TRIVIAL LOOPS IN HOMOTOPY 3-SPHERES ${ }^{1}$

BY
Wolfgang Haken

In this paper we show that every homotopy 3 -sphere possesses a cell-decomposition Γ which is in some respect especially simple:

Theorem. If M^{3} is a homotopy 3 -sphere then there exists a cell-decomposition Γ of M^{3} with the following properties:
(i) Γ consists of one vertex E^{0}, r open 1-cells, $E_{1}^{1}, \cdots, E_{r}^{1}, r$ open 2-cells, $E_{1}^{2}, \cdots, E_{r}^{2}$, and one open 3-cell E^{3}.
(ii) There exist (nonsingular, polyhedral) disks $V_{1}^{2}, \cdots, V_{r}^{2}$ in M^{3} such that ${ }^{2} \cdot V_{i}^{2}=\bar{E}_{i}^{1}$ for all $i=1, \cdots, r$.
(iii) The disks $V_{1}^{2}, \cdots, V_{r}^{2}$ may be chosen such that the connected components of $V_{i}^{2} \cap V_{j}^{2}-E^{0}(i \neq j$, between 1 and $r)$ are normal double arcs in which V_{i}^{2} and V_{j}^{2} pierce each other such that the interior of each double arc lies in ${ }^{\circ} V_{i}^{2} \mathrm{n}^{\circ} V_{j}^{2}$, one of its boundary points lies in E_{i}^{1}, and the other one lies in E_{j}^{1} (see Fig. 1), and such that $V_{i}^{2} \cap V_{j}^{2} \cap V_{k}^{2}=E^{0}$ (if i, j, k are pairwise different, between 1 and r).

It is a known fact that every closed 3-manifold M^{3} possesses a cell-decomposition Γ with property (i) (this follows easily from results in Seifert-Threlfall [4], see [2, Sec. 5]). If M^{3} is a homotopy 3 -sphere, i.e., simply connected, then this is equivalent to the fact that the 1 -skeleton $G^{1}=\bigcup_{i=1}^{r} \bar{E}_{i}^{1}$ of Γ bounds a "singular fan" in M^{3} (see [2, Sec. 6]). Now property (ii) of Γ means that G^{1} is a wedge of trivial loops in M^{3}, and (iii) means that G^{1} bounds a singular fan $\mathrm{U}_{i=1}^{r} V_{i}^{2}$ which is especially simple in the sense that its single leaves V_{i}^{2} are nonsingular.

As Bing has shown in [1] it would be sufficient for a proof of the Poincaré conjecture if one could show that every polyhedral, simple closed curve in M^{3} lies in a. 3 -cell in M^{3}, or that the 1 -skeleton G^{1} of some cell-decomposition Γ of M^{3} lies in a 3 -cell in M^{3}. The property (ii) of Γ means that every single closed curve $\bar{E}_{i}^{1} \subset G^{1}$ lies not only in a 3 -cell V_{i}^{3} (which may be obtained as a small neighborhood of V_{i}^{2}) in M^{3} but moreover is unknotted in that 3-cell V_{i}^{3}. So one may hope that the above theorem could be used as a tool for proving the Poincaré conjecture or for deriving further partial results on homotopy 3 -spheres.

Proof of the theorem

1. Preliminaries. We choose the semilinear standpoint as described in [3, Sec. 3], i.e., we assume for convenience that M^{3} is a piecewise rectilinear

[^0]

