TRIVIAL LOOPS IN HOMOTOPY 3-SPHERES1

ΒY

WOLFGANG HAKEN

In this paper we show that every homotopy 3-sphere possesses a cell-decomposition Γ which is in some respect especially simple:

THEOREM. If M^3 is a homotopy 3-sphere then there exists a cell-decomposition Γ of M^3 with the following properties:

(i) Γ consists of one vertex E^0 , r open 1-cells, E_1^1 , ..., E_r^1 , r open 2-cells, E_1^2 , ..., E_r^2 , and one open 3-cell E^3 .

(ii) There exist (nonsingular, polyhedral) disks V_1^2 , \cdots , V_r^2 in M^3 such that $V_i^2 = \bar{E}_i^1$ for all $i = 1, \cdots, r$.

(iii) The disks V_1^2, \dots, V_r^2 may be chosen such that the connected components of $V_i^2 \cap V_j^2 - E^0$ ($i \neq j$, between 1 and r) are normal double arcs in which V_i^2 and V_j^2 pierce each other such that the interior of each double arc lies in ${}^{\circ}V_i^2 \cap {}^{\circ}V_j^2$, one of its boundary points lies in E_i^1 , and the other one lies in E_j^1 (see Fig. 1), and such that $V_i^2 \cap V_j^2 \cap V_k^2 = E^0$ (if i, j, k are pairwise different, between 1 and r).

It is a known fact that every closed 3-manifold M^3 possesses a cell-decomposition Γ with property (i) (this follows easily from results in Seifert-Threlfall [4], see [2, Sec. 5]). If M^3 is a homotopy 3-sphere, i.e., simply connected, then this is equivalent to the fact that the 1-skeleton $G^1 = \bigcup_{i=1}^r \overline{E}_i^1$ of Γ bounds a "singular fan" in M^3 (see [2, Sec. 6]). Now property (ii) of Γ means that G^1 is a wedge of trivial loops in M^3 , and (iii) means that G^1 bounds a singular fan $\bigcup_{i=1}^r V_i^2$ which is especially simple in the sense that its single leaves V_i^2 are nonsingular.

As Bing has shown in [1] it would be sufficient for a proof of the Poincaré conjecture if one could show that every polyhedral, simple closed curve in M^3 lies in a 3-cell in M^3 , or that the 1-skeleton G^1 of some cell-decomposition Γ of M^3 lies in a 3-cell in M^3 . The property (ii) of Γ means that every single closed curve $\overline{E}_i^1 \subset G^1$ lies not only in a 3-cell V_i^3 (which may be obtained as a small neighborhood of V_i^2) in M^3 but moreover is unknotted in that 3-cell V_i^3 . So one may hope that the above theorem could be used as a tool for proving the Poincaré conjecture or for deriving further partial results on homotopy 3-spheres.

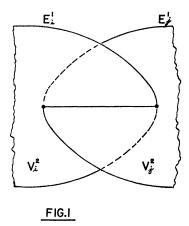
Proof of the theorem

1. Preliminaries. We choose the semilinear standpoint as described in [3, Sec. 3], i.e., we assume for convenience that M^3 is a piecewise rectilinear

Received July 15, 1966.

¹ This research was supported by grants from the National Science Foundation.

² X denotes the boundary, \overline{X} and \overline{X} the closure, and X the interior of X.



polyhedron in a euclidean space \mathfrak{S}^n ; and all point sets denoted by capital roman letters are supposed to be piecewise rectilinear polyhedral point sets in \mathfrak{S}^n , etc.

2. Decomposing a singular fan V_1^2 by arcs B_k^1 . We start with a cell-decomposition Γ_I of M^3 into one vertex E_I^0 , r_I elements, E_{II}^1 , \cdots , $E_{Ir_I}^1$, of dimension 1, r_I elements, E_{II}^2 , \cdots , $E_{Ir_I}^2$, of dimension 2, and one open 3-cell E_I^3 ; (the existence of Γ_I has been proved in [2, Sec. 5]). We consider a singular fan, defined by a map $\zeta: V_I'^2 \to M^3$ with $\zeta(V_I'^2)$ denoted by V_I^2 , such that the following holds (the existence of ζ has been proved in [2, Sec. 6]):

(i) $V_1'^2$ consists of r_1 disks $V_{11}'^2$, \cdots , $V_{1r_1}'^2$ (see Fig. 2), possessing one common boundary point $E_1'^0$ and otherwise being pairwise disjoint; $V_1'^2$ is disjoint from M^3 .

