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1. Introduction

Throughout this paper, X denotes a compact metric space, and C(X) the
Banach space of real (or complex) continuous functions on X. Call

{, n} a peaked partition of unity on X if it is a partition of unity
(i.e. the i are non-negative continuous functions on X such that
-’=1 i(x) 1 for all x e Z), and bi 1 for i 1, n. The linear
subspace [] of C(X) spanned by such a is called a peaked partition subspace.
Our purpose in this paper is to prove the following theorem.

THEOREM 1.1. There exists an increasing sequence E E of peaked
partition subspaces of C(X) whose union is dense in C(X).

This theorem can be sharpened in two directions: First, as our proof will
show, E can be specified arbitrarily in advance. And second, as [2, Corol-
lary 5.2] will show, each En can be chosen to be n-dimensional.
Theorem 1.1 seems to be quite useful, and some applications will be found

in [2] and [3]. There is one application, however, which is so easy that it can
be given right now, while at the sametimebringing out the significance ofpeaked
partition subspaces.

Suppose E is spanned by the peaked partition of unity {1, n} on
X. PickxeXsothatO(xi) l(i= 1, ...,n);thenC(x) 0ifji.
It follows easily that

(1) --1 a sup= a

for all scalars al, . This implies that the linear map r C(X) - E,
defined by

r(f) .=f(x), f e C(X)

is a projection of norm one onto E. More generally, (1) implies (using the
Hahn-Banach theorem) that E is a (l-space; that is, E admits a projection of
norm one from any Banach space in which it is isometrically embedded.
Theorem 1.1 therefore implies:

COaOLAnY 1.2. There exists an increasing sequence of finite-dimensional
5)-subspaces of C( X) whose union is dense in C(X).

Corollary 1.2 answers a question raised by J. Lindenstrauss [1, p. 29], who
also asked whether Corollary 1.2 remains true for non-metrizable compact X if
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"increasing sequence" is replaced by "directed set". This more general ques-
tion seems to remain open.
The proof of Theorem 1.1 will be given in Sections 2 and 3, the essential step

being Lemma 2.2. Section 4 contains examples, as well as some remarks on
how the proof of Theorem 1.1 becomes fairly trivial if the theorem is weakened
in certain directions.

2. Three lemmas
We begin with a known lemma, and include the simple proof for complete-

ness. (A similar result (with the same proof) is true for all locally finite open
coverings of normal spaces.)

LEMMA 2.1. Let U1, U,} be an open covering of X, and let x e U with
X xjfor i j. Then there exists a peaked partition of unity ,,} on
X such that vanishes outside U and $i(x) 1 for i 1, n.

Proof. If V U {xj j # i}, then Vx, V,} is atso an open cover-
ing of X. Let {, } be any partition of unity on X such that
vanishes outside V for all i. Then $(x) 0 for j # i, so 4(x) 1, and
that completes the proof.

If (I, {1, } is a partition of unity on X, if %t is a covering
of X, and if e > 0, we say that is e-subordinated to t if there are
Ue (i 1, n) such that

for all x X, where
I(x) i_<n’x,

Note that "0-subordinated" is what is usually called "subordinated".
We are now ready for Lemma 2.2. As Example 4.2 will show, "-subordi-

nated" cannot be replaced by "subordinated".

LnA 2.2. Let ,] be a peaed partition of unity on X, let
5e an open covering of X, and let ) O. Then there exists a peaed partition of
unity ,} ou X which is -subordinated to %t and with

Proof. Pick x, x in X such that (xi) 1 for i 1, n. We will
obtain{,...,},andz,...,zinXwith(z) lforj 1,...,m,
so that m n and z. x. for I j n. Let N denote 1 ; we may clearly
suppose that ( 1, so that 0 ) ( 1.

For each z X, pick U such that z U, let

U, U, if (z) 0,
(2)

U,. Un {xeX’(x) > k(z)}, if (z) > 0,

For instance, let $i(x) d(x, X Vi)[ -1 d(x, X V.)]-1, where d is a metric
on X.
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and let
V(z) [’inl Uz,i.

Then U(z) is an open set containing z, so we can find z, z in X such that
the U(z) withj 1, m cover X; clearly we can take m _> n and z. xi
forl
By Lemma 2.1 there exists a peaked partition of unity q* {, }

on X such that vanishes outside U(zy) and (zi) 1 for j 1, m.
For each i 1, n, let

(3) () (z)().
(In other words, is the image of under the projection from C(X) onto
[*] generad by the y and the z.) Let us show that, for i 1, n,

(4) (z) ,(z), j 1, ..., m,

and

(5) ,() x(), x.
(z) ,. To prove (5), noteThe truth of (4) follows from the fact that *

that if (x) > 0 (so that x U(zi)), then

() X(z);

this is clear if (z) 0, and follows from the definition of U(z) if (z) > 0.
Hence

and that is equivalent to (5).

For allxeXandi= 1,...,n, let

(x) sup { 1 (x) (z)},
(x) min {(x) i 1, ..., n}.