FIG.I
polyhedron in a euclidean space \mathbb{E}^{n}; and all point sets denoted by capital roman letters are supposed to be piecewise rectilinear polyhedral point sets in \mathfrak{E}^{n}, etc.
2. Decomposing a singular fan V_{I}^{2} by $\operatorname{arcs} B_{k}^{1}$. We start with a cell-decomposition Γ_{I} of M^{3} into one vertex E_{I}^{0}, r_{I} elements, $E_{\mathrm{II}}^{1}, \cdots, E_{\mathrm{I} r_{\mathrm{I}}}^{1}$, of dimension 1, r_{I} elements, $E_{\mathrm{II}}^{2}, \cdots, E_{\mathrm{I} r_{1}}^{2}$, of dimension 2 , and one open 3-cell $E_{\mathrm{I}}{ }^{3}$; (the existence of Γ_{I} has been proved in [2, Sec. 5$]$). We consider a singular fan, defined by a map $\zeta: V_{I}^{\prime 2} \rightarrow M^{3}$ with $\zeta\left(V_{I}^{\prime 2}\right)$ denoted by V_{I}^{2}, such that the following holds (the existence of ζ has been proved in [2, Sec. 6]):
(i) $V_{\mathrm{I}}^{\prime 2}$ consists of r_{I} disks $V_{\mathrm{II}}^{\prime 2}, \cdots, V_{\mathrm{I} r_{\mathrm{I}}}^{\prime 2}$ (see Fig. 2), possessing one common boundary point $E_{\mathrm{I}}^{\prime 0}$ and otherwise being pairwise disjoint; $V_{\mathrm{I}}^{\prime 2}$ is disjoint from M^{3}.
(ii) V_{I}^{2} is the 1 -skeleton $G_{\mathrm{I}}^{1}=\bigcup_{i=1}^{r_{\mathrm{I}}} \bar{E}_{r_{\mathrm{I}}}^{1}$ of Γ_{I}.
(iii) The only singularities of V_{I}^{2} (with respect to ζ) are pairwise disjoint, normal, double $\operatorname{arcs} A_{1}^{1}, \cdots, A_{s}^{1}$ such that each of the two connected components $A_{j}^{\prime 1}, A_{j}^{\prime \prime 1}$ of $\zeta^{-1}\left(A_{j}^{1}\right)$ (see Fig. 2) possesses just one boundary point in ${ }^{\prime} V_{\mathrm{I}}^{\prime 2}-E_{\mathrm{I}}^{\prime 0}$ and otherwise lies in ${ }^{\circ} V_{\mathrm{I}}^{\prime 2}$ (for all $j=1, \cdots, s$).

If $s=0$ then we may take Γ_{I} for Γ and the theorem is proved. So we may assume that $s>0$.

We choose a small neighborhood T_{I}^{3} of G_{I}^{1} in M^{3}. There is a connected component $V_{T}^{\prime 2}$ of $\zeta^{-1}\left(V_{\mathrm{I}}^{2} \cap T_{\mathrm{I}}^{3}\right)$ (see Fig. 2) that is a neighborhood of ${ }^{\prime} V_{\mathrm{I}}^{\prime 2}$ in $V_{\mathrm{I}}^{\prime 2}$; the other connected components of $\zeta^{-1}\left(V_{\mathrm{I}}^{2} \cap T_{\mathrm{I}}^{3}\right)$ are neighborhoods of the points $A_{j}^{\prime 1} \cap^{\circ} V_{\mathrm{I}}^{\prime 2}$ and $A_{j}^{\prime \prime 1} \cap^{\circ} V_{\mathrm{I}}^{\prime 2}$ in $V_{\mathrm{I}}^{\prime 2}$. Obviously, T_{I}^{3} is a Heegaard-handlebody in M^{3} (compare [3, Sec. 2]). For brevity we denote ${ }^{-}\left(V_{\mathrm{I}}^{\prime 2}-V_{T}^{\prime 2}\right)$ by $V_{\mathrm{I}^{*}}^{\prime 2}$, and ${ }^{-}\left(V_{\mathrm{I} i}^{\prime 2}-V_{\mathrm{T}}^{\prime 2}\right)$ by $V_{\mathrm{I}^{*} i}^{\prime 2}$.

