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In this paper we show that every homotopy 3-sphere possesses a cell-de-
composition F which is in some respect especially simple"

THEOREM. IfM is a homotopy 3-sphere then there exists a cell-decomposition
F ofM with the following properties:

(i) r consists of one vertex E, r open 1-cells, E E r open 2-cells,
E E and one open 3-cell E.

(ii) There exist (nonsingular, polyhedral) diss V1, ..., Vr in M such
that "V for all i 1, r.

(iii) The disks V ..., V may be chosen such that the connected components
of V n V E i j, between i and r) are normal double arcs in which V and

oV pierce each other such that the interior Of each double arc lies in V n Vj,

one of its boundary points lies in E and the other one lies in E (see Fig. 1),
and such that V n V n V E (if i, j, k are pairwise different, between 1
and r).

It is a known fact that every closed 3-manifold Mpossesses a cell-decompo-
sition F with property (i) (this follows esily from results in Seifert-Threlfall
[4], see [2, Sec. 5]). If M is a homotopy 3-sphere, i.e., simply connected, then
this is equivalent to the fact that the 1-skeleton G U=I/ of r bounds a
"singular fan" in M (see [2, Sec. 6]). Now property (ii) of 1 means that
G is a wedge of trivial loops in M, and (iii) means that G bounds a singular
fan U=I V which is especially simple in the sense that its single leaves V
are nonsingular.
As Bing has shown in [1] it would be sufficient for a proof of the Poincr

coniecture if one could show that every polyhedral, simple closed curve in M
lies in . 3-cell in M, or that the 1-skeleton G of some cell-decomposition F of
M lies in a 3-cell in M3. The property (ii) of F means that every single closed
curve/ c G lies not only in a 3-cell V (which may be obtained as small
neighborhood of V) in M but moreover is unknotted in that 3-cell V. So
one may hope that the above theorem could be used as a tool for proving the
Poincar coniecture or for deriving further partial results on homotopy
3-spheres.

Proof of the theorem
1. lreliminaries. We choose the semilinear standpoint as described in

[3, Sec. 3], i.e., we assume for convenience that M is piecewise rectilinear
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FIG.I

polyhedron in a euclidean space n; and all point sets denoted by capital
roman letters are supposed to be piecewise rectilinear polyhedral point sets in
(", etc.

2. Decomposing a singular fan Vz by arcs BZ. We start with a cell-de-
composition r of M into one vertex E r elements, EI, Er, of di-
mension 1, r1 elements, EI, Er, of dimension 2, and one open 3-cell
E (the existence of F has been proved in [2, Sec. 5]). We consider a singu-
lar fan, defined by a map V’ ---> M with ( V’r) denoted by V, such that
the following holds (the existence of " has been proved in [2, Sec. 6]):

(i) V’" consists of r disks V’, V’"r (see Fig. 2), possessing one
common boundary point E’ and otherwise being pairwise disjoint; V’ is dis-
joint from M

(ii) "V is the 1-skeleton G
(iii) The only singularities of V2z (with respect to i’) are pairwise disjoint,

normal, double arcs A, A such that each of the two connected compo-
nents A’.1, a" Fi. 2) possesses just one boundary point in
T’2 ,0 " of i’-(A) (see
i ,z and otherwise lies in Vz (for allj 1, s).
If s 0 then we may take F for F and the theorem is proved. So, we may

assume that s > 0.
We choose a small neighborhood T of G] in M. There is a connected com-

ponent V of ’-( V n T) (see Fig. 2) that is a neighborhood of V’ in V’";
the other connected components of .-1( V2z n T) are neighborhoods of the

I1 o ’2 Ill 0 ’3points A n V and A. n V n V’. Obviously, T is a Heegaard-handle-
body in M (compare [3, Sec. 2]). For brevity we denote -(V V) by

’2 V2 ’2V,, and ( V) by ,.
Now we choose pairwise disjoint arcs B’, B’ in V’. such that (see

Fig. 2).
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FIG.2 "(Vz=nTz) is indicated by hatching
-I W. IImnVz=) is for brevity denoted by W

(a) "B’ B’ n "V’, (for allk 1, t);
(b) B’ is disjoint from the A.’s, .a-"’s, and ’x, is disjoint from

’-a(V n T]);
(c) each connected component of V’ U=a B’ contains at most two of

the Ba’s its boundary;
(d) each connected component of V U=B contas at most one of

