
FINITE GROUPS WITH MAXIMAL NORMALIZERS

BY

Beginning with Dedekind’s fmous determination of the groups in which
ech subgroup is normal, there are several results in the literature deMing
with groups hving mny normM or "nearly normal" subgroups (for finite
groups see e.g. [6] nd the references given there). One of the possibilities
for defining "nearly normal" is to require that the subgroup in question hs
"big" normlizer. Thus, B. H. Neumnn determined in [8] 11 infinite
groups, the normlizers of 11 of whose subgroups hve finite indices. In
this work we re interested in finite groups, ia which the normlizer of ech
(non-normM) subgroup is mximM. The min result is that there exists
only one semi-simple such group, nmely PSL(2, 13). An nlogous result
states that if the centrMizer of ech (non-centrM) element is mximM, the
group is solvable. Lemm 7, deMing with special class of p-groups, my
lso hve some independent interest.
The contents of this pper formed prt of the uthor’s Ph.D. thesis in the

Hebrew University, Jerusalem. It is pleasure to hve this opportunity
of thnking my supervisor, S. A. Amitsur, for his help during the preparation
of this thesis.

1o To begin with, we formulate more precisely our min result.

THEOREM 1.1 Let G be a non-solvable finite, group. Suppose that for each
subgroup H, satisfying () H is not subnormal and b H is either a p-group or
a {p, q}-group, p and q being primes, the normalizer N(H) is a maximal sub-
group of G. Then G K X S, where K_ PSL( 2, 13) or K SL( 2, 13),
S is abelian, and the orders of K and S are relatively prime.

Conversely, if G K X S, K and S as above, then each non-normal subgroup
of G has a maximal normalizer.

Proof. We ssume t first that G is semi-simple. Then G hs no sub-
normal solvable subgroups, so in prticulr ech p-subgroup nd ech {p, q}-
subgroup of G hs a maximM normlizer (it will be seen from the proof,
that in the semi-simple cse the mximMity of N(H) is needed only for
p-subgroups nd subgroups which re extensions of p-groups by q-groups).
The following lemms, with the exception of Lemm 7, re proved under the
ssumption that G is semi-simple nd stisfies the hypothesis of Theorem 1.
It follows from this assumption that the order of G is even.
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LEMMA 1. Let A 1 be a p-subgroup of G, and let N N(A ). Then N
has a normal series 1 < A <3 K< N, in which N/K is a p-group, each sub-
group of K/A is normal in N/A, and K/A is a Dedekind group of order rela-
tively prime to p.

Proof. If N is a p-group, choose K A. If N is not a p-group,
let B/A 1 be any q-group of N/A, where q p and q is a prime. Then A
is a normal Sylow subgroup of B, hence characteristic, hence normal in N(B).
Therefore N(B)

_
N N(A). However, N(B) is a maximal subgroup,

so N(B) N implying B <:1 N and B/A <3 N/A.

Letting B be, ia turn, any of the Sylow subgroups of N/A for primes dif-
ferent from p, we find that N/A has a normal p-complement K/A. Then
N:K N/A :K/A is a power of p. Any subgroup of K/A is generated
by its Sylow subgroups, whose orders are relatively prime to p, therefore
each such subgroup is normal in N/A. In particular, all subgroups of K/A
are normal in K/A, so K/A is a Dedekind group.

Notice that Lemma 1 implies that the group N is solvable.

LEMMA 2. Let A and N be as in Lemma 1. If A is not elementary abelian,
then N has a normal p-complement.

Proof. A not being elementary abelian is equivalent to (A) 1, where
(A) is the Frattini subgroup of A. Suppose this is the case. Then O(A)

is characteristic in A, so normal in N, therefore N

_
N((A)), and

N N((A)) by maximality of N. Apply the previous lemma to (A).
Let K be the subgroup defined there, and let T be a p-complement of K.
Then K (A)T and K <:1 N. This implies T"

_
K for any n e N. K is

solvable, therefore all its p-complements are conjugate, so T T for some
leeK. Writing k ta, teT, ae(A), we find T" T, T-1 T, so

-1 NN(T), n NN( T)a and N N(T)(A). Since (A) <:1 N, a resultna e

of Gaschtitz [2, Satz 5] yields q(A) q)(N), so the factorization of N shows
N N(T) and T is a normal p-complement of N.

LEMMA 3. A Sylow 2-subgroup of G is either elementary abelian or maximal.