Now we choose pairwise disjoint $\operatorname{arcs} B_{1}^{\prime 1}, \cdots, B_{t}^{11}$ in $V_{1^{*}}^{\prime 2}$ such that (see Fig. 2):

FIG. $2 \zeta^{-1}\left(V_{I}^{2} \cap T_{I}^{3}\right)$ is indicated by hatching
$\zeta^{-1}\left(W_{m}^{2} \cap V_{x}^{2}\right)$ is for brevity denoted by $W_{m}^{\prime \prime}$
(a) $\cdot B_{k}^{\prime 1}=B_{k}^{\prime 1} \cap \cdot V_{\mathrm{I}^{*}}^{\prime 2}($ for all $k=1, \cdots, t)$;
(b) ${B_{k}^{\prime 1}}^{\prime}$ is disjoint from the $A_{j}^{\prime \prime}$, $\mathrm{s}, A_{j}^{\prime \prime \prime} \mathrm{s}$, and ${ }^{\circ} \mathcal{B}_{k}^{\prime 1}$ is disjoint from $\zeta^{-1}\left(V_{\mathrm{I}}^{2} \cap T_{\mathrm{I}}^{3}\right)$;
(c) each connected component of $V_{\mathrm{I}^{*}}^{\prime 2}-\mathrm{U}_{k=1}^{t} B_{k}^{\prime 1}$ contains at most two of the $B_{k}^{\prime 1}$'s in its boundary;
(d) each connected component of $V_{\mathrm{I}^{*}}^{\prime 2}-\bigcup_{k=1}^{t} B_{k}^{\prime 1}$ contains at most one of the points $A_{j}^{\prime 1} \cap V_{\mathrm{I}^{*}}^{\prime 2}, A_{j}^{\prime \prime 1} \cap V_{\mathrm{I}^{*}}^{\prime 2}(j=1, \cdots, s)$.

We denote $\zeta\left(B_{k}^{\prime 1}\right), \zeta\left(V_{\mathrm{I}^{*} i}^{\prime 2}\right), \zeta\left(V_{\mathrm{I}^{*}}^{\prime 2}\right)$ by $B_{k}^{1}, V_{\mathrm{I}^{*} i}^{2}, V_{\mathrm{I}^{*}}^{2}$, respectively, and $\bigcup_{k=1}^{t} B_{k}^{1}$ by B^{1}.
3. Projecting the arcs B_{k}^{1} into the Heegaard-surface T_{I}^{3}. The $\operatorname{arcs} B_{k}^{1}$ decompose $V_{\mathbf{I} *}^{2}$ into nonsingular disks. Hence, if we add small neighborhoods B_{k}^{3} of the B_{k}^{1} 's to the handlebody T_{I}^{3}, then we get a handlebody with t more handles such that "each handle spans a nonsingular disk"; (i.e., we can find a complete system of meridian circles and a corresponding "canonical" system of longitude circles in the boundary of the new handlebody such that each longitude bounds a nonsingular disk in M^{3} and intersects just one of the meridians, and that in just one point). But the new handlebody $T^{3}+\mathrm{U}_{k=1}^{t} B_{k}^{3}$ is not necessarily a Heegaard-handlebody in M^{3}. In order to overcome this difficulty

FIG. 3

we shall add some more handles to the handlebody in such a way that we obtain a Heegaard-handlebody with the desired properties.

We choose a cell-decomposition Γ_{*} of M^{3} which is dual to Γ such that the 1-skeleton G_{*}^{1} of Γ_{*} is disjoint from T_{I}^{3} and from the $\operatorname{arcs} B_{k}^{1}$. Let T_{*}^{3} be a small neighborhood of G_{*}^{1} in M^{3}. Now $M^{3}-{ }^{\circ}\left(T_{\mathrm{I}}^{3}+T_{*}^{3}\right)$, denoted by H^{3}, may be represented as cartesian product $T_{\mathrm{I}}^{3} \times I^{1}$, where I^{1} means an interval $0 \leqq x \leqq 1$ such that $p \times 0=p$ for all $p \epsilon \cdot T_{\mathrm{I}}^{3}$ and such that $\cdot T_{\mathrm{I}}^{3} \times 1={ }^{\cdot} T_{\#}^{3}$.