11 P2 111 12the points’A nV,, A nV,(j 1,- ,s).
2 t2We denote t(B) t(V,) t(V,) by B V, V, respectively, and

U= S by B.
3. Projecting the arcs B into the Heegaard-surface "T The arcs B

decompose V, into nonsingular disks. Hence, if we add small neighborhoods
B of the B’s to the handlebody T, then we get a handlebody with more
handles such that "each handle spans a nonsingular disk"; (i.e., we can find a
complete system of meridiun circles and a corresponding "canonical" system of
longitude circles in the boundary of the new handlebody such that each longi-
tude bounds a nonsingular disk in M and intersects just one of the meridians,
and that in just one point). But the new handlebody T -t- [J= B is not
necessarily a Heegaard-handlebody in M. In order to overcome this difficulty
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FIG3

we shll add some more hndles to the handlebody in such a way that we ob-
tain a Heegaard-handlebody with the desired properties.
We choose cell-decomposition F of M which is dual to I such that the

1-skeleton G of r is disioint from T and from the arcs B. Let T be small
neighborhood of G in M. Now M (T + T), denoted by H, may be
represented as cartesian product "T 11, where 11 means an interval
0 =< x =< 1 such that p 0 p for llp e’T and such that’T 1 "T.
We may assume that the product representation of H is chosen such that

B "projects normally into "T", i.e., such that the following holds"

(A) if p is a point in "T then p I intersects B at most in two points;
(B) if p is point in "B then p I is disioint from B;
(C) if p0 I (p0 e "T) intersects B in two points p0 a, p0 b (see

Fig. 3), where 1 > a > b > 0, and if N, N are small neighborhoods of
p0 a and p0 X b, respectively, in B, thenN "overcrosses" N, i.e., N pierces
the "projection cylinder" of N (which is the union of all those intervals
p [0, c] with p e’T and p c e N).
We consider the projection cylinder K of B, i.e., the union of ll those

Bintervals p [0, c] with p e T nd p c e (where c may be zero such that
the interval degenerates to a point in "B). Correspondingly we denote by
K the proiection cylinder of B (k 1, t). Let pl, p be those
points in "T for which p I intersects B in two points, say p at, pt bt
with 1 > at > b > 0. We call the points pt at the overcrossings points, and
pt X bz the undercrossing points of B1, and the intervals p [0, b] the double
arcs of the proiection cylinder K2. We may further ssume that

(D) pl, p do not lie in V..
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4. Decomposing the projection cylinder K by arcs C. We choose pairwise
disjoint, small neighborhoods N of the points p at (l 1, u) in B
see Fig. 4) then we choose small neighborhoodsL of the double arcsp [0, b]

in the projection cylinders of the arcs N. Now -(’L n K2) is an arc C
(and "L C is an arc in "T). Moreover,-(g U= n) consists oft
pirwise disjoint disks J (k 1, t) where J -(K U= L).

5. Adding handles B and C to the handlebody T3. We choose small,
pairwise disjoint neighborhoods B (k 1,..., t) of the arcs B and
C (1 1, u; see Fig. 4) of the arcs C in M T. Then we consider
the handlebody T -k Ut=l B W U=I C, denoted by T. The genus r of T
isr r + t--ku.

,2 -1 BU= n )]We denote the ri + connected components of [V,
t2 2(see Fig. 2) by Vz,z,..., V,+t their images under , denoted by.., VH,,+t, re nonsingulr disks. Further we denote the disks

(L- C) (1 1, ..., u) by VH,+t+. The boundaries V,
(i 1, r) of the disks Vu, re pirwise disjoint (because of (D) in
Sec. 3).

6. Choosing suitable meridian disks in T Now we choose r + pirwise
disjoint meridian disks W ,... W,+, in T (compare Fig. 2) such that for
allm 1,...,rt

(a) W intersects V, in just one piercing point and is disjoint from
VH,ifiCm, i 1,...,r;
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() W is disjoint from the Bs (k 1,..., t) and from the C’s
(l 1, u) and intersects "K n "T at most in isolated piercing points.

Further we denote one of the two connected components of "C n "T by
Wrx++ (for all 1, u; see Fig. 4). Then the disks W, W form
a complete system of meridian disks of T, i.e., T (J=l W is an open 3-cell
C; moreover, the "W’s and the Vx.s are two "canonical" systems of
1-spheres in "T, i.e., we have

"W a "V. one piercing point if j i
(,)

--0 if

(i,j= 1,...,r).