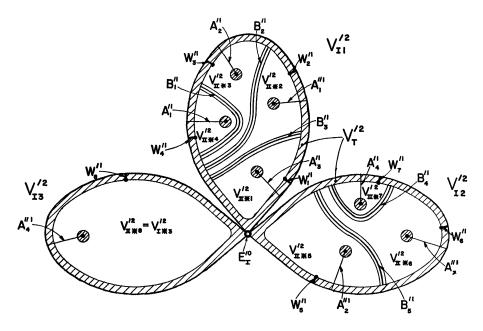
(ii) V_{I}^{2} is the 1-skeleton $G_{I}^{1} = \bigcup_{i=1}^{r_{I}} \bar{E}_{r_{I}}^{1}$ of Γ_{I} .

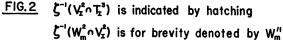
(iii) The only singularities of V_1^2 (with respect to ζ) are pairwise disjoint, normal, double arcs A_1^1, \dots, A_s^1 such that each of the two connected components A'_j, A''_j of $\zeta^{-1}(A_j^1)$ (see Fig. 2) possesses just one boundary point in $V'_1^2 - E'_1^0$ and otherwise lies in V'_1^2 (for all $j = 1, \dots, s$).

If s = 0 then we may take Γ_{I} for Γ and the theorem is proved. So we may assume that s > 0.

We choose a small neighborhood T_1^3 of G_1^1 in M^3 . There is a connected component $V_T'^2$ of $\zeta^{-1}(V_1^2 \cap T_1^3)$ (see Fig. 2) that is a neighborhood of $V_1'^2$ in $V_1'^2$; the other connected components of $\zeta^{-1}(V_1^2 \cap T_1^3)$ are neighborhoods of the points $A_j'^1 \cap {}^{\circ}V_1'^2$ and $A_j''^1 \cap {}^{\circ}V_1'^2$. Obviously, T_1^3 is a Heegaard-handle-body in M^3 (compare [3, Sec. 2]). For brevity we denote $-(V_1'^2 - V_T'^2)$ by $V_{1'^2}'$, and $-(V_{1'}'^2 - V_T'^2)$ by $V_{1'^4}'$.

Now we choose pairwise disjoint arcs B'_1, \dots, B'_t in V'_{1^*} such that (see Fig. 2):





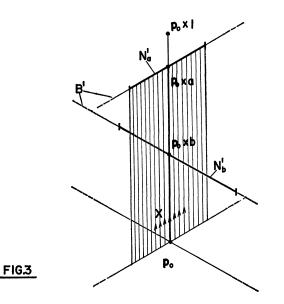
(a) $B_k^{\prime 1} = B_k^{\prime 1} \cap V_{1^*}^{\prime 2}$ (for all $k = 1, \dots, t$); (b) $B_k^{\prime 1}$ is disjoint from the $A_j^{\prime 1}$'s, $A_j^{\prime 1}$'s, and $B_k^{\prime 1}$ is disjoint from

 $\zeta^{-1}(V_1^2 \cap T_1^3);$ (c) each connected component of $V_{1^*}^{\prime 2} - \bigcup_{k=1}^t B_k^{\prime 1}$ contains at most two of the $B_k^{\prime 1}$'s in its boundary;

(d) each connected component of $V_{I^*}^{\prime 2} - \bigcup_{k=1}^t B_k^{\prime 1}$ contains at most one of the points $A_j^{\prime 1} \cap V_{I^*}^{\prime 2}$, $A_j^{\prime \prime 1} \cap V_{I^*}^{\prime 2}$ $(j = 1, \dots, s)$.

We denote $\zeta(B_k^{\prime 1})$, $\zeta(V_{1^*i}^{\prime 2})$, $\zeta(V_{1^*}^{\prime 2})$ by B_k^1 , $V_{1^*i}^2$, $V_{1^*}^2$, respectively, and $\bigcup_{k=1}^t B_k^1$ by B^1 .