We may assume that the product representation of H^{3} is chosen such that B^{1} "projects normally into ${ }^{\circ} T_{\mathrm{I}}^{3}$ ", i.e., such that the following holds:
(A) if p is a point in ${ }^{`} T_{\mathrm{I}}^{3}$ then $p \times I^{1}$ intersects B^{1} at most in two points;
(B) if p is a point in ${ }^{\cdot} B^{1}$ then $p \times{ }^{\circ} I^{1}$ is disjoint from B^{1};
(C) if $p_{0} \times I^{1}\left(p_{0} \epsilon \cdot T_{\mathrm{I}}^{3}\right)$ intersects B^{1} in two points $p_{0} \times a, p_{0} \times b$ (see Fig. 3), where $1>a>b>0$, and if $N_{\mathrm{a}}^{1}, N_{\mathrm{b}}^{1}$ are small neighborhoods of $p_{0} \times a$ and $p_{0} \times b$, respectively, in B^{1}, then N_{a}^{1} "overcrosses" N_{b}^{1}, i.e., N_{b}^{1} pierces the "projection cylinder" of N_{a}^{1} (which is the union of all those intervals $p \times[0, c]$ with $p \in \cdot T_{\mathrm{I}}^{3}$ and $\left.p \times c \in N_{\mathrm{a}}^{1}\right)$.

We consider the projection cylinder K^{2} of B^{1}, i.e., the union of all those intervals $p \times[0, c]$ with $p \epsilon T_{\mathrm{I}}^{3}$ and $p \times c \in B^{1}$ (where c may be zero such that the interval degenerates to a point in B^{1}). Correspondingly we denote by K_{k}^{2} the projection cylinder of $B_{k}^{1}(k=1, \cdots, t)$. Let p_{1}, \cdots, p_{u} be those points in T_{I}^{3} for which $p_{l} \times I^{1}$ intersects B^{1} in two points, say $p_{l} \times a_{l}, p_{l} \times b_{l}$ with $1>a_{l}>b_{l}>0$. We call the points $p_{l} \times a_{l}$ the overcrossings points, and $p_{l} \times b_{l}$ the undercrossing points of B^{1}, and the intervals $p_{l} \times\left[0, b_{l}\right]$ the double arcs of the projection cylinder K^{2}. We may further assume that
(D) p_{1}, \cdots, p_{u} do not lie in $V_{\mathrm{I}^{*}}^{2}$.

4. Decomposing the projection cylinder K^{2} by $\operatorname{arcs} C_{l}^{1}$. We choose pairwise disjoint, small neighborhoods $N_{\mathrm{a} l}^{1}$ of the points $p_{l} \times a_{l}(l=1, \cdots, u)$ in B^{1} (see Fig. 4); then we choose small neighborhoods L_{l}^{2} of the double arcs $p_{l} \times\left[0, b_{l}\right]$ in the projection cylinders of the $\operatorname{arcs} N_{\mathrm{a} l}^{1}$. Now ${ }^{-}\left(L_{l}^{2} \cap^{\circ} K^{2}\right)$ is an arc C_{l}^{1} (and $L_{l}^{2}-{ }^{\circ} C_{l}^{1}$ is an arc in $\left.T_{\mathrm{I}}^{3}\right)$. Moreover, ${ }^{-}\left(K^{2}-\mathrm{U}_{l=1}^{u} L_{l}^{2}\right)$ consists of t pairwise disjoint disks $J_{k}^{2}(k=1, \cdots, t)$ where $J_{k}^{2}={ }^{-}\left(K_{k}^{2}-\bigcup_{l=1}^{u} L_{l}^{2}\right)$.
5. Adding handles B_{k}^{3} and C_{l}^{3} to the handlebody T_{I}^{3}. We choose small, pairwise disjoint neighborhoods $B_{k}^{3}(k=1, \cdots, t)$ of the arcs B_{k}^{1} and $C_{l}^{3}\left(l=1, \cdots, u\right.$; see Fig. 4) of the $\operatorname{arcs} C_{l}^{1}$ in $M^{3}-{ }^{\circ} T_{\mathrm{I}}^{3}$. Then we consider the handlebody $T_{\mathrm{I}}^{3}+\mathrm{U}_{k=1}^{t} B_{k}^{3}+\mathrm{U}_{l=1}^{u} C_{l}^{3}$, denoted by T^{3}. The genus r of T^{3} is $r=r_{\mathrm{I}}+t+u$.

