
SUBGROUP-DETERMINING FUNCTIONS ON GROUPS

BY

ANNE PENFOLD STREET

I. Introduction and notation
Let G be a group and let S be a subset of G. Suppose that S is a subgroup

of G if and only if for every x, y e S, f(x, y) S. What forms may the func-
tion f take?

This question was first raised by Higman and Neumann [6] and investigated
by Hulanicki and wierczkowski [8], who introduced the following definition:

DEFINITION. A group G has property P if and only if there exist integers
ai, bi, i 1, r, andms, n,j 1, s, such that

(i) the word
_at .brxoy xalybl x y (1)

defines a binary operation in G, not identically equal in G to xy or to yx;
(ii) the elements of G form a group Go under the operation x o y, in which

the mth power of x is denoted by [x]o, the inverse of x by x1-11 and the com-
mutator of y and x by [y, X]o

(iii) the operation xy is a word in Go, i.e. the law

xy [xlo1 o [y]o o... o [x] o [y]o (2)

holds identically for every x, y e G.
In this case, x o y is called an s-function on G.

They pointed out that, if G has property P, then x o yI-11 is a subgroup-
determining function on G, different from the obvious ones, namely
fl(x, y) xy-, f2(x, y) x-ly and their transposes.

It follows from results in [6], [10] and [16] that neither an Abelian nor a
free group possesses property P, and that no s-function may be defined on
the variety of all groups, nor on the class of all finite nilpotent groups, nor
on the class of all finite p-groups, for p a given prime. However, in [8] it is
shown that if G is nilpotent of class 2 and if its commutator subgroup, G’,
has finite exponent, then G has property P, and all possible s-functions on such
a group are determined. G and Go are shown to be isomorphic if G is also
periodic.

In this paper, we discuss further classes of groups with property P, the
s-functions that can be defined on them and the relation between G and Go.
In II, we prove the following"
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THEOREM
(i) the
(ii) the
(iii) the
(iv) the
(v) the
(vi) the

1. The transformation from G to Go preserves the following:
group identity
inverse, powers and order of each element
order and exponent of each subgroup
lattice of subgroups
normaliser and commutator subgroup of each subgroup
mixed commutator subgroup of each pair of subgroups

(vii) the centraliser of each element.
Any s-function on G must have the form

x o

where, if H (x, y}, the subgroup generated by x and y, then u e H and f
is an integer modulo the exponent of H, for every i.

COROLLARY. This transformation preserves central and derived series and,
consequently, nilpotency, nilpotency class, solvability and derived length.

In III, we consider nilpotent groups whose commutator subgroups have
finite exponent, and find five additional classes of such groups with property
P. We assume the standard properties of finite p-groups and nilpotent
groups, as set out in [3], [5], [9] or [13], the collecting process of P. Hall [4],
and the method due to Meier-Wunderli [14] for writing down a standard set
of basic commutators. G (G(i)) denotes the ith lower central (derived) sub-
group of G G1 G(). n (m) denotes the exponent of G (G()) and
n(k) (m(k)) denotes the least common multiple of the exponents of the
ih lower central (derived) subgroups of the /c-generator subgroups of G.
G2 G(1) is also denoted by G’. For x, y e G, the commutator of x and y
is defined as

x, y) x-ly-lxy

and for w > 2, a left-normed commutator of weight w is defined inductively as

..., ...,
G is called j-metabelian if and only if every j-generator subgroup of G is
metabelian.
The nilpotent groups which we find to have property P are of two types,

both of which may be regarded as generMisations of class 2 groups. The
first type are those for which (y, xa) (y, x) is true for some integers a;
using this property, we obtain the following results:

THEOREM 2. Let G be a nilpotent group of class k, such that n2 is finite and
the least prime divisor of n3 >_ k. Let a, b be any two integers satisfying

(as, 2a 1) 1 (4)

n2/a -- b 2ab (5)
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n/a(a- 1) (6)

n / a (7)

n / a-- 1. (8)

Then G has property P and x y xy(y, x) is an s-function, such that

xy xoyo[y, X]o in Go.
THEOREM 3. Let G be a p-group such that n is finite art4 for every 3-generator

subgroup, H, of G, H’ is a regular p-group. Let a, b be any two irttegers satisfy-
ing (4), (5), (7) and

n/a. (9)

Then G has property P and x y xy(y, x) is an s-unction, such that

xy x y o [y, X]o in Go.

The second type re those ia which the Lie-Jcobi ideatity tkes oa
prticulrly strong form: ia ay group G, this identity is true ia the form

(z, y, z)(y, z, x)(z, x, y) 1 (mod G) (10)

but, under special circumstaces, this sttemeat my be streagtheaecl. Thus

(x, y, z)(y, z, x)(z, x, y) 1 (11)

if and only if G is 3-metabelian [1], and if G is nilpoteat of class 4, then

(x, y, z, w)(y, z, x, w)(z, x, y, w) 1. (12)

Many groups in which either (11) or (12) is true have property P, s showa
in the following theorems"

THEOREM 4. Let G be a nilpotent group of class 3, such that n is finite.
Then G has property P and x y is an s-function if and only if

x o y zy(y, z)(y, x, x)(y, z, y)-
where a, f are any integers satisfying (4) and

na/a(a 1) 3f (13)

and at least one of (7), (8) and
n(2) ( f. (14)