Then

(6) (x) x
for all x e X by (5),

(7) (z)
forj 1,...,mby(4),and

(8) ,(x) (x)(x)
for all x e X and i 1, n by definition of (x).

Let us show that each function --and hence --is continuous. This is
clear on the open set {x e X (x) > 0}, for there

i(x) min (1, i(x)/(x) ).
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So suppose that *bi (y) 0, and let us show that /i is continuous at y. Since
(y) 1, it will suffice to show that /(x) I for all x in some neighborhood
W of y. If (y) > 0 this is clear, so suppose that i(y) 0. Let

(9) J= /J-<m’(z’) > 0},

(10) W {x e X (x) < k(z) for all j e J}.

Then W is open, and y e W since (y) 0. Now suppose that x Wi, and
let us show that (x) 0, which implies that (x) 1. By (3), it suffices
to show that, if (z) > 0 for somej m, then (x) 0. But if (z) > 0,
thenj e Jby (9), so (10) and (2) imply that x U, but U, U(z), and
hence (x) 0. That completes the proof that i is continuous.
We are now ready to define (, }. Let

(x) (x)(x) + ((x) -(x)(x)), 1 j n,

i(x) (x)(x), n < j m

Then, for 11 j 1, m, is clearly continuous,

(11) (x) (x)(x) 0

by (6) and (8), and (z) 1 by (4) and (7). Moreover, by (3),

+
and hence e [] for i 1, n. This equation also implies that, for all
xeX,

(x)= 1,

so is a partition of unity on X. To see, finally, that is v-subordinated to
,pick Uesothat U(z) Uforj 1, ...,m. LetxeX, and let
J(x) {j m" x U} andK(x) j m" xeU}. Then, by(11),

()(x) 1- ()(x) g 1- (x)()(x)
1- (x)(x) 1- (x) 1- ,

and that completes the proof.

LEMMA 2.3. Let f e C(X) and O. Then there exists an 0 and an
open covering ofX such that, if is a partition of unity on X which is a-subor-

f’dinated to , then f f’ < for some e [].

Proof. If f 0, there is nothing to prove. If not, let a /(4 f ).
For each scalar y with y f , let

U(y) {x X" If(x) -yl < 1/2e},
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and let be the collection of all such U(y). Then t is certainly an open
covering of X.

Suppose now that /1, n} is a-subordinated to t. Then there
exist scalars yl, y,, with YI -< f for 11 i, so that

for all x, where I(x) {i n x U(y)}. Let

) f’
and let us check that ] f f’ < e. If x e X, then

f(x) f’(x) =(x)(f(x) y)

(,() + .())((x)f() )

su,() f(x) y, + - sup (x) y

Hence f f’ < , and that completes the proof.
In conclusion, it should be observed that, if , ,} in Lemma 2.3

is actually a peaked partition of unity, and if (x) 1 for i 1, n,
then formula (12) for f can be modified to

f(x)

In other words, f’ is the image of f under the projection from C(X) onto []
determined by the and the x.

3. Proof of Theorem 1.1

Since X is compact metric, it has a sequence . (n 1, 2, of finite
open coverings so that each element of has diameter < 1In. It follows
that, if is any open covering of X, then is a refinement of t for all suf-
ficiently large n.

Let us now construct the peaked partitions of unity . which span the re-
quired E. Let 1 be arbitrary; for instance, we can take 1 /11. Now
apply Lemmas 2.2 and 2.3 inductively to construct peaked partitions of unity

such that [] c [+] for all n, and is 1/n-subordinated to for n > 1.
Let E, [].
To see that (J: E is dense in C(X), let f e C(X) and e > 0. Pick a > 0

and an open covering of X as in Lemma 2.3, and then pick n 1 large
enough so that 1In a and . is a refinement of . Then ). is a-sub-
ordinated to t, so by Lemma 2.3 there is an fe [] with f f’ < .
Thut completes the proof.
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4. Concluding examples and remarks
We begin with a very simple lemma which is needed in the proofs of Ex-

ample 4.2 and Lemma 4.4.

LEMMA 4.1. If {1, "", ,} is a peaked partition of unity on X,
if (x) 1 for i 1, n, and iff e [], then

f(x) -lf(z,)(x)
for every x X.

Proof. By assumption, there are scalars al,"’, =, such that f
"=1. Evaluating this equation t x yields f(x) , and that
proves the lemma.
Our first example shows that Lemma 2.2 becomes flse if "e-subordinated"

is replaced by "subordinated".

EXAMPLE 4.2, If X is the interval [0, 1], there exists a peaked partition of
unity {1, , 8} on X and an open cover {U, V} of X, such that
there is no peaked partition of unity on X which is subordinated to t and such
that [] c [I,].

Proof. Let T be the triangle in R spanned by the vertices vl (1, 0, 0),
v. (0, 1, 0), and v3 (0, 0, 1). Let X - T be any continuous function
which maps [0, 1/2] homeomorphically onto a circular arc C c T, and such that
(X) {vl, v, vs}. For i 1, 2, 3, let

,(x) ((x)),, x x.
Then {1, ,, 3} is clearly a peaked partition of unity on X. Let
V [0, 1/2), V (1/2, 1], and t {V, V}.
Let {#1, b} be a peaked partition of unity on X which is sub-

ordinated to . For allj 1, m, pick z. e X so that #(z) 1. Let

J {j _< m # vanishes outside V},
g {j <_ m’jeJ}.