We denote the $r_{\mathrm{I}}+t$ connected components of ${ }^{-}\left[V_{\mathrm{I}^{*}}^{\prime 2}-\mathrm{U}_{k=1}^{t} \zeta^{-1}\left(B_{k}^{3} \cap V_{\mathrm{I}^{*}}^{2}\right)\right]$ (see Fig. 2) by $V_{\mathrm{II}^{*}{ }_{1}}^{\prime 2}, \cdots, V_{\mathrm{II}^{*} r_{I}+t}^{\prime 2}$; their images under ζ, denoted by $V_{I I^{*} 1}^{2}, \cdots, V_{I^{*} r_{I}+t}^{2}$, are nonsingular disks. Further we denote the disks ${ }^{-}\left(L_{l}^{2}-C_{l}^{3}\right)(l=1, \cdots, u)$ by $V_{\mathrm{II}^{*} r_{I}+t+l}^{2}$. The boundaries $V_{\mathrm{II}^{*}{ }_{i}}^{2}$ ($i=1, \cdots, r$) of the disks $V_{\mathrm{II} * i}^{2}$ are pairwise disjoint (because of (D) in Sec. 3).
6. Choosing suitable meridian disks in T^{3}. Now we choose $r_{I}+t$ pairwise disjoint meridian disks $W_{1}^{2}, \cdots, W_{r_{I}+t}^{2}$ in T_{I}^{3} (compare Fig. 2) such that for all $m=1, \cdots, r_{\text {I }}+t$
(α) ${ }^{\cdot} W_{m}^{2}$ intersects $V_{I^{*} m}^{2}$ in just one piercing point and is disjoint from $\cdot V_{\mathrm{II} * i}^{2}$ if $i \neq m, i=1, \cdots, r$;
(β) $\cdot W_{m}^{2}$ is disjoint from the $\cdot B_{k}^{3}$'s $(k=1, \cdots, t)$ and from the ${ }^{\circ} C_{l}^{3}$'s ($l=1, \cdots, u$) and intersects $K^{2} n \cdot T_{\mathrm{I}}^{3}$ at most in isolated piercing points.

Further we denote one of the two connected components of $C_{l}^{3} \cap{ }^{\wedge} T_{\mathrm{I}}^{3}$ by $W_{r_{\mathrm{I}}+t+l}^{2}$ (for all $l=1, \cdots, u$; see Fig. 4). Then the disks $W_{1}^{2}, \cdots, W_{r}^{2}$ form a complete system of meridian disks of T^{3}, i.e., ${ }^{\circ} T^{3}-\mathrm{U}_{i=1}^{r} W_{i}^{2}$ is an open 3-cell C^{3}; moreover, the ' W_{i}^{2} 's and the $V_{\mathrm{II} * i}^{2}$'s are two "canonical" systems of 1 -spheres in ${ }^{`} T^{3}$, i.e., we have

$$
\begin{align*}
\cdot W_{i}^{2} \cap \cdot V_{I I^{*} j}^{2} & =\text { one piercing point } & & \text { if } j=i \quad(i, j=1, \cdots, r) . \tag{*}\\
& =\emptyset & & \text { if } j \neq i
\end{align*}
$$

7. T^{3} is a Heegaard-handlebody. We prove that $M^{3}-{ }^{\circ} T^{3}$ is a handlebody by constructing a complete system of meridian disks in $M^{3}-{ }^{\circ} T^{3}$.