Then, if and only if b, g are integers satisfying (5) and

na(2)/f + g + 12fg (15)
we have

xy x o y o [y, x]o [y, x, x] o [y, x, y]: in Go.
THEOREM 5. Let G be a nilpotent group of class 4, containing no elements of

order 2 or 3, and such that n is finite. Thvn G has property P and x o y is an
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s-function if and only if
x o y xy(y, x)a(y, X, x)(y, x, y)-(y, x, x, x)(y, x, x, y)-(y, x, y, y)-

where a, f, d are integers satisfying (4), (13) and

n4/f - 2d (16)

n4/af 17

m2(a)/a - 2f (18)

and at least one of (7), (8), (14) and

n(2) / d. (19)

Then, if and only if b, g are integers satisfying (5), (15) and

n4(2)/fg (20)
we have

xy x o y [y, X]o o [y, x, x] o [y, x, y]’ o [y, x, x, x]’ o [y, x, x, y] [y, x, y, y]o
inGo.

COROLL.RY. Let G be a 3-group, such that G is nilpotent of class 4 and n2 is

finite. Then if n > 3, G has property P and x o y is an s-function if it is of the
form defined above, with d O.

THEORnM 6. Let G be a 3-metabelian nilpotent group o finite class, such that
n2 is finite. Let a, b, f, g be any integers satisfying (4), (5), (13), (15) and

n/f (21)

and at least one of (7), (8) and (14). Then G has property P and

x oy xy(y, x)a(y, x, x)S(y, x, y)-S

is an s-function such that

xy xoyo[y, X]oO[y, x, x] o[y, x, y] in Go
In certain special cases, we prove the isomorphism of G und Go

THEOREM 7. Let G be a periodic group such that n2 is finite and either
G is nilpotent of class 3 and contains no elements of order 3, or

(ii) G is nilpotent of class 4 and contains no elements of order 2 or 3.

If x y xy( y, x) where a is an integer satisfying (4) and (9), then G is iso-
morphic to Go

It follows from Theorem 5 that, in metubelian groups of class 4 where (11)
holds, two distinct families of s-functions may be defined, but in the general
case where only the weaker statement (12) is true, the functions in one of these
families are no longer associative.
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In IV, we consider metabelian, but not necessarily nilpotent, groups.
They are of special interest because all the known pairs of strictly index-
preserving, normaliser-preserving, lattice-isomorphic groups are either Abeliaa
(and thus do not possess property P) or metabelian, and by Theorem 1, it is
only among such pairs of groups that there exist examples where G is not
isomorphic to Go. We write (y,1 x) (y, x) and inductively

(y,k x) (y,k-1 x, x);

in a commutator (xl, x, x3, x), each x is called a component of the
commutator, x and x being the inner components and x3, x the outer
components. Using this notation, we may state the following results"

THEOREM 8. Let G be a metabelian group. Then
permutations of the outer components of a commutator do not affect the

value of the commutator,
(ii) the basic commutators of the 2-generator subgroups of G are all of the

form (y,k x, y) for some integers j,
(iii) (Y, x) IIk (y,x) c(’) where C(n, k) ().

If the commutator factor group, GIG’, has exponent r, then
(iv) (z, y, x-1) II: (z, y, x) c(r_l.),
(v) (z, y,rx) II-- (z, y,z)-c(,),
(vi) any commutator containing r identical outer components nay be deleted

from the basic set,
(vii) for every 2-generator subgroup of G, there exists a complete set of basic

commutators containing r 2) commutators, namely x, y, y, x y, x
(y, x, y), ..., (y,z), (y,_x, y), ..., (y, r,_y), (y,rx, y), (y,_Ix,y),
.., (y,2x,_ly), ..., (y,x,_y), (y,r_x,r_y), (y,rx,_y).

If, in addition, G has exponent t, then
(viii) any s-function on G must be of the form

where u y, x u y, x,_ y) and each f is an integer modulo t.

Given a presentation of a specific metabelian group in terms of generators
and relations, we may then test each function in this finite set to see whether
any of them is, in fact, an s-function.

THEOREM 9. Let G be a metabelian (but not nilpotent) group, such that
has exponent 2, and G’ has exponent an odd prime. Then no s-function may be
defined on G.

In V, we discuss several examples, which show to what extent the results
obtained earlier are best possible. In particular, an example is constructed
of a group G which is not isomorphic to Go.
We make the following convention" in any expression involving both the
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original group operation and the o operation, the original operation will be per-
formed first, unless indicated otherwise by parentheses.

II. The relation between G and Go
Proof of Theorem 1. (i) Any binary operation on G can be written in the

form (1). Let 1 denote the identity of G. Then 1 o I 1, and hence 1 is
also the identity of Go.

(ii) By(i),x=xol =x’-- lox=xz. Thus"a= b= 1.
--1 ,iai--,ibi 0Xox X 1

and hence x1-11 x-1. x o x xa+b x and by induction [x] x for
m any integer. Since the group identity and the powers of each element are
preserved, so is the order of each element.

(iii) The underlying sets of G and Go are the same. We denote by both
the identity mapping of this set onto itself and the identity mapping of the
power set of G onto itself. S is a subgroup (subset) of G is denoted by
< (_C)G.

Let S G. Then S G. By the definition of s-function, x, y e S S
implies x y- S S* . -e ;thus Smflarly S. < G. mphes S < G.
Hence there is one-one correspondence between the subgroups of G and

of G. where S S.. By (ii), this correspondence preserves the exponent
of euch subgroup; since is the identity mapping, it also preserves the order
of each subgroup.

