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1. Introduction

In a paper of It5 and McKean [1] a criterion, known as Wiener’s test, is
obtained for deciding whether a set of states in the simple d-dimensional
random walk will be visited finitely often with probability 0 or 1. Lamperti
has shown [2] that a similar test is valid for a class of Markov chains which
includes all d-dimensional random walks with zero means and finite second
moments.

In this paper we obtain necessary and sufficient conditions for the existence
of Wiener-type tests in arbitrary discrete parameter Markov chains with
stationary transition probabilities.
We follow closely the terminology of Chung [3]. The state space I is taken

as the set of positive integers. P (p) (i,j eI) is the matrix of (one-step)
transition probabilities, its n*h power P (p)) is then the matrix of n-step
transition probabilities. 2 is the set of infinite sequences (i0, il,
with i e I (t >_ 0). The probability measure Pr (-) on 2 is fully determined
once the initial probability distribution of states i0 is known, pj Pr (i0 j).
Usually we will only be interested in conditional probabilities Pr (. i0 j)
where the initial state is fixed. The successive states of a sample path are
labelled x0, xl, and we say that the Markov chain is in state i at time n if
xn i. For any element (i0, i, ...) of 2 we write x(co) i.
We define the Green’s function of the chain

(1.1) G :_-0 p)
where for convenience we put/ j. If G is finite we say that the state
i is transient, otherwise it is recurrent. The set R of recurrent states of I can
be divided into disjoint recurrent classes R {i" Gi > 0} corresponding to
certain recurrent states u.
For any set of states A we define the functions

(1.2) f,(i,A) =Pr(x(co) eA foratleast m valuesof nlxo(o)-i)

(1.3)
h(i, A) f(i, A)

limmf(i, A) Pr (x.(co) eA infinitely often I0() i)

(1.4)
e,(i, A) f,(i, A) f,+(i, A)

Pr (xn(o) e A exactly m times Jx0(c0) i),
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We put e(i, A) e0(i, A), e. e(i, {j} ), f(i, A) fl(i, A), fi f(i, {j}
and note that Gi. f G.. By expanding fro(i, A) according to the position
j and time n of the mth last entry into A we obtain

fm(i, A) h(i, A) - -o,-p(’)e.,( A)
(1.5)

h(i, A) + ,_Ge(j, A).
We say that a set A is transient (recurrent) from state i if h(i, A) 0 (1).

If A is transient (recurrent) from each state i then A is transient (recurrent),
without qualification. Iff > 0 we say that state j is accessible from state i.
For any set A we denote by L(A and F(A the events

lim inf x() e A and lim sup x(o) e A/,
respectively, so that h(i, A) is just Pr F(A)[x0(A) i/. The set A is said
to be almost closed [3], [4] if

Pr//’(A)} Pr {/(A)} > 0

for some initial distribution {P/ in which all p. > 0. This is equivalent to
saying that

p h(j, A) -p Pr {/(A)I x0(o) j} > 0

and hence to the requirement that

(1.6) h(j, A) r {L(A)lxo(oo) j} 0 (j >_ 1).
An almost closed set is said to be atomic if it does not contain two disjoint

almost closed sets. It is non-atomic if it contains no atomic almost closed set.
If I is utomic (non-atomic) the Murkov chain is said to be simply utomic
(simply n0n-atomic). If I contains no non-atomic almost closed set the
Markov chain is said to be atomic, countably or multiply, according to whether
I contains infinitely many disjoint atomic almost closed sets or not.
By considering the subdivision of ft into its atoms and its non-atomic part

Blackwell [4] has shown that I can be decomposed into a finite or countable
number of disjoint almost closed sets C, C., of which at most one is non-
atomic and the rest are atomic and also Pr L (C) 1, or equivalently

(1.7) h(j, C) 1 (j >_ 1).

2. Preliminary results
Before proving our main theorem for transient atomic chains we will first

need several lemmas.