3. Projecting the arcs B_k^1 into the Heegaard-surface T_1^3 . The arcs B_k^1 decompose V_{1*}^2 into nonsingular disks. Hence, if we add small neighborhoods B_k^3 of the B_k^1 's to the handlebody T_1^3 , then we get a handlebody with t more handles such that "each handle spans a nonsingular disk"; (i.e., we can find a complete system of meridian circles and a corresponding "canonical" system of longitude circles in the boundary of the new handlebody such that each longitude bounds a nonsingular disk in M^3 and intersects just one of the meridians, and that in just one point). But the new handlebody $T^3 + \bigcup_{k=1}^t B_k^3$ is not necessarily a Heegaard-handlebody in M^3 . In order to overcome this difficulty



we shall add some more handles to the handlebody in such a way that we obtain a Heegaard-handlebody with the desired properties.

We choose a cell-decomposition $\Gamma_{\$}$ of M^3 which is dual to Γ such that the 1-skeleton $G_{\1 of $\Gamma_{\$}$ is disjoint from T_1^3 and from the arcs B_k^1 . Let $T_{\3 be a small neighborhood of $G_{\1 in M^3 . Now $M^3 - {}^{\circ}(T_1^3 + T_{\$}^3)$, denoted by H^3 , may be represented as cartesian product $T_1^3 \times I^1$, where I^1 means an interval $0 \le x \le 1$ such that $p \times 0 = p$ for all $p \in T_1^3$ and such that $T_1^3 \times 1 = T_{\3 .

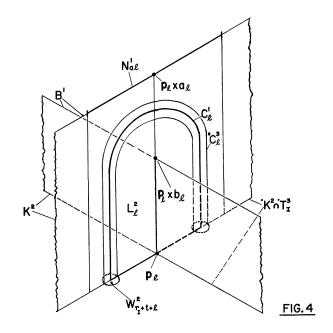
We may assume that the product representation of H^3 is chosen such that B^1 "projects normally into T_1^3 ", i.e., such that the following holds:

(A) if p is a point in T_{I}^{3} then $p \times I^{1}$ intersects B^{1} at most in two points; (B) if p is a point in B^{1} then $p \times {}^{\circ}I^{1}$ is disjoint from B^{1} ;

(C) if $p_0 \times \tilde{I}^1$ ($p_0 \epsilon T_1^3$) intersects B^1 in two points $p_0 \times a$, $p_0 \times b$ (see Fig. 3), where 1 > a > b > 0, and if N_a^1 , N_b^1 are small neighborhoods of $p_0 \times a$ and $p_0 \times b$, respectively, in B^1 , then N_a^1 "overcrosses" N_b^1 , i.e., N_b^1 pierces the "projection cylinder" of N_a^1 (which is the union of all those intervals $p \times [0, c]$ with $p \in T_1^3$ and $p \times c \in N_a^1$).

We consider the projection cylinder K^2 of B^1 , i.e., the union of all those intervals $p \times [0, c]$ with $p \in T_1^3$ and $p \times c \in B^1$ (where c may be zero such that the interval degenerates to a point in B^1). Correspondingly we denote by K_k^2 the projection cylinder of B_k^1 ($k = 1, \dots, t$). Let p_1, \dots, p_u be those points in T_1^3 for which $p_l \times I^1$ intersects B^1 in two points, say $p_l \times a_l$, $p_l \times b_l$ with $1 > a_l > b_l > 0$. We call the points $p_l \times a_l$ the overcrossings points, and $p_l \times b_l$ the undercrossing points of B^1 , and the intervals $p_l \times [0, b_l]$ the double arcs of the projection cylinder K^2 . We may further assume that

(D) p_1, \cdots, p_u do not lie in $V_{I^*}^2$.



4. Decomposing the projection cylinder K^2 by arcs C_l^1 . We choose pairwise disjoint, small neighborhoods N_{al}^1 of the points $p_l \times a_l$ $(l = 1, \dots, u)$ in B^1 (see Fig. 4); then we choose small neighborhoods L_l^2 of the double arcs $p_l \times [0, b_l]$ in the projection cylinders of the arcs N_{al}^1 . Now $(L_l^2 \cap K^2)$ is an arc C_l^1 (and $L_l^2 - C_l^1$ is an arc in T_l^3). Moreover, $(K^2 - \bigcup_{l=1}^u L_l^2)$ consists of t pairwise disjoint disks J_k^2 $(k = 1, \dots, t)$ where $J_k^2 = (K_k^2 - \bigcup_{l=1}^u L_l^2)$.