(iv) The one-one correspondence defined in (iii) is also a lattice-isomor-
phism. Firstly,

xS n T xSn T x(S T),
hence S* T (S T)* and preserves greatest lower bounds. Secondly,
x e (S*, T*) if and only if

ck dkx si’ t s . t
for some integers ci, di and some s e S, t T, i 1, ]. By repeated
applications of (1), we may write x as a word in s, t, i 1, ]c, with
respect to the original group operation. Hence

x<S,T) <S,T)+ and <S+,T+)_<S,T)+.
A similar application of (2) to x e <S, T) shows that

<S, T> <S, T>
_

<S*, T>.
Hence <S, T) <S, T)* <S, T) and preserves least upper bounds. By
(iii), is a strictly index-preserving lattice isomorphism.

(3) can be proved in two different ways. Since no s-function can be de-
fined on an Abelian group [6], we know that for all x, y e G, x o y =- xy (mod H’)
where H <x, y) _< G, and (3) follows. Alternatively, we could apply Hall’s
collecting process to (1) and since, by (ii), iai ibi 1, (3) follows.



SUBGROUP-DETERMINING FUNCTIONS ON GROUPS 105

(v) In the expression for x o y, we write each u = u(y, x) to avoid con-
fusion while calculating the commutators in Go.

[x, y]o - -: ): ):’( II-, u(,
-1 -1 x,-1 $ k

II-, u<(u,

II-, u(x II’,-, u,(, x)’, :’-’ II-, (,-’ x-1 )’
Hence [x, y]o may be expressed as a product of commutators in G and H:

___
H’.

Since xy may be written as a word in Go ,a similar argument shows that (x, y.)
may be expressed as a product of commutators in Ho--and hence H’

_
H:

Thus H’ H:. (v) and (vi) follow from this result, by Theorem 1 of [2].
(vii) Let Ca(S) denote the centraliser in G of S

_
G and let x e Ca(S).

For all s e S, x o s xs sx s o x, hence x e Cao(So) and Ca(S)

_
Cao(So).

Similarly, Cao(S)

_
Ca(S) showing that Ca(S) Ca(So) and preserves

centralisers.

III. Nilpotent groups with property P
The following identities will be used"

(x, yz) (x, z)(x, y) (x, z)(x, y)(x, y, z) (23)

(xy, z) (x, z)(y, z) (x, z)(x, z, y)(y, z) (24)

(X-1, y) (x, y-:) (x, y)-: (25)

(y-:, x-:) (y, x):’-’ (y, x)(y, x, x-:y-:) (26)

(x,y,z)(y,z,x)(z,z,y)
(y, z)(z, x)(z, y)(x, y)(x, z)(y, z)(x, z)(z, x) (27)

Witt identity" (x, y-:, z)(y, z-:, x)(z, x-:, y) 1 (28)

Macdonald identity [12]" (u, v; x, y)
(29)

(U, V, y-l, x(u,v))u(U, V, X-:, y-:)
where (u, v; x, y) (u, v, (x, y)).

Proof of Theorem 2. (i) (7) and (8) are sufficient to ensure that x o y
does not reduce to xy or to yx.

(ii) (y", x) y-"(y(y, x)) (y, x) IIu() (30)

by Hall’s collecting process, where, for each integer i, each u is a basic corn-
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mutator of weight w in y and (y, x), and

fl(a) c1 + + c, (31)
Wi

for some rational integers cir..
If a 0, 1 then (ya, x) (y, x)a; hencef(0) f(1) 0. Byinduction,

as in [4], c1 0 for all integers i.
Since G is of class k, the weight of us as a commutator in x and y cannot

exceed ], and thus the weight of u as a commutator in y and (y, x) cannot
exceed (]- 1 ), i.e. w

_
k- 1. Hence (31) becomes

(o)fi(a) c -t" + c,- ]- 1

By (6), since no prime divisor of n is less than ]c, n/f(a) for each i and

(y’, z) (y, x) a. (32)
Similarly,

(x(y, z)) xa(y, z) (33)
und by (5),

(xb--b, y) 1.

(iii)
x (y z) xyz(z, y)(yz(z, y), x)

a--1xyz(z, y) (yz, x)a(z, y)(z, y, x) by (24), (32), (33)

Zxyz(z, y) y, x) by (33)

xyz(z, xy)a(y, X) by (23) and (24).

(zoy) oz) xy(y, x)z(z, zy(y, x))a

xyz(z, xy)a(y, X) by (6), (23), (32) and (33).

By (35) and (35), the o operation is associative.
(iv) By (4), (5) and (6), it follows that (n, 2b 1) 1 and

na/b( b 1).

x o y xy(y, x) xy(y, x) by (32)

X
1-a

Xy

xoyo[y,X]bo xl-boyox by (36) and (37)

x(-)(-a)y-x’yx(-) by (37)

X1-abyl-axby’axb(a-1) by (34)

--axb. axb(a--1)xyx-’ x-, y)y y

-xy by (32).

(34)

(35)

(35’)

(36)

(37)
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Proof of Theorem 3. (i) (7) is sufficient to ensure that x o y does not re-
duce to xy or to yx.