LEMM. 1. If A is a subset of
(2.1) E {j f(s, j) < f(r, j)

then

and also
f,(s, A) <_ "rf,(r, A)

h(s, A)

_
"rh(r, A).

for m>_l
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Proof. We first put I, {1, 2, } and define

(2.2) A, A n (Ru I,) ( >_ 1).

Let R1, R,..., Ra be the recurrent classes which have elements,
ul, us, ua (say), in common with A. Since states in a recurrent class
R are not accessible from states in any other recurrent class we see that
P(A n R) is the disjoint union of P(R1), P(R). Also (A R) con-
sists of finitely many transient states and so is transient; therefore

(2.3) h(i, A,) h(i, A n R) .. h(i, Rk) ..f(i, uk).

The latter equality follows from the fact that a sample path which passes
through u must be in R infinitely often, and conversely, with probability 1.
Using the expansion (1.5) and (2.3) we now obtain

(2.4) f,(i, A,) -f(i, u) + .,_f(i, j)Ge,(j, A).

From the definition of E it then follows that

(2.5) f,( s, A)

.for all positive finite , m. Letting -- we derive the desired result for
finite m. Finally letting m -- we obtain the corresponding result for
h(.,A).

In the case of a simply atomic chain we deduce the

COROLLARY. In a simply atomic Mar]coy chain the set E is transient (re-
current) if . < 1 (’I > 1).

Proof. In such a chain every set is either transient or recurrent [4]. If, < 1 then
h(s,E)

_
h(r,E) < 1

and the latter possibility is excluded, so that E is transient. If , > 1 then
I E is contained in the transient set

{j f(r, j) _< 7-f(s, j)}.

Thus I E is transient and so E is recurrent.

Remark. Analogous results to those in the lemma and its corollary can be
obtained in a similar manner with E replaced by

E {j f(s,j) < ,(r,j)}.

If in addition all states of the chain are transient then E, E, are the same
sets as

E {j: G,j

_
7Gj}, Ea {j: G,. <: 7G.},

and the lemma and its corollary could be equally well stated in terms of them.
In the general case, when some states may be recurrent, both the lemma and
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its corollary would be false if stated in terms of E2, the corollary also being
false for E3.

In the case / 1 it is a simple matter to construct examples of El,
which are transient and others which are recurrent. It is undecided whether
the same is tree for E or E2.

In general the union of a finite number of transient sets is transient but the
union of a countable number of such sets may not be. In the latter case we
can prove the weaker

LEMMA 2. If T1, T2, are transient sets in a Markov chain then we can
construct a transient set T such that Tk T is a finite set for each k >_ 1.

Proof. For each positive i, , we have

(2.6) lim, f(i, Tk I,) h(i, T) 0

and therefore there exist positive integers such that

(2.7) f(i, T) < 2- (i, ] >_ 1)

where
T T I,

If we now put
U-i U,Uk T

we see firstly that f(i, U) <: 2- for I _< i _< k, and hence that

(2.s) h(i, T) h(i, (J, U) <_ f(i, (Jk, Uk) <_ ,f(i, U) < 21-’

for i _< , since each U is transient, and so h(i, T) 0 for all positive i. The
proof is completed by noting that T- T contains at most the states
1 <_ j <_ sup_<_< .
Remark. In a similar, but simpler, manner one can show that if T1, T2,

are transient from a fixed state i then a set T can be constructed which is also
transient from i and such that T T is finite for each positive

Before proceeding further we need to state some of the properties of the
almost closed sets which we shall need in later proofs. These will constitute

LEMMA 3. Any Markov chain can be decomposed into disjoint almost closed
sets CI C of which at most one C is non-atomic, the rest being atomic, such
that

for any set A we have

(2.9) h(i, A) h(i, A C) (i >_ 1)

and if C is atomic then h( i, A n Ck) is either h( i, C) or 0 identically;
(ii) for any "1 < I the sets

(2.10) D {j h(j, C
are transient and hence also is D U D ;
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(iii) if Ck contains recurrent states then

(2.11) f(j, Ck) h(j, C) h(j, )
for any recurrent state in C ;

(iv) ](j, C) > 0 if and only if h(j, C) > O.