5. Adding handles B_k^3 and C_l^3 to the handlebody T_1^3 . We choose small, pairwise disjoint neighborhoods B_k^3 $(k = 1, \dots, t)$ of the arcs B_k^1 and C_l^3 $(l = 1, \dots, u; \text{see Fig. 4})$ of the arcs C_l^1 in $M^3 - {}^\circ T_1^3$. Then we consider the handlebody $T_1^3 + \bigcup_{k=1}^t B_k^3 + \bigcup_{l=1}^u C_l^3$, denoted by T^3 . The genus r of T^3 is $r = r_1 + t + u$.

We denote the $r_{I} + t$ connected components of $[V_{1^*}^{\prime 2} - \bigcup_{k=1}^{t} \zeta^{-1}(B_k^3 \cap V_{1^*}^2)]$ (see Fig. 2) by $V_{1I^*1}^{\prime 2}, \dots, V_{1I^*r_{I}+t}^{\prime 2}$; their images under ζ , denoted by $V_{1I*1}^{2}, \dots, V_{1I^*r_{I}+t}^{2}$, are nonsingular disks. Further we denote the disks $[(L_l^2 - C_l^3) \ (l = 1, \dots, u)]$ by $V_{1I^*r_{I}+t+l}^2$. The boundaries V_{1I*i}^2 $(i = 1, \dots, r)$ of the disks V_{1I*i}^2 are pairwise disjoint (because of (D) in Sec. 3).

6. Choosing suitable meridian disks in T^3 . Now we choose $r_1 + t$ pairwise disjoint meridian disks $W_1^2, \dots, W_{r_1+t}^2$ in T_1^3 (compare Fig. 2) such that for all $m = 1, \dots, r_1 + t$

(α) W_m^2 intersects V_{II*m}^2 in just one piercing point and is disjoint from $V_{II*i}^2 \in m, i = 1, \dots, r$;

(β) W_m^2 is disjoint from the B_k^3 's $(k = 1, \dots, t)$ and from the C_l^3 's $(l = 1, \dots, u)$ and intersects $K^2 \cap T_1^3$ at most in isolated piercing points.

Further we denote one of the two connected components of $C_l^3 \cap T_1^3$ by $W_{r_1+i+l}^2$ (for all $l = 1, \dots, u$; see Fig. 4). Then the disks W_1^2, \dots, W_r^2 form a complete system of meridian disks of T^3 , i.e., $^{\circ}T^3 - \bigcup_{i=1}^r W_i^2$ is an open 3-cell C^3 ; moreover, the W_i^2 's and the V_{11*i}^2 's are two "canonical" systems of 1-spheres in T^3 , i.e., we have

(*)
$$\begin{array}{c} W_i^2 \cap V_{II*j}^2 = \text{ one piercing point } \text{ if } j = i \qquad (i, j = 1, \cdots, r). \\ = \emptyset \qquad \text{ if } j \neq i \end{array}$$

7. T^3 is a Heegaard-handlebody. We prove that $M^3 - {}^{\circ}T^3$ is a handlebody by constructing a complete system of meridian disks in $M^3 - {}^{\circ}T^3$.

We choose a complete system, F_1^2 , \cdots , $F_{r_1}^2$, of meridian disks in the handlebody $M^3 - {}^{*}T_1^3$ such that for all $i = 1, \cdots, r_1$ the following holds:

(1) $F_i^2 \cap H^3 = F_i^2 \times I^1;$

(2) F_i^2 is disjoint from the arcs $L_i^2 \cap T_i^3$ $(l = 1, \dots, u)$ and from B^1 ;

(3) F_i^2 intersects $K_i^2 \cap T_i^3$ and the W_j^2 's $(j = 1, \dots, r)$ at most in isolated piercing points;

(4) the neighborhoods B_k^3 , C_l^3 of B_k^1 , C_l^1 , respectively, are small with respect to F_i^2 .