(ii) By Hall’s collecting process, as in the previous proof, and by (9),

if a n3 pk, then (ya, x) (y, x) a, (32)

If a hp, for some integer h, then (32) follows from (9) by induction on h.
In particular,

((y,x)a,z) (y,x,z) 1 by(9), (38)

and since H’ is regular,

((x, y)(x, z))a (X, y)(X, Z) a. (39)

y-1) -1 -1 )a(X-1, ((X, y)(x, y, y X by (26)

(x, y) by (38) and (9). (40)
--1 --1(yx, y-lx-1)a (y, x, x y 1 by (9). (41)

(iii) x o (y o Z) xyz(z, y)a(yz, X) by (38)

xyz(z, y)a(y, x)a(z, x)a by (38) and (39). (42)

(x o y) z xyz(y, x)a(z, xy) by (38)

xyz(z, y)a(y, x)a(z, X) by (38) and (39). (42’)

By (42) and (42’), the operation is associative.

(iv) [y, X]o (y, x)l-a by (40) and (41). (43)

Hence, if b is an integer satisfying (5),

x y o [y, X]bo xy(y, x)a o (y, X)b(1-a) by (43)

xy by(5) and(9).

Proof of Theorem 4. (A) the properties of the integers a, b, f, g.
(i) Any one of (7), (8) or (14) is necessary and sufficient to ensure that

x y does not reduce to xy or to yx.
(ii) Given an integer a satisfying (4), there exists an integer b such that

(5) is satisfied.
By (5) and (13), (n3(2), 12f + 1) 1 and hence there exists an integer

g such that (15) is satisfied.
By (5), (n,2b 1) 1 andby (4), (5), (13) and(15),na/b(b 1) 3g.
(B) the necessity of the given conditions.
(i) Since G is nilpotent of class 3, the commutators (y, x), (y, x, x) and

(y, x, y) form a basic set in the components x and y [14]. Thus, from equation
(3), any s-function on G has the form

x o y xy(y, x)(y, x, x)fl(y, x, y)f2.
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By Theorem 1, (ii), inverses are the same in G and Go hence

which implies

and hence

(x-1 o y-1)(y o x) 1

((y, x, x)(y, x, y)),+s. 1

(y, x, x)]l+s (y, x, y)l/ 1.

Thus we may write the s-function as

x o y xy(y, x)a(y, x, x)(y, x, y)-/. (44)

(ii) By direct computation, we find from the associative law that

(y, x, z)a-S(x, z, y)a+2](z, y, x)-" 1

and hence by (11),
x, z, y "(-)-s] 1.

Since Ga is Abelian, this proves (13).
(iii) By (13) and (44),

[y, X]o (y, x)l-(y, x, x)a(2-)(y, x, y

(y, x)-:(y, x, x)a+1(y, x, y)+s

[y, x, Z]o (y, x, z) (2a-1) (y, x, z) 12-b1,

(45)

(46)

(iv) By Theorem 1, G is nilpotent of class 3 and, by the proof of (44),
xy, expressed as a word in G, must have the form

x o o o x, o

and hence by (45) and (46)

(y, x)"+-"(y, x, x):++’(y, x, y)-:--: 1. (47)

Taking commutators of both sides of (47) gives

y, x, z)a/b-2ab 1, (48)

Putting xy for x in (47), we find by (23), (24) and (48) that

(y, x)+-" (y, x, x)]++] (y, x, y)++l 1

which proves (5) and (15).
(C) the sufficiency of the given conditions.
The existence of aa identity and inverses with respect to the o operation

follows from the definition of x o y as in Theorem 1. x o (y o z), (x o y) o z,
[y, x] and [y, x, Z]o are evaluated as in (B). Associativity follows from the
given conditions and (11), and by direct computation,

x o y o [y, x] o [y, x, x] o [y, x, y]- xy.

Proof of Theorem 5. (A) the properties of the integers a, b, f, g, d.
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(i) Any one of (7), (8), (14) or (19) is necessary and sufficient to ensure
that x o y does not reduce to xy or to yx.

(ii) Integers satisfying (4), (5), (13) and (15) must exist, as in the
previous proof, but the existence of integers satisfying the remaining con-
ditions depends on the values of n, n3, n and m(3).

If there exist a, f, d satisfying (4), (7), (8), (13), (14) and 16 )-(19), then
there exist b, g satisfying (5), (15) and (20). The existence of b and g satis-
fying (5) and (15) follows as in the previous proof; that (20) is also satisfied
follows from (13), (15), (17) and the fact that G contains no elements of
order 3.

(B) the necessity of the given conditions.
(i) Since G is nilpotent of class 4, (y, x), (y, x, x), (y, x, y), (y, x, x, x),

(y, x, x, y) and (y, x, y, y) form a basic set in the components x and y [14].
Since G/G4 is nilpotent of class 3, by Theorems 1 and 4, an s-function on G
must have the form

x o y xy(y, x)’(y, x, x)](y, x, y)-](y, x, x, x)’’(y, x, x, y)(y, x, y, y)8.
Since inverses are the same in G and Go, we have

which implies
(x-1 o y-)(y ,, x) 1

(y, x, x, x)(y, x, y, y)-)/+’-8 1

and since G contains no involutions

(y, x, x, x)]+- (y, x, x, y)+-* (y, x, y, y)+- 1.

Hence the s-function can be written

x o y xy(y, x)’(y, x, x)/(y, x, y)-’(y, x, x, x)(y, x, x, y)(y, x, y, y)+’.