Proof. Let P be a Sylow 2-subgroup of G, and N N(P). Suppose. that
P is not elementary abelian. Let T be the normal 2-complement of N,
which exists by Lemma 2. Lemma 1, for A P, shows that T is a Dedekind
group. Also, N T X P. Suppose T 1, and let A be any non-identity
p-subgroup of T. Then A <1 N, so N N(A) by maximality. Another
application of Lemma 1 (for the given A), shows that P is also a Dedekind
group. Hence, for any subgroup Q 1 of P, N N(Q). Since N has a
normal 2-complement, the Frobenius theorem [4, Th. 14.4.7] shows that G
has a normal 2-complement. But then G is solvable, a contradiction.

Therefore T 1, and P N is a maximal sub-group.
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2. We treat first the case that P is abelian, P denoting always a Sylow
2-subgroup of G. The order of P is at least 4. If it is equal to 4, P is ele-
mentary abelian. Applying Lemma 1 for A a subgroup of order 2 in P,
we find that N(A) C(A) has a 2-complement which is a Dedekind group
of odd order, hence abelian. Therefore, remembering that G has no normal
solvable subgroup, so, in particular, no normal subgroup of odd order, we see
that the main result of [3] implies that G is PSL(2, q), PGL(2, q) or AT.
The order of PGL(2, q) and A7 is divisible by 8, so PSL(2, q) (q odd) remains
as the only possibility for G when the order of P is 4.

LEMMA 4. Let P be elementary abelian of order at least 8. Let 1 a e P,
and let M C(a). Then for each1 geM, C(g) M.

Proof. Denote A (a); then M N(A), so M is maximal and its struc-
ture is determined by Lemma 1. Let H be any subgroup of odd order of M;
then Lemma 1 implies AH< M. But AH A X H andH is characteristic
in AH, so H <:l M and M N(H). If g is any element of odd order in M,
then, taking H (g}, we have C(g) C(H) N(H) M, so our assertion
holds for all elements of M of odd order, hence also for all elements that are
not 2-elements.

M has a 2-complement, L say. The preceding paragraph shows L <:l M. If
also P <:l M, then M N(P), and a theorem of Burnside [4, Th. 14.3.1]
shows that G has a normal 2-complement, a contradiction. Hence it is not
true that P <:l M (so P M).

Let H be a subgroup of M of odd prime order. Then we have seen above
that M N(H). Let Q C.(H). The same argument as above, with H
replacing A, yields that each subgroup of Q is normal in M. Therefore,
P Q, and P/Q, which is the automorphism group induced on H by P,
is non-trivial. This automorphism group is elementary abelian, because P is
elementary abelian, and cyclic, because H has a prime order. So P:QI 2.
Let 1 g e Q, and let A (g). We have remarked that M N(A), so

again C(g) C(A)

_
N(A) M.

:Now letgeP Q, and suppose C(g) M. ThenP C(g) (but of
course P

_
C(g), P being abelian). Let h be an element of odd prime

order of C(g), and let A (h). Repeating for C(g) the arguments used for
M C(a), we find C(g) N(A). If heM, we also have M N(A),
hence M C(g), a contradiction. Therefore h M.

Let R C.(A). As for Q, we prove P:RI 2. Since the order of P
is at least 8, QnR 1. Let 1 beQR. ThenheC(b) andbeQ, so
C(b) M and h e M, a contradiction.
We have shown that the assertion of the lemma holds for all elements of P,

hence for all 2-elements of M, which ends the proof.
According to Suzuki [12, Th. 1] if a finite group G has a subgroup M, o even

order and containing the centralizer of each of its non-identity elements, then
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G is either Frobenius group or a so-called (ZT) group, and in the second case
M is either the Sylow 2-subgroup or its normlizer. Since the kernel of
Frobenius group is normM nilpotent subgroup, our G, being semi-simple, is
not Frobenius group. The second alternative is also impossible, since we
hve seen in the proof of Lemm 4, that M is neither the Sylow 2-subgroup
nor its normlizer.

Hence, if P is abelian, its order must be 4 mid G ._ PSL(2, q) for some odd q.

3. We now assume that P is maximal subgroup. The following lemmas,
excepting Lemm 7, re proved under this dditionl hypothesis.

IEMMA 5. Let A be a 2-subgroup of G. If A is not elementary abelian,
N(A is a 2-group.