Suppose now that [] [I,]. Then

(x) -()(z),

for i 1, 2, 3 by Lemma 4.1, and hence

() 7-()(z), xeX.

Consider A X V.
Hence

If x e A, then x V, so #(x) > 0 implies that j e K.

(13) (x) ,(x)(z), x e A.

But if j e K, then vanishes outside U, so z e U, and hence (z) e C. But
now (13) implies that (A), which is a sub-arc of C, lies in the convex hull of
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the finite subset {(z.) j e K} of C, and that is impossible. This contradic-
tion completes the proof.
The proof of Theorem 1.1 could have been considerably simplified if, when-

ever E1 and E2 were peaked partition subspaces of C(X), there existed a
peaked partition subspace E3 of C(X) containing both E1 and E2. The fol-
lowing example shows that this is false. We use real scalars for convenience.

EXAMPLE 4.3. Let X [0, 2], and let $(x) 1/2(1 + sin x), (x)
1/2(1 sinx), (x) 1/2(1 + cosx), and.(x) 1/2(1 cosx) forxeX.
Then } and {bl b} are peaked partitions of unity on X, but
there is no peaked partition subspace E of X which contains both [] and [].

Proof. That and are peaked partitions of unity is clear. Suppose that
E is a subspace of C(X) containing both [] and []. Let f(x) sin x and
g(x) cos x for x e X, and let F [{f, g}]. Since f e [] and g e [I,], we have
F c E. Using Schwarz’s inequality, it is easily checked that

for any scalar a and , so that the unit sphere of F is a circle. Now if E is a
peaked partition subspace of C(X), then formula (1) in the introduction
implies that the unit sphere of E is the surface of a cube (n-dimensional), so
that the unit sphere of any subspace of E is a polyhedron. But a circle is not
a polyhedron, and this contradiction completes the proof.
The following lemma, which may have some independent interest, is used in

Example 4.5 below.

LEMMA 4.4. Let {En} be as in Theorem 1.1. If E, is spanned by the peaked
partition of unity ’ , (,,)}, and if (x. 1, then

D {x’ i 1,... k(n); n 1, 2,...}
is dense in X.

Proof. Suppose not. Then there is a non-empty open set U X which
contains no x. Let y e U, and pick f eC(X) so that f(y)= 1 and
fiX-U) O. Let us show that there is no g in any E such that
f g < 1/2, so that U:_ E. cannot be dense in C(X).
Suppose that there were such an n and g. Then

(14) g(x) x"(),_ (x) (x), x X

by Lemma 4.1. Now for i 1, k(n) we have x U, hence f(x) 0,
and therefore g(xT) < 1/2. By (14), it follows that g(x) < 1/2 for all x e X.
But then f(Y) g(Y)l > 1/2, hence f g > 1/2, and this contradiction com-
pletes the proof.
Our last example deals with differentiable functions on X [0, 1], but a

similar result is true if X is any compact differentiable manifold, with or with-
out boundary.
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EXAMPLE 4.5. If X [0, 1], then the spaces E, in Theorem 1.1 cannot all
consist offunctions having continuous derivatives on (0, 1).

Proof. Let us first show that, if {1, Ck} is a differentiable par-
tition of unity on (0, 1), and if (x) 1 for some i and some x e (0, 1), then
f’(x) 0 for allf e []" In fact, since has a maximum at x, (x) 0. But
if j i, then Cj(x) 0, so . has a minimum at x, and hence (x) 0.
Hence f’(x) 0 for all f e [].
Suppose now that the assertion of the example is false. Let f e E for some

n. Then f e Em for all m >_ n, so the previous paragraph and Lemma 4.4 imply
that f’ is 0 on a dense subset of (0, 1). Since f’ is assumed continuous, f’ is 0
on all of (0 1) and hence f is constant. So n=l E contains only constant
functions and thus cannot be dense. This contradiction completes the proof.
We conclude this paper by showing how the proof of Theorem 1.1 becomes

much simpler if the statement of the theorem is weakened in either of two
directions.

First, suppose the requirement that the sequenceE be increasing is dropped.
Then Lemma 2.2 becomes superfluous, and can simply be replaced in the proof
by Lemma 2.1. Moreover, Lemma 2.3 can be simplified, since we need only
consider subordinated--rather than -subordinated--partitions of unity.

Second, suppose we dropped the word "peaked" from the statement. Now
Lemma 2.1 becomes superfluous. Lemma 2.2 cannot now be eliminated, but
with the word "peaked" removed it becomes rather trivial" In fact, if
P {p, pro} is any partition of unity subordinated to , let

{pj’i <_ n,j <_ m}.

Then is also a partition of unity subordinated to , and [] [I,]. Note
that here I, is actually subordinated--rather than merely s-subordinated--to, so Lemma 2.3 can again be simplified.
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