7. T is a Heegaard-handlebody. We prove that M "T is a handle-
body by constructing a complete system of meridian disks in M "T.
We choose a complete system, Fg., F, of meridian disks in the handle-

body M Tx such that for all i 1, r the following holds"

(1) FnH’ "F XlI;
(2) "F is disjoint from the arc "L n "T (l 1, u) and from ’B;
(3) "F intersects "K’n "T and the "W’s (j 1, r) at most in iso-

lated piercing points;
(4) the neighborhoods B, C of B, C, respectively, are small with re-

spect to F.
Now

Me- (T + g + UL1F)
is an open 3-cell, since T + Kg. + ULF collapses to T + UL1 F (definition
see [5, p. 201]).
The disks F,. Fg.r, V.+,+, Vn.+,+ are pairwe disjoint

and disjot from the "C’s; we denote their union by F. Further we denote
the disks J "T (k 1, t) by E Obviously T + K + U=FT + F + U=E.
We remove, step by step, the intersections of F with the E’s and with

8the "B s in the following way"
If D is a connected component of F nE (see Fig. 5) then D q X [0, c]

.Tfor some pointqe E.n xwhereq X ce E,n B. Thenwe may finda
connected component D qx X [0, cx] of FnE such that a connected
component, say Q, ofE D is disjoint from F. Then we choose a small
neighborhood Qa of O in M "T (see Fig. 5); Q n F is a disk D, containg
D, such that -(’D T) consists of two disjoint arcs D, D, "parallel"
to Di. Now "Q (’T + "D) consists of three disjoint open disks, such that
one of them, denoted by Q, has a boundary which is the union of D and an
open arc in "T, and such that a second one, denoted by Q, has a boundary
which is the union ofD and an open arc in "T (see Fig. 5). Finally let R
be that connected component of F n B that contains qx X c. Now we re-
place F by
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F,> [F-- (D+ R)] + ) +
Obviously F) is the union of r + u pairwise disjoint disks such that
M (T --!- Fl) --I- U=I E.) is an open 3-cell; but the number of intersection
arcs in Fl) n LI=I Ei is one less than the corresponding number of F.
We repeat the procedure described in the above paragraph as often as pos-

sible, and by this we obtain a union F.) of r 3- u pairwise disjoint disks, de-
which are disjoint from the disks E. (/c 1, t)noted by E.t+, E.r,

such that M (T 3- U_E) is an open 3-cell, and "E. E. n T
2E. n T3. That means that M T is a handlebody and that the E. s

form a complete system of meridian disks ofM Ta; moreover, the meridian
M .Tcircles E. of intersect the meridian circles W of T at most in

isolated piercing points.

8. Constructing I’. We take for I’ a cell-decomposition of M, corre-
sponding to the Heegaard-diagram defined by "T and by the "E.’s and the

2W s:
For the only vertex of F we choose a point E in the open 3-cell

"T 13_ W. For the 1-dimensional elements of F we choose open arcs
E, Er in "T such that "E E,
EnW one piercing point if i =j (for all i,j 1, ...,r)

=0 if i#j

and T may be regarded as a neighborhood of O.=x ’ in M. For the
2-dimensional elements of 1’ we choose open disks E, E in M Uj= Ej-
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such that E n (M T) E,i (as constructed in the last section), and
such that E nT is an open annulus E- with "E}rin "T= "E,,
ET (J=l E. where E. lies as often in "Ei as E, intersects W. (if

W., then ET is just the vertex E). ForE, does not intersect any T
the only 3-dimensional element of F we choose the open 3-cell M (J=l/.
Now F fulfills condition (i) of the theorem.

2 -I9. Constructing the V s. It remains to show that the E s bound non-
singular disks V in M as demanded.

-1First we choose annuli VITi in T such that VIT Vi,i E (this is
possible because of (,) in Sec. 6); we may choose the VTS such that
VIIT T,and Viv Vv ifj i (for all i,j 1, r).
Next we deform V, isotopically into a disk VH,, in such a way that

V,y remains fixed and -( V n T) is deformed within T, such that
VH,i n Vvi ; (this is possible since -( V, n "T) is disjoint from one
of the boundary curves, namely "VT n’T "VH,, of VHv) We do this
deformation for all i 1, ., r (where it is permissible to introduce new inter-
sections between different VT, s).

V,+ viby H(i= 1,...,r).Then we denote the nonsingular disks V V
The V’s fulfill condition (ii) of the theorem.

In order to fulfill condition (iii) of the theorem we normalize the inter-
sections V nV (j i) by a procedure as described in [2, Sec. 6, Steps
1 to 4]. This does not destroy the nonsingularity of the single VH’s, and we

2obtain in this way the demanded V s.
This finishes the proof of the theorem.
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