(ii)

implies

The alternative law in the form

(xc, x) ,y xo (xoy)

(y, x, x)(’-)-3](y, x, x, x)’]+--a/(y, x, x, y)/-/+- 1. (49)

By taking commutators with both sides of (49), we find

n( 2 /a( a 1) 3f
By repeated substitutions of xy for x in (49) and by (23) and (24), since G
contains no involutions,

n4( 2 /af + d 5d 3f (50)

and similarly, putting yx for y,

n(2)/f af -’t- d d. (51)
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From (49), (50) and 51 ), we have

na(2)/a(a- 1) 3f (52)
and

n4(2)/f + 2d. (53)
By (51) and (53), the s-function may be written

x o y xy(y, x)’(y, x, x)S(y, x, y)-S(y, x, x, x)(y, x, x, y)(-l)(y, x, y, y)-’
assuming G contains no involutions.
We obtain additional information on the invariants and the divisibility con-

ditions by applying the following lemma"

IEMMA 1. (Levi, [11]) If every 2-generator subgroup of a group G is nilpotent
of class 2, then G is nilpotent of class at most 3 and n/3.

In our case, G/Z(G) is nilpotent of class 3, where Z(G) denotes the centre
of G. Let nPa denote the exponent of (G/Z(G))8. Consider the 2-generator
subgroups of the central quotient group; let n(2) denote the least common
multiple of the exponents of the third terms in their respective lower central
series. By (53), nPa(2)/f -t- 2d, and by Lemma 1, na/3(f + 2d), i.e.

(y, x, z)(+) -- 1 (modZ(G))

and (y, x, z, W)3(f’2d) 1

which implies

n4/3(f -I- 2d). (54)

If G contains no elements of order 3, this implies (16); similarly, from (52),

n4/a(a- 1) 3f.
(iii) By direct computation, the associative law implies

(y, x, z]a2-f(z, y, x)a2--’f(x, Z, y)a+](z, z; y, x)-af-(+)/

(y, x; z, y)a2(z, X; Z, y)-as+’(+)/2(z, y, y, x)’-(z, y, x, y)-a’-f-

(z, y, z, x)--a’f(z, y, x, z)-a’f-d(2a-1)(y, x, z, x)’f(lTa)(z, y, X, X)af-d

(y, x, x, Z)I(a-i)+d(2a-1)(y, X, y, z)-d-aI(y, X, Z, y)$(a-1)--d
(55)

(z, x, y, z)-(z, x, z, y)-(y, x, z, z)-](+)-(z, x, x, y)-]+(-)

(z, x, y, y)-S-(z, x, y, x)-s- 1.

Putting yx for y in (55) and applying (23) (24), (52) and (53) gives

(y, x; z, x)(y, x, z, x)a’f-d-’f(z, X, y, x)-a-3"f’’a’f-3d

z, y, x, x a-s- z, x, x, y )-aI-2I-d
y, x, x, z)--]-] 1.

(56)
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Since G is nilpotent of class 4, by (29)

(y, x; z, x) (y, x, z, x)(y, x, x, z)- (z, x, y, x)-(z, x, x, y) (57)

which, with (12), reduces (56) to

(z, x, y, x)a’+)(z, x, x, y)+ 1. (58)

By (54) and (58),

(z, x, x, y)]+ 1 (59)

and by (56), (57) and (59),

(y, x, z, x)’+(z, x, y, x)]+ 1. (60)

(59) and (60) are true provided only that G contains no involutions; if G
contains no elements of order 3 either, then (y, x, z, w)r+ 1 and (16)
follows.

(iv) By (53), using the expression found in (ii) for the s-function,

[y, X]o (y, x)l-2a(y, X, x)a(2a-1)(y, X, y)(-)(y, x, x, x)-(+)(-)

(y, x, x, y)-(+])(-)(y, x, y, y)-(+])(-) (61)

[y, x, Z]o (y, x, z)(-)(y, x, x, z)-(-)(y, x, y, z)-(-)

y, x, z, z)-(-)
(62)

[y, x, z, W]o (y, x, z, w)-(-) (63)

(v) By Theorem 1, Go is nilpotent of class 4 and xy must have the form

xy x o y [y, x]’o ,, [y, x, x] , [y, x, y]- o [y, x, x,
e(2b--1)o [y, x, x, yjo [y, x, y,

where
na(2)/b(b 1) 3g

n( 2 /g -t" 2e

n/3(g W 2e).

By (23), (24), (61)-(63), we find

(y, x)"-(-)(y, x, x)]+(-)(y, x, y)-s-(-)

(y, x, x, X)d-ag(2a-1)2-e(2a-1)3Tbf(2a-1)

(y, x, x, y)(-)(-+(-)-(-)(-))
(64)

y, x, y, y)-d-I’ag(2a-1)+e(2a-1)a+b’f(2a-1) 1.

Taking commutators of both sides of (64) gives

(y, x, z)+-(y, x, x, z)]++/(y, x, y, z)---/ 1 (65)
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and again with (65) gives

(y, x, z, w)a+b-2ab 1 which implies n4/a + b 2ab.

Putting y2 for y in (65), by (65) and (66) we have

(y, x, x, z)I+g+12zg (y, x, y, z)z+g+12z 1

since G contains no involutions. Hence, by (65) and (67),

(y, x, z)a+b-2ab 1 which implies n/a b 2ab.