Proof. By contradiction. Let A be 2-subgroup which is not elementary
belin, whose normlizer is not 2-group, and which is mximl relative
to these two properties. Let T be the normal 2-complement of N(A),
which exists by Lemm 2. Then T # 1, nd T< N(A), A < N(A) nd
TnA limply T C(A).

Let P be Sylow 2-subgroup of G containing A, and z centrM involution
of P. Then z N(A). Maximality of P implies P C(z). Hence
T

_
C(z), nd therefore z e A. Denote B (A, z), then B contains A

properly, so mximlity of A implies that N(B) is 2-group.
Since z centrMizes A nd z 1, B A # 1, the last since A is not ele-

mentary. B is characteristic in B, so normal ia N(B). N(B) being mxi-
ml, we get N(B) N(B). However, the sme reasoning shows that
N(A) N(A), hence N(B) N(A), where N(B) is 2-group and N(A)
is not. This is the desired contradiction.

IEMMA 6. Let P be a Sylow 2-subgroup of G, and let A be a subgroup of P
which is not elementary abelian. Then A < P.

Proof. By the previous lemm, N(A) N is 2-group, which must be
Sylow 2-subgroup, if it is to be maximM. Suppose N # P, nd let B be
mximal intersection of two Sylow subgroups containing A. With A, B
is not elementary abelin, so N(B) is Mso 2-group. This is well known to
be impossible for mximl Sylow intersection (e.g. [13, Th. 7, p. 138]).
Hence N P.

We digress now to deal with p-groups hving the property proved for P
in Lemm 6.

IEMM& 7. Let Q be a p-group. Suppose that each subgroup of Q which is
not elementary abelian is normal. Then at least one of the following holds:
() Q has exponent p;. (b) Q has class <_ 2; or (c) Q is the dihedral group of
order 16.
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Proof. We suppose Q has exponent larger than p, and prove that either
(b) or (c) holds. Let a e Q have order p, let A (a) and B (a). Then
A < Q, so also B <:l Q. Let D (d) be any subgroup of order p not contained
in A. Then DA has order p3 and DA <:1 Q. If p is odd, then DB is the set
of all elements of order _< p in DA and is characteristic in DA, so DB <:l Q.
This shows that in Q/B all subgroups of order p, and hence all elementary
abelian subgroups, are normal. The normality of the subgroups which are
not elementary abelian in Q/B is inherited from Q, so Q/B is a Dedekind group
of odd order, therefore abelian, and Q has class __< 2.

Now let p 2. Suppose Q has a cyclic subgroup of order 4, A1, such that
A1 A and let B A1. Then A1 <:l Q, B1 <:l Q. As above, we get DA <:l Q,
DA < Q, implying DA n DA1 <:l Q. The group DA has order 8, has ele-
ments of order 4, and more than one element of order 2. Hence DA is
either the direct product D A or the dihedral group of order 8. In the
first case D B is again the totality of elements of order 2 in D A
and DB <:l Q. In the second case, DA does not contain A, as the dihedral
group has only one cyclic subgroup of order 4. Therefore DAn DAI DA,
and DA n DA1 is either D or DB.
We may suppose that D can be chosen to be nonnormal, otherwise Q is a

Dedekind group and has class at most 2. Then D DA DA,
so DA DA1 DB, and also DA r DA DB.
B and B, being normal subgroups or order 2, are in the center of Q. If

B B1, then DB DB1 BB1 is also central, implying D <:l Q. We may
suppose, then, that B B. Since A1 can be taken to be any cyclic subgroup
of order 4 different from A this means that all elements of order 4 in Q have
the same square a2. Also, we have obtained DB <:1 Q, so, as for the case that
p is odd, we see that Q/B is a Dedekind group.

If Q/B is not abelian, it has a quaternion subgroup R/B, say. R does not
have elements of order 8, since no group of order 16 having an element of
order 8 can be homomorphic to the quaternion group. Since all elements
of order 4 or less in Q have their squares in B, RIB must be elementary abelian,
a contradiction. This means that Q/B is abelian, so again B has class 2 at
most.
There remains the case in which A cannot be found, namely" Q has only

one cyclic subgroup of order 4. But G. A. Miller has proved [7, p. 129] that
such a Q is either cyclic or dihedral. In the second case the assumption on
normality of non-elementary subgroups shows that the order of Q is 16 at
most, so either (b) or (c) holds also in this case.
Now resume the proof of Theorem 1 (for the semi-simple case). If P is

maximal, the two last lemmas imply that P is either of class two at most, or
the dihedral group of order 16 (recall that groups of exponent 2 are abelian).
If P has class two (or is abelian) then G is solvable (e.g. [5]). Hence P is the
dihedral group of order 16. Once again we deduce from [3] that G is AT,
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PGL(2, q), or PSL(2, q). This time A7 is ruled out because the order of
its Sylow 2-subgroup is too small, not too big.