We choose a complete system, $F_{1}^{2}, \cdots, F_{r_{I}}^{2}$, of meridian disks in the handlebody $M^{3}-{ }^{\circ} T_{\mathrm{I}}^{3}$ such that for all $i=1, \cdots, r_{\mathrm{I}}$ the following holds:
(1) $F_{i}^{2} \cap H^{3}={ }^{\cdot} F_{i}^{2} \times I^{1}$;
(2) $\cdot F_{i}^{2}$ is disjoint from the $\operatorname{arc}: L_{l}^{2} \cap \cdot T_{l}^{3}(l=1, \cdots, u)$ and from $\cdot B^{1}$;
(3) $\cdot F_{i}^{2}$ intersects ${ }^{\prime} K^{-2} \cap \cdot T_{\mathrm{I}}^{3}$ and the ${ }^{\bullet} W_{j}^{2}$, $\mathrm{s}(j=1, \cdots, r)$ at most in isolated piercing points;
(4) the neighborhoods B_{k}^{3}, C_{l}^{3} of B_{k}^{1}, C_{l}^{1}, respectively, are small with respect to F_{i}^{2}.

Now

$$
M^{3}-\left(T^{3}+K^{2}+\bigcup_{i=1}^{r_{I}} F_{i}^{2}\right)
$$

is an open 3-cell, since $T^{3}+K^{2}+\bigcup_{i=1}^{r_{\mathrm{I}}} F_{i}^{2}$ collapses to $T_{\mathrm{I}}^{3}+\bigcup_{i=1}^{r_{\mathrm{I}}} F_{i}^{2}$ (definition see [5, p. 201]).

The disks $F_{1}^{2}, \cdots, F_{r_{\mathrm{I}}}^{2}, V_{\mathrm{II}{ }^{*} r_{\mathrm{I}}+t+1}^{2}, \cdots, V_{\mathrm{II}{ }^{*} r_{\mathrm{I}}+t+u}^{2}$ are pairwise disjoint and disjoint from the ${ }^{\circ} C_{l}^{3}$'s; we denote their union by F^{2}. Further we denote the disks $J_{k}^{2}-{ }^{\circ} T^{3}(k=1, \cdots, t)$ by $E_{*_{k}}^{2}$. Obviously $T^{3}+K^{2}+\bigcup_{i=1}^{r_{1}} F_{i}^{2}=$ $T^{3}+F^{2}+\bigcup_{k=1}^{t} E_{*}^{2}$.

We remove, step by step, the intersections of F^{2} with the $E_{*_{k}}^{2}$'s and with the ${ }^{\circ} B_{k}^{3}$'s in the following way:

If D^{1} is a connected component of $F^{2} \cap E_{*_{k}}^{2}$ (see Fig. 5) then $D^{1}=q \times[0, c]$ for some point $q \in \cdot E^{2}{ }_{k} \cap^{\bullet} T_{I}^{3}$ where $q \times c \epsilon \cdot E^{2}{ }_{* k} \cap B_{k}^{3}$. Then we may find a connected component $D_{1}^{1}=q_{1} \times\left[0, c_{1}\right]$ of $F^{2} \cap E_{*_{k}}^{2}$ such that a connected component, say Q^{2}, of $E_{*_{k}}^{2}-D_{1}^{1}$ is disjoint from F^{2}. Then we choose a small neighborhood Q^{3} of \bar{Q}^{2} in $M^{3}-{ }^{\circ} T^{3}$ (see Fig. 5); $Q^{3} \cap F^{2}$ is a disk D^{2}, containing D_{1}^{1}, such that ${ }^{-}\left(\cdot D^{2}-T^{3}\right)$ consists of two disjoint arcs $D_{*}^{1}, D_{\# \#}^{1}$, "parallel" to D_{1}^{1}. Now $Q^{3}-\left(T^{3}+D^{2}\right)$ consists of three disjoint open disks, such that one of them, denoted by Q_{*}^{2}, has a boundary which is the union of D_{*}^{1} and an open arc in ${ }^{`} T^{3}$, and such that a second one, denoted by $Q_{* *}^{2}$, has a boundary which is the union of $D_{* *}^{1}$ and an open arc in ${ }^{\bullet} T^{3}$ (see Fig. 5). Finally let R^{2} be that connected component of $F^{2} \cap B_{k}^{3}$ that contains $q_{1} \times c_{1}$. Now we replace F^{2} by

Obviously $F_{(1)}^{2}$ is the union of $r_{I}+u$ pairwise disjoint disks such that $M^{3}-\left(T^{3}+F_{(1)}^{2}+\bigcup_{k=1}^{t} E_{*_{k}}^{2}\right)$ is an open 3-cell; but the number of intersection arcs in $F_{(1)}^{2} \cap \bigcup_{k=1}^{t} E_{*_{k}}^{2}$ is one less than the corresponding number of F^{2}.