Repeated substitution of yx for y in (64) shows that

n4(2)/-d -t- ag(2a 1) -t- e(2a 1) -t- bf(2a 1)

and similarly, by repeated substitution of xy for x in (64)

n4(2)/d ag(2a 1) e(2a- 1) -t- bf(2a 1).

By (69) and (70), since G contains no involutions,

and
n(2)/bf(2a- 1)

n,(2)/d ag(2a 1) e(2a 1)a.

(66)

(67)

By (68) and (71),

m(2)/bf,

By (72) and (73),

(68)

(69)

(70)

(71)

(72)

n(2 /af n4( 2 /bg, n( 2 lag. (73)

n,(2)/d e(2a 1) a.
By (73), since n(2)/g -t- 2e, we have

n4( 2 /ae, n4( 2 /d + e, n,( 2 /a d

and (20) is true. Hence the s-function may be written as

x o y xy(y, x)a(y, X, x)f(y, x, y)-f(y, x, x, x)d(y, x, x, y)-d(y, x, y, y)-

(74)

and xy as a word in Go becomes

xu x o u o [u, x] x] o [u, x, x, x]- o [u, , u, 1.." [u, x, [u, x, u]:TM ,, [u, x, z, u]. ,,

If G contains no elements of order 3, so that (16) holds, then by these divisi-
bility conditions and (12) applied to (55), we have

(y, x; z, x)’+](y, x; z, y)’+2"(z, x; z, y),+2. 1
and hence

(y, x; z, x)+2 1. (75)
(75) implies (18), since the second derived group of every 3-generator sub-
group of G is Abelian and generated by commutators of this form. Applying
the divisibility conditions to (64) gives

(y, x)+-2’(y, x, x)Z+(2"-)2(y, x, y)-]-(2a-)2 1 (76)
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and, substituting y2 for y in (76), we find

(y, x, x)$+{(2a-1)2 (y, x, y)f+g(2a-1) 1

which implies n(2)/f W g(2a 1) or, equivalently, (15). From (15)
and (76),

(y, X)a+b-ab 1

which implies (5) and (4), since G contains no involutions and thus G’ is
a product of regular p-groups.

(C) the sufficiency of the given conditions follows as in Theorem 4.

Note. (1) If G contains elements of order 3, we know only that

n4(2)/f + 24 and n4/3(f + 24).

In this case, the given conditions with d 0 will satisfy the identities but
may be more restrictive than necessary.

(2) Consider the case d 0, for G a p-group, p > 3. (Analogous though
more complicated statements are true for each permitted value of d and for
direct products of p-groups.) Then m(3) p, for some k >_ 0, and since
p is odd, G is 3-metabelian if and only if G is metabelian [1]. If G is metabelian,
k 0, and the divisibility conditions become

n 2a 1) 1; n/a(a 1) 3f; n/a -t- b 2ab n/f

and hence a 0 or 1 (mod p) are both possible. If G is not metabelian,
]c > O, p/a. This leaves only one possibility" a 0 (mod p).

(3) Necessity can be proved in Theorems 4 and 5 because the sets of
basic commutators in class 3 or 4 groups have only one commutator of given
weight in each component, and hence appropriate substitutions and expan-
sions will give equations involving only one basic commutator. But for
groups of class 5 or higher, this technique will no longer work, since the sets
of basic commutators contain more than one commutator of given weight
in each component.

Proof of Theorem 6. (i) Any one of (7), (8) or (14) is sufficient to
ensure that x o y does not reduce to xy or to yx.

(ii) By (24) and induction on It, since G is 3-metabelian,

((y, x), z) (y, x, z) (77)

and in particular, by (21),

((y, x, x)f, z) ((y, x, y)/, z) 1. (78)

(iii) By (11) and (13),

(y, x, z)a(1-")(z, x, y)+(z, y, x)’ (y, x, z)-r(z, x, y)-’(z, y, x)" (79)

and associativity of x o y follows from (77)-(79) by direct computation.
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(iv) By (77), (78) and (21),

X--1 --1 a(2a--1)[y, X]o (y, x)l-2a(x, y, y

and by (80) and (13),

[y, x, Z]o

(v)

Proof of Theorem 7.
(9), m/b. Let

(80)

where pl, p8 are distinct primes.
Since G is a periodic nilpotent group, G P Q, where

n a+b- 2ab pl

Letm 1 2b.
onto Go as follows"

P P X X P8

is the direct product of the Sylow p-subgroups of G, i 1, ..., s, and the
Abelian subgroup, Q, is the direct product of the remaining Sylow subgroups
of G. Also, Go P X Q where P and Q are the groups formed by the
elements of P and Q respectively, under the operation x o y.

Then (n, m) 1, by (4). Define a mapping, , of G

x x for anyxeP

y y for anyyeQ

(xy) x* o y* for anyxeP, yeQ.

(n, m) 1 implies that m is co-prime to the orders of the elements of P,
hence is one-one and onto. Thus it suffices to prove that, if G satisfies
(i) or (ii), O is a homomorphism on P.