Suppose G
_

PGL(2, q). Let N be the subgroup of index 2 of G such that
N PSL(2, q). P n N is a Sylow 2-subgroup of N, and it has order 8.
Dickson’s list of subgroups of PSL(2, q) [1, pp. 285-286] shows that P n N is
contained in a dihedral subgroup D, of order q q- 1 or order q 1, of N. Then
Z Z(P nN) Z(D),soD c__ N(Z). ButwealsohaveZ(PnN) Z(P),
so P __c N(Z) and maximality of P implies P N(Z), hence D __c P N and
D PaN. This yieldsq 7orq 9. BothPSL(2,7) andPSL(2,9)
have subgroups isomorphic to $4, which of course can be taken to contain
P a N. Let T be such a subgroup of N, and let A be the normal 4-group of T.
Then N(A) 3 T, since T is not maximal in G. However, T is maximal in
N, and N is simple, so T NN(A) N N(A), therefore No(A)" T 2
and IN(A) 48. This shows that N(A) contains properly a Sylow
2-subgroup of G1 of order 16, contrary to the maximality of P.

So, in the event that P is maximal, as well as in the abelian case (see be-
ginning of Section 2) we find that we must have G

_
PSL(2, q), for some

odd q. Referring again to the list of subgroups of PSL(2, q), it turns out
that the only possibility is G

_
PSL(2, 13).

4. We now let G be a group satisfying the assumptions of Theorem 1,
which is not semi-simple. Let S be the maximal normal solvable subgroup
of G. Let A/S be any p- or {p, q}-subgroup of G/S. Then A is solvable,
therefore A has some {p, q}-subgroup A1 which maps onto A/S. N(A) is
maximal, by assumption, hence so is N(A/S). G/S satisfies, then, the as-
sumptions of Theorem 1 and is semi-simple, so by what has been proven
already, G/S - PSL(2, 13).

Let A be any p-subgroup of G which is not subnormal. Then the structure
of N(A) is still given by Lemma 1, since in the proof of this result the semi-
simplicity of G is needed only to conclude that A is not subnormal. In particu-
lar, N(A) is solvable. AsN(A) is maximal, N(A)S G or N(A)S N(A ).
In the first case G would be solvable. Hence N(A)S N(A) or S _.c N(A ).

If also A __c S, this means A <:1 S, and since S <:1 G, A <:1<1 G, a contradic-
tion. All subgroups of S are, then, subnormal in G and also in S. This
makes S nilpotent.
Next let A be a {p, q}-subgroup of G, which is not subnormal. Then A S,

so AS/S 1. Again N(A) is maximal, and now N(A)S G would imply
AS/S <:l G/S, contrary to the simplicity of G/S. So once again S N(A).

Let p be any prime divisor of IS I, and let S be the p-complement of S, and
A any p-subgroup of G. If A S, then, by what we have just seen, A <:1 ASp.

Since also S <:l G, we obtain S C(A). The same conclusion is true if
A c__ S, as S is nilpotent. Denoting by 0(G) the subgroup generated by
all p’-elements of G, it follows that ST

___
C(0(G)), where S is the Sylow

p-subgroup of S.
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Let K be a minimal non-solvable subgroup of G. Then KS and KS/S are
not solvable. But each proper subgroup of G/S PSL(2, 13) is solvable, so
KS G. Therefore K/K n S KS/S _. PSL( 2, 13).
The choice of K implies K K’. Therefore K 0(K)

_
0(G) for all

primes p. Hence the result of the previous paragraph implies S

_
C(K), so

of course also K , C(S) and K n S

_
Z(G). Now it follows from a result of

Schur [9, IX, p. 119] that K ._ PSL(2, 13) or K . SL(2, 13).
First, suppose K ._ PSL(2, 13). Then K is simple, so K n S 1 and

G=KS=KXS.
Fix some proper non-identity p-subgroup A of K. Let T be any q-sub-

group of S. Then N(T X A) Ns(T) NK(A) is maximal in G. Since
NK(A) K, we must have Ns(T) S. This means that S is a Dedekind
group.