We repeat the procedure described in the above paragraph as often as possible, and by this we obtain a union $F_{(*)}^{2}$ of $r_{I}+u$ pairwise disjoint disks, denoted by $E_{*_{t+1}}^{2}, \cdots, E_{*_{r}}^{2}$, which are disjoint from the disks $E_{*_{k}}^{2}(k=1, \cdots, t)$ such that $M^{3}-\left(T^{3}+\mathrm{U}_{i=1}^{r} E_{* i}^{2}\right)$ is an open 3-cell, and $E_{*_{i}}^{2}=E_{*_{i}}^{2} \cap T^{3}=$ $E_{{ }_{i}}^{2} \cap{ }^{\circ} T^{3}$. That means that $M^{3}-{ }^{\circ} T^{3}$ is a handlebody and that the E_{*}^{2}, s form a complete system of meridian disks of $M^{3}-{ }^{\circ} T^{3}$; moreover, the meridian circles ${ }^{\circ} E_{*_{i}}^{2}$ of $M^{3}-{ }^{\circ} T^{3}$ intersect the meridian circles W_{i}^{2} of T^{3} at most in isolated piercing points.
8. Constructing Γ. We take for Γ a cell-decomposition of M^{3}, corresponding to the Heegaard-diagram defined by ${ } T^{3}$ and by the ${ }^{`} E_{i}^{2}$'s and the - W_{i}^{2} 's:

For the only vertex of Γ we choose a point E^{0} in the open 3-cell ${ }^{\circ} T^{3}-\bigcup_{i=1}^{r} W_{i}^{2}$. For the 1-dimensional elements of Γ we choose open arcs $E_{1}^{1}, \cdots, E_{r}^{1}$ in ${ }^{\circ} T^{3}$ such that $E_{i}^{1}=E^{0}$,

$$
\begin{aligned}
E_{i}^{1} \cap W_{j}^{2} & =\text { one piercing point } & & \text { if } i=j \quad \text { (for all } \quad i, j=1, \cdots, r) \\
& =\emptyset & & \text { if } i \neq j
\end{aligned}
$$

and T^{3} may be regarded as a neighborhood of $\bigcup_{i=1}^{r} \bar{E}_{i}^{1}$ in M^{3}. For the 2-dimensional elements of Γ we choose open disks $E_{1}^{2}, \cdots, E_{r}^{2}$ in $M^{3}-\bigcup_{j=1}^{r} \bar{E}_{j}^{1}$
such that $E_{i}^{2} \cap\left(M^{3}-{ }^{\circ} T^{3}\right)=E_{*_{i}}^{2}$ (as constructed in the last section), and such that $E_{i}^{2} \cap^{\circ} T^{3}$ is an open annulus $E_{\mathrm{T} i}^{2}$ with ${ }^{\cdot} E_{\mathrm{T} i}^{2} \cap \cdot T^{3}={ }^{\cdot} E_{* i}^{2}$, $\cdot E_{\mathrm{T} i}^{2} \cap^{\circ} T^{3} \subset \mathrm{U}_{j=1}^{r} \bar{E}_{j}^{1}$ where E_{j}^{1} lies as often in ${ }^{\cdot} E_{\mathrm{T} i}^{2}$ as $E^{*}{ }_{i}^{2}$ intersects $\cdot W_{j}^{2}$ (if $\cdot E^{2}{ }_{i}$ does not intersect any ${ }^{\cdot} W_{j}^{2}$, then ${ }^{\bullet} E_{\mathbf{T} i}^{2} \cap^{\circ} T^{3}$ is just the vertex E^{0}). For the only 3 -dimensional element of Γ we choose the open 3 -cell $M^{3}-\cup_{i=1}^{r} \bar{E}_{i}^{2}$.