Now

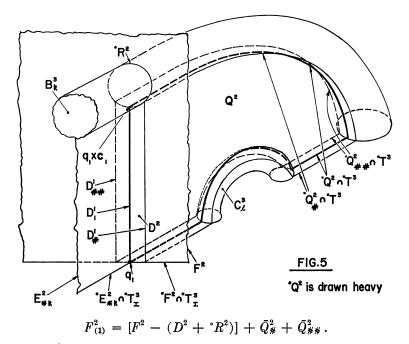
$$M^{3} - (T^{3} + K^{2} + \bigcup_{i=1}^{r_{I}} F_{i}^{2})$$

is an open 3-cell, since $T^3 + K^2 + \bigcup_{i=1}^{r_1} F_i^2$ collapses to $T_1^3 + \bigcup_{i=1}^{r_1} F_i^2$ (definition see [5, p. 201]).

The disks $F_1^2, \dots, F_{r_1}^2, V_{11*r_1+t+1}^2, \dots, V_{11*r_1+t+u}^2$ are pairwise disjoint and disjoint from the ${}^{*}C_i^3$'s; we denote their union by F^2 . Further we denote the disks $J_k^2 - {}^{*}T^3$ $(k = 1, \dots, t)$ by E_{*k}^2 . Obviously $T^3 + K^2 + \bigcup_{i=1}^r F_i^2 =$ $T^3 + F^2 + \bigcup_{k=1}^t E_{*k}^2$.

We remove, step by step, the intersections of F^2 with the E^2_{*k} 's and with the $^{\circ}B^3_k$'s in the following way:

If D^1 is a connected component of $F^2 \cap E^2_{*k}$ (see Fig. 5) then $D^1 = q \times [0, c]$ for some point $q \in E^2_{*k} \cap T^1_1$ where $q \times c \in E^2_{*k} \cap B^3_k$. Then we may find a connected component $D^1_1 = q_1 \times [0, c_1]$ of $F^2 \cap E^2_{*k}$ such that a connected component, say Q^2 , of $E^2_{*k} - D^1_1$ is disjoint from F^2 . Then we choose a small neighborhood Q^3 of \bar{Q}^2 in $M^3 - {}^{\circ}T^3$ (see Fig. 5); $Q^3 \cap F^2$ is a disk D^2 , containing D^1_1 , such that $-(D^2 - T^3)$ consists of two disjoint arcs D^1_* , D^1_{**} , "parallel" to D^1_1 . Now $Q^3 - (T^3 + D^2)$ consists of three disjoint open disks, such that one of them, denoted by Q^2_{**} , has a boundary which is the union of D^1_* and an open arc in T^3 , and such that a second one, denoted by Q^2_{**} , has a boundary which is the union of D^1_{**} and an open arc in T^3 (see Fig. 5). Finally let R^2 be that connected component of $F^2 \cap B^3_k$ that contains $q_1 \times c_1$. Now we replace F^2 by



Obviously $F_{(1)}^2$ is the union of $r_1 + u$ pairwise disjoint disks such that $M^3 - (T^3 + F_{(1)}^2 + \bigcup_{k=1}^t E_{*k}^2)$ is an open 3-cell; but the number of intersection arcs in $F_{(1)}^2 \cap \bigcup_{k=1}^t E_{*k}^2$ is one less than the corresponding number of F^2 .

We repeat the procedure described in the above paragraph as often as possible, and by this we obtain a union $F_{(*)}^2$ of $r_1 + u$ pairwise disjoint disks, denoted by E_{*t+1}^2 , \cdots , E_{*r}^2 , which are disjoint from the disks E_{*k}^2 $(k = 1, \dots, t)$ such that $M^3 - (T^3 + \bigcup_{i=1}^r E_{*i}^2)$ is an open 3-cell, and $E_{*i}^2 = E_{*i}^2 \cap T^3 = E_{*i}^2 \cap T^3$. That means that $M^3 - {}^{\circ}T^3$ is a handlebody and that the E_{*i}^2 's form a complete system of meridian disks of $M^3 - {}^{\circ}T^3$; moreover, the meridian circles E_{*i}^2 of T^3 at most in isolated piercing points.