Suppose p (I K I, S I), p being a prime number. First let p > 2. Choose
an element a e S and b e K of order p. Then

and N((ab)) is not maximal.
So suppose p 2. Let a be as above, and let bl, b., b3 be the non-identity

elements of a Sylow 2-subgroup of K. Let c e K normalize this Sylow 2-sub-
group, such that c permutes the b?s cyclically. As above, c does not nor-
malize the subgroup {1, abl, ab2, b3}, so this subgroup does not have a maxi-
mal normalizer.
Thus we must have (IK I, IS I) 1. S is now a Dedekind group of odd

order, hence abelian.
Lastly, suppose K --- SL(2, 13). As K/K S PSL( 2, 13), we must

have K S Z(K). G/K S has the same structure as G in the case
K
_

PSL(2, 13). Therefore S/K n S is abelian and of odd order. Letting
A be the 2-complement of S, we obtain G K X A. This completes the proof
of Theorem 1.

i. In analogy with Theorem 1, one may ask which finite non-solvable
groups have the property, that the centralizer of each non-central element
is a maximal subgroup. It turns out that there are no such groups. This
follows rather easily from the deep results in finite group theory obtained
in recent years.

Let, then, G be a finite group with the property, that for each g e G, either
C(g) G or C(g) is a maximal subgroup of G. Let S be the maximal solv-
able normal subgroup of G. Then G/S has the same property of centralizers
characterizing G. Therefore, we are going to assume that G is semi-simple.

If G is semi-simple, then obviously C(g) G whenever g 1. Let n be a
natural number, and suppose g 1 for some g e G. Then C(g)

_
C(g’)

and maximality of C(g) implies C(g) C(g).
Let H be any semi-simple group satisfying" if h e H and h 1, then
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C(h) C(h’). We will prove that H is a (CN) group, i.e. the centralizer
of each element is nilpotent.

Indeed, it is enough to prove this for p-elements. Let, then, h be a non-
identity p-element of H, for some prime p. We may suppose C(h) not to be
a p-group. Let ]ce C(h) be a q-element, where q is a prime and q # p. Then
both h and lc are powers of h/c, therefore C(h) C(lc) C(kk). Hence
keZ(C(h)). Let be a p-element of C(h). Since C(h) C(k), the same
reasoning shows C(1) C(]c) C(h), and e Z(C(h) ). Hence each ele-
ment of prime-power order in C(h) is central, and C(h) is abelian.

All the semi-simple (CN) groups were determined by Suzuki [10, Th. 5,
p. 468], and it is easy to check that in none of them C(h) is always maximal.
We shall verify this only for the so-called (ZT) groups, which appear in the
formulation of Suzuki’s result just mentioned, since these were not completely
classified in the paper [10] (they were classified in a later paper [11], but this is
not needed here). Thus, a (ZT) group, G, is, by definition, a doubly transi-
tive group of odd degree, which is not a Frobenius group, and in which only the
identity fixes three letters. Let H be the subgroup of G fixing a letter, then
it follows from the above definition that H is a Frobenius group with a Sylow
2-subgroup of G as a kernel. Hence, this Sylow subgroup is not maximal in
G. On the other hand, (ZT) groups are known to be (CIT) groups, i.e. the
centralizer of each involution is a 2-group. Hence, centralizers of involutions
in G are not maximal subgroups.

It is obvious from the above proof that the maximality of C(g) needs to be
required only when the order of g is p"q. If the order of G is assumed to be
even (in particular, if we invoke the Felt-Thompson theorem), it is even
enough to consider elements of order 2"qa (and we may assume > 0).
That is because the preceding proof then shows that G is a (CIT) group, and
Suzuki’s result actually deals with this type of groups.

Finally, if one wishes to show only that G is a (CIT) group, it is enough to
require C(g) C(g’) for elements g of order 2p only. Thus, let h be an in-
volution, and suppose that C(h) is not a 2-group. Let/c e C(h) have an odd
prime order. Then, as before, we obtain C(h) C(k) C(hk). If is
another involution in C(h), we again obtain C(l) C(lc) C(h). Now
let a # 1 be any element of C(h). Then some power of a, a say, has prime
order, so C(a)

_
C(a") C(h). As IC(h)] is even, another result of

Suzuki [12, Th. 1] shows that G is either a Frobenius group or a (ZT) group.
If G is assumed to be semi-simple, it is not a Frobenius group. As have al-
ready been mentioned, (ZT) groups are (CIT) groups.
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