(xy) xy(y, x)()(y, x, x)(y, x, y)(y, x, x, x)

(y, x, x, y)*((y, x, y, y)( (mod G)

by Hll’s collecthg process, where f,(m) nd f(m) re integral lher com-
bhtions of () nd (), nd f(m), f(m) nd fs(m) re integral lher
combinations of (), () nd (). Since n/b, either (i) or (fi) is scient
to imply that

(xy) (xy)- x-y-(y, x)(-. (82)

(y,x,z)2"+(x,y,x-ly-,z)-a(y,x,z,z-I)a(x, y,x-y-,Z, Z-) (81)

o o [, ]o [, , ] o [, , ]
X--1 --1 --1 --1xy(x, y, y )a2( (y, z)-a(x, y, x y xy(y, x)

by (80), (81), (5), (15) and (21)

Let b be any integer such that (5) is satisfied. By
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x o y’ xl-2y1-2b(yl-b,
xl-yl-(y, x)a(-)(y, x, x)-ab(2b-1)(y, X, y)-’b(:-)
"(y, X, X, x)ab(2b--1)(2b+)/3(y, X, X, y)ab(2b-)

(y, x, y, y)a(:-)(+1)/3 (mod G) by (23) and (24)

x-2by-:’(y, x)’(-) by (i) or (ii) and (9).
By (82) and (83), since n/a + b 2ab, (xy) x’oy". Hence

xy x o y
which proves the theorem.

IV. Metabelian groups with property P

(83)

Proof of Theorem 8. (i) follows from (11) since

)- )-((x, x+ x, ., x_ (x+, (x, x_), x x+,

(ii) The inner components of a basic commutator in the subgroup (x, y)
are y and x in that order. Since G is metabelian, only simple commutators
are needed in the basic set. By (i), any basic commutator of weight w may
be written (y, x, y), for some integers j,/ such that j / W 1 w.

(iii) (y,x) (y, x):(y, x, x) by (24) and (iii) follows by induction on n.
(iv) If GIG’ has exponent r, then xe G’ and hence (z, y, x) 1 for

every x, y, z e G. This implies, by (24), that (z, y, x-) (z, y, x-) and
(iv) follows from (iii).

(v) By (iii), I-I-- (z, y, x) c(,) 1 and (v) follows.
(vi) By (i), any commutator containing r identical outer components may

be put into the form (z, y, x). By (v), it may then be expressed as a product
of powers of

(z, y, x), ..., (z, y, _x),

and is therefore not needed in the basic set.
(vii) There are 2 basic commutators of weight 1 in (x, y}, namely x and y.

By (ii), there are (w 1) basic commutators of weight w, for every w > 1.
For w

_
r -t- 1, the commutators have not more than (r 1) outer com-

ponents, and hence they all belong to the basic set. For w >_ 2r -t- 1, the
commutators have at least (2r 1) outer components, each of which is
either x or y. Hence at least r outer components are identical, and all these
commutators may be deleted from the basic set. For w r -t-/, 2

_
k

_
r,

the commutators have (r -t-/ 2) outer components. Those which belong
to the basic set are those in which no more than (r 1) x’s or y’s occur
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among the outer components i.e. those of the form

y, kx, ,.-ly y, +Ix, ,._y ..., y, ,._x, _y ( y, ,.x, _y

There are (r k -t- 1) (2r -b 1 w) such commutators for each k.
Hence, the number of commutators in the basic set is

2r2-t- E+ (w- 1) -t- -,+2 (2r-t- 1- w)

2-t-r(r+ 1)/2-t-r(r-- 1)/2 2-t-r.
(viii) If G’ has exponent t, (vii) and (3) imply (viii). This gives a set

of functions, among which all possible s-functions must occur.

Proof of Theorem 9. (i) Since G is metabelian and G/G’ has exponent 2,
we have by (11) and (29) that

(u, v, x, y, xy) 1 (84)
is a law in G.
By an argument similar to that of the preceding proof, a 3-generator sub-

group (x, y, z) _< G has a basic set of commutators

x, y, z, (y, x), (z, x), (z, y), (y, x), (z, x), (y, x, y), (z, x, y), (z, y),

(y, x, z), (z, x, z), (z, y, z)(y, x, y), (z, x, y), (z, .x, z), (y, x, y, z), (85)

(z, x, y, z), (z, y, z), (y, x, y, z).

By (11) and (25),

(y, x, z) (z, x, y)(y, x, z)-(z, x, y). (86)

(ii) By Theorem 8, any s-function on G mus be of the form

x o y xy(y, x)(y, x)(y, x, y)*(y, x, y)f

where c, d, e, f are integers modulo t, the exponent of G’.
Since inverses are preserved, by direct computation

(x- o y-)(y o x) 1 (y, .x)’-(y, x, y)-
and hence either

d-e--0 (modt) (87)
or

(y, x) (y, x, y) is a law in a. (88)

Suppose (88) is true. Choose any two elements u, v e G and let y (u, v).
Then (88) implies (u, v, x) (u, v, x)-3 1, and since is odd, (u, v,. x) 1
is a law in G, i.e. G is nilpotent of class 2, which is a contradiction. Hence
(87) holds, and any s-function on G is of the form

x o y xy(y, x)(y, x)a(y, x, y)a(y, x, y)S. (89)
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(iii) By (84) and the associative law, direct computation shows that

(z, x, y)’(z, :x, y)S(y, x, y, z)C(y, x, y, z) 1 (90)

is a law in G, where

A c-c+2cd-t-sd- 3d-Sdf-4cf+6f
B 8d- 2cd--8df-l-2f
C 8d 2cd 8df -[- 2f + 4cf
D 4d- cd-t-f.