8. Constructing Γ . We take for Γ a cell-decomposition of M^3 , corresponding to the Heegaard-diagram defined by T^3 and by the E^2_{*i} 's and the $W^2_{i'}$'s:

For the only vertex of Γ we choose a point E^0 in the open 3-cell ${}^{\circ}T^3 - \bigcup_{i=1}^r W_i^2$. For the 1-dimensional elements of Γ we choose open arcs E_1^1, \cdots, E_r^1 in ${}^{\circ}T^3$ such that $E_i^1 = E^0$,

$$E_i^1 \cap W_j^2$$
 = one piercing point if $i = j$ (for all $i, j = 1, \dots, r$)
= \emptyset if $i \neq j$

and T^3 may be regarded as a neighborhood of $\bigcup_{i=1}^r \bar{E}_i^1$ in M^3 . For the 2-dimensional elements of Γ we choose open disks E_1^2 , \cdots , E_r^2 in $M^3 - \bigcup_{j=1}^r \bar{E}_j^1$

such that $E_i^2 \cap (M^3 - {}^{\circ}T^3) = E_{*i}^2$ (as constructed in the last section), and such that $E_i^2 \cap {}^{\circ}T^3$ is an open annulus E_{Ti}^2 with $E_{Ti}^2 \cap {}^{\circ}T^3 = E_{*i}^2$, $E_{Ti}^2 \cap {}^{\circ}T^3 \subset \bigcup_{j=1}^r \bar{E}_j^1$ where E_j^1 lies as often in E_{Ti}^2 as E_{*i}^2 intersects W_j^2 (if E_{*i}^2 does not intersect any W_j^2 , then $E_{Ti}^2 \cap {}^{\circ}T^3$ is just the vertex E^0). For the only 3-dimensional element of Γ we choose the open 3-cell $M^3 - \bigcup_{i=1}^r \bar{E}_i^2$.

Now Γ fulfills condition (i) of the theorem.

9. Constructing the V_i^2 's. It remains to show that the \bar{E}_i^1 's bound nonsingular disks V_i^2 in M^3 as demanded.

First we choose annuli $V_{IIII_i}^2$ in T^3 such that $V_{IIII_i}^2 = V_{II*i}^2 + \bar{E}_i^1$ (this is possible because of (*) in Sec. 6); we may choose the V_{IIT}^2 's such that $V_{IITi}^2 \subset T^3$, and $V_{IITi}^2 \cap V_{IITj}^2 = E^0$ if $j \neq i$ (for all $i, j = 1, \dots, r$).

Next we deform $V_{II^*i}^2$ isotopically into a disk $V_{III^*i}^2$, in such a way that $V_{II^*i}^2 - {}^{\circ}T^3$ remains fixed and $(V_{II^*i}^2 \cap {}^{\circ}T^3)$ is deformed within T^3 , such that $V_{III^*i}^2 \cap V_{IITi}^2 = \emptyset$; (this is possible since $(V_{II^*i}^2 \cap ^{\circ}T^3)$ is disjoint from one of the boundary curves, namely $V_{IITi}^2 \cap ^{\circ}T^3 = V_{II^*i}^2$, of V_{IITi}^2). We do this deformation for all $i = 1, \dots, r$ (where it is permissible to introduce new intersections between different V_{IIT*i}^2 's).

Then we denote the nonsingular disks $V_{III^*i}^2 + V_{III^*i}^2$ by $V_{III^i}^2$ ($i = 1, \dots, r$). The V_{IIIi}^2 's fulfill condition (ii) of the theorem.

In order to fulfill condition (iii) of the theorem we normalize the intersections $V_{111i}^2 \cap V_{111i}^2$ $(j \neq i)$ by a procedure as described in [2, Sec. 6, Steps 1 to 4]. This does not destroy the nonsingularity of the single V_{111i}^2 , and we obtain in this way the demanded V_i^2 's.

This finishes the proof of the theorem.

BIBLIOGRAPHY

- 1. R. H. BING, Necessary and sufficient conditions that a 3-manifold be S³, Ann. of Math. (2), vol. 68 (1958), pp. 17-37.
- 2. W. HAKEN, On homotopy 3-spheres, Illinois J. Math., vol. 10 (1966), pp. 159-180.
- 3. , Some results on surfaces in 3-manifolds, Studies in modern topology, Math. Assoc. Amer. Studies, vol 5.
- 4. H. SEIFERT AND W. THRELFALL, Lehrbuch der Topologie, Leipzig, B. G. Teubner, 1934.
- 5. E. C. ZEEMAN, The Poincaré conjecture for $n \geq 5$, Topology of 3-manifolds and related topics, Englewood Cliffs, Prentice Hall, 1962, pp. 198-204.

INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY UNIVERSITY OF ILLINOIS URBANA, ILLINOIS