (1964), pp. 229-247.
2. M. F. Аtiyah, R. Воtт and A. Shapiro, Clifford modules, Topology, vol. 3, Suppl. 1 (1964), pp. 3-38.
3. H. Bass, An algebraic analogue of Bott's complex periodicity theorem, mimeographed notes, Columbia University.
4. -_, The stable homotopy of the classical groups, Ann. of Math., vol. 70 (1959), pp. 313-337.
5. R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., vol. 51 (1945), pp. 429-432.
6. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., vol. 51 (1950), pp. 192-237.
7. R. Wood, Banach algebras and Bott periodicity, Topology, vol. 4 (1966), pp. 371-389.

Princeton University
Princeton, New Jersey