Now Γ fulfills condition (i) of the theorem.
9. Constructing the V_{i}^{2},s. It remains to show that the \bar{E}_{i}^{1},s bound nonsingular disks V_{i}^{2} in M^{3} as demanded.

First we choose annuli $V_{I I T i}^{2}$ in T^{3} such that $V_{I I T i}^{2}={ }^{\prime} V_{\mathrm{II} * i}^{2}+\bar{E}_{i}^{1}$ (this is possible because of (*) in Sec. 6); we may choose the $V_{\text {IIT } i}^{2}$'s such that ${ }^{\circ} V_{\mathrm{IIT} i}^{2} \subset{ }^{\circ} T^{3}$, and $V_{\mathrm{IIT} i}^{2} \cap V_{\mathrm{IIT} j}^{2}=E^{0}$ if $j \neq i($ for all $i, j=1, \cdots, r)$.

Next we deform $V_{\mathrm{II}^{*} i}^{2}$ isotopically into a disk $V_{\mathrm{III}^{*} i}^{2}$, in such a way that $V_{\mathrm{II}^{*} i}^{2}-{ }^{\circ} T^{3}$ remains fixed and ${ }^{-}\left(V_{\mathrm{II}^{*} i}^{2} \cap^{\circ} T^{3}\right)$ is deformed within T^{3}, such that ${ }^{\circ} V_{\mathrm{II}{ }^{*} i}^{2} \cap V_{\mathrm{IIT} i}^{2}=\emptyset$; (this is possible since ${ }^{-}\left(V_{\mathrm{II}^{*} i}^{2} \cap^{\circ} T^{3}\right)$ is disjoint from one of the boundary curves, namely ${ }^{\cdot} V_{I I T i}^{2} \cap{ }^{\prime} T^{3}={ }^{\prime} V_{I I^{*} i}^{2}$, of $\left.V_{I I T i}^{2}\right)$. We do this deformation for all $i=1, \cdots, r$ (where it is permissible to introduce new intersections between different $V_{\mathrm{IIT} * i}^{2}$'s).

Then we denote the nonsingular disks $V_{\mathrm{III} * i}^{2}+V_{\mathrm{IIT} i}^{2}$ by $V_{\mathrm{III} i}^{2}(i=1, \cdots, r)$. The $V_{I I I I}^{2}$'s fulfill condition (ii) of the theorem.

In order to fulfill condition (iii) of the theorem we normalize the intersections $V_{I I I i}^{2} \cap V_{I I I j}^{2}(j \neq i)$ by a procedure as described in [2, Sec. 6, Steps 1 to 4]. This does not destroy the nonsingularity of the single $V_{\text {IIII }}^{2}$'s, and we obtain in this way the demanded V_{i}^{2} 's.

This finishes the proof of the theorem.

Bibliography

1. R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S^{3}, Ann. of Math. (2), vol. 68 (1958), pp. 17-37.
2. W. Haken, On homotopy 3-spheres, Illinois J. Math., vol. 10 (1966), pp. 159-180.
3. - Some results on surfaces in 3-manifolds, Studies in modern topology, Math. Assoc. Amer. Studies, vol 5.
4. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig, B. G. Teubner, 1934.
5. E. C. Zeeman, The Poincaré conjecture for $n \geq 5$, Topology of 3 -manifolds and related topics, Englewood Cliffs, Prentice Hall, 1962, pp. 198-204.

Institute for Advanced Study
Princeton, New Jersey
University of Illinois
Urbana, Illinois

[^0]: Received July 15, 1966.
 ${ }^{1}$ This research was supported by grants from the National Science Foundation.
 ${ }^{2} \cdot X$ denotes the boundary, \bar{X} and $-X$ the closure, and ${ }^{\circ} X$ the interior of X.