Choosing x y in (90) implies that (z, x)a- 1 is a law in G and, as
in (ii) above, we find that

A- 2B-- 0 (modt). (91)

Choosing z x in (90) implies similarly that

C-2D--0 (modt). (92)

Taking commutators of both sides of (90) with yz twice, expanding and
comparing with (90) shows that

((y, x, z)(y, x, y, z))" 1
and letting z x,

((y, .x)(y, x, y))" 1. (93)
As in (ii), since G is not nilpotent, (93) implies that B 0 (t), and hence
by (91), A 0 (t).
Thus (90) becomes (y, x, y, z) c (y, x, y, z)" 1, and letting x (u, v)

this leads to
(u, v, y, z) c 1.

Since G is not nilpotent, C - 0 (t), and hence by (92), D 0 (t).
Since is an odd prime, the only solutions of these four simultaneous

congruences are c 0 or 1, d --- 0, f 0 (t), which lead to

x o y xy or yx.

V. Examples
(i) Let p and q be primes such that

p-- 1 (3), q-- 1 (3), p-- 1 (q). (94)

Let G(m, n) be the group of order 2pq defined by

G(m,n) (s,t, uls= q u (s,t) 1;s s,t t’)

where m, n are integers modulo p, q respectively such that

m 1, ma-- 1 (modp), n yl 1, na-- 1 (modq).
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By the Ramification Theorem of Honda [7], if m is fixed, the two values n,
n lead to isomorphic groups, but the two values m, m lead to two non-iso-
morphic, strictly index-preserving, normaliser-preserving, lattice-isomorphic
groups.
The operation x o y xy(y, x) is associative on G G(m, n) if and only

if
(/c-- 1) -----0 (modpq)

and by the congruences (94), this allows ] 0, 1, p, 1 p.
The choice of/c 1 p gives Go G(m, n), which is not isomorphic to G.

Thus the results of Theorem 1 are best possible.
(ii) Let T be the 2-Sylow subgroup of the symmetric group of degree 8.

B. H. Neumann [15] has shown that T is nilpotent of class 4, 2-metabelian
but not 3-metabelian and of exponent 8. We show two additional properties
of T:

(A) no s-function may be defined on T, even though integers exist which
satisfy the divisibility and co-primeness conditions of Theorem 5.

(B) a binary operation can be defined on T which induces an s-function
on a maximal subgroup, H, of T, such that H has exponent 4.

This shows that Theorems 3, 5 and 6 are best possible in the sense that we
cannot remove the restrictions from their hypotheses i.e., we must in general
require that the commutator subgroups of the 3-generator sub-groups of G
be regular p-groups (in Theorem 3), that G contain no involutions (in Theorem
5), and that G be 3-metabelian (in Theorem 6).
Using the permutation representation of T given in [15], we find n. 4,

n n 2 and T Z(T); hence any s-function on T must induce an
s-function on TITs. Let n be the exponent of (T/T). Then n. na 2.
By Theorem 4, since T/T is nilpotent of class 3, the only possible s-functions
on T/T are

x o y xy(y, x) fora 0orl.

Hence the only possible s-functions on T must be of the form

x y xy(y, x)a(y, X, X, X)d(y, X, X, y)(y, x, y, y) (95)

where a 0, 1, 2, 3 and d 0, 1 for each i.
Suppose there exists an s-function of the form (95) for a 1 or 3. Then

since d --d (rood m), and since (x, y, x, y) (x, y, y, x) in a nilpotent
group of class 4,

x y y o x xy(y, x)-(y, x, x, x)(y, x, x, y)(y, x, y, y)

is also an s-function of the form (95), where a 0 or 2 respectively. Hence it
suffices to show that no s-function can be defined on T with a 0 or 2.
We consider each function of the form (95) for a 0, 2 and each d 0, 1,

and exhibit for each such function, three elements of T which do not asso-
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ciate. In the notation of [15], these are as follows"

if a 0, dl 1, then a3o (asoal) (a3oa.) oa.

ifa 0, d. 1, theaao(aoa.a) (aoa)oasa.

ifa 0, d3 lorifa 2, d d 0, d 1,

then al (as o a) (a o as) o a3.

ifa 2, dWd-l-d---- 0(2), rhea (aasoa)oaal aaso(aoaal).

ifa 2, d 1, d d 0ord d. 0, d lord d d 1,
then a a o (as o al a) (al as o as) o a a3.

On the maximal subgroup H (Tr, a as, a), two s-fuactions can be
defined, namely

xoy xy(y,x)a tora 2, 3.

(iii) Let M be the example (due to B. H. Neumann [15]) of a 3-metabeliaa
but not metabeliaa group. M is nilpoteat of class 4, aad n 8, n 4,
n n4 2. Hence from Theorem 6, we know that two s-functions may be
defined on M, namely

x o y xy(y, x) fora 2, 3.

However, we find that for this particular group, there are 4 additional s-func-
tions, namely

x oy xy(y, x)(y, x, x, x)(y, x, x, y)(y, x, y, y) fora 0, 1, 2, 3.

The associativity of these additional s-functions follows from (11), and from
the properties of M quoted above. In each case, for the s-function as stated,
we have

xy xoyo[y, x]aoo[y, x, x, X]oO[y, x, x, y]oo[y, x, y, y].

This example shows that the conditions stated ia Theorem 6, while sufficient
for the existence of s-functions, may be more restrictive than necessary.
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