Proof. (i) Since the sets C are almost closed the intersectioa of any pair
of events/’(A n C),/’(A n C,), has probability 0. Therefore

h(i, A) Pr (/’{[J (A, C)}I x0() i)
(2.12)

Pr (F(A C)I xo() i) h(i,A n C).
By the definition of atomicity the probability

Pr (F(A C)I x0() i)
must be either Pr (/(C)]x0() i), or 0, identically.

(ii) This is ust a restatement of a corollary on page 109 of [3] with the
invariant set A /’(C). The transience of D follows from part (i).

(iii) As pointed out by Blackwell [4] the sets of the decomposition are
only unique modulo transient sets, also the recurrent classes R of the Markov
chain can be chosen as some of the sets of the decomposition. We assume then
that we have a particular decomposition 1, ., containing all the R
among its members. We then remove from each the transient set Dk de-
fined in (2.10) with 1/2. The states of D we then add to the various
C Dk as follows.

Firstly, to any recurrent class C we add those statesj for which h(j, C) 1,
to obtain the corresponding C. We then divide the remaining states j of D
among the other sets C in any manner such that j is added to C’ if
h(j, C) > 1/2 and otherwise j is added to any C for which h(j, C) > 0. The
resulting sets are then the required C. Since we have only added or sub-
tracted transient sets 311 the functions h(j, C), h(i, A C), are unaltered.

It then follows that (2.11) holds for any recurrent in C since a sample path
which enters Ck enters every in infinitely often with probability one.

(iv) For any j, k, for which f(j, C) > 0 it follows that there is a state in
C such that f(j, ) > O. Combining this with the fact that by our construc-
tion h( , C) > 0 we immediately deduce that h(j, C) > O. Since we always
have f(j, C) >_ h(j, C) we see that the proof of (iv) is complete.
We will now proceed to prove a group of lemmas concerning the behaviour

of the functions f(r, j) for large j in the various types of Markov chains. The
basic result is

LEMMA 4. Let 0 " 1; then a Markov chain is atomic if and only if the
state space I can be divided into a transient set T and almost closed sets
A1, As, such that, for each positive k, r, s, for which h(r, A)h(s, A) > 0
the inequality
(2.13) f(s, j)h(r, A) > .f(r, j)h(s, A)
holds for all recurrent j in Ak and all suciently large j in A
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Proof. We suppose first that the chain is atomic and take C1, C, as
the sets of the decomposition of Lemma 3. For each/, r, s for which

h(r, C)h(s, C) > 0

we define

T8 {j" f(s, j)h(r, Ck) <_ .f(r, j)h(s, Ck), j e C}
From Lemma 1 we deduce that

(2.15) h(s, T8)h(r, C) <_ "h(r, T8)h(s, C).

From Lemma 3 and the atomicity of C it follows that either h(i, T.)
h(i, C), or 0, identically. Since the first possibility contradicts (2.15) we
deduce that T8 is transient when (2.14) holds.

By Lemma 2 we can construct a transient set Tk in C such that T8 T)
is finite for each positive triple ], r, s, satisfying (2.14). We then put
A C Tk and T (J T. From Lemma 3 we see that T is transient and
each A is an atomic almost closed set. From the definitions of T, T,, and
the fact that h(i, A) h(i, C) for all positive i, ], we can deduce (2.13)for
all sufficiently large j in Ak when h(r, A)h(s, A) > 0. If j is a recurrent
state inA thenf(i,j) h(i, A) for all positive i and so also in this case (2.13)
holds when h(r, Ak)h(s, A) > O.

Conversely if (2.13) holds as required we suppose that some set A is not
atomic, that is to say that A contains two disjoint almost closed sets B, C.
If h(r, A)h(s, A) > 0 we see from Lemma 1 that

h(s, B’)h(r, Ak) >_ .h(r, B’)h(s, A)

where B’ is the subset of B where (2.13) holds. Since in this case (B B’)
is a finite set of transient states we can immediately deduce that

(2.16) h(s, B)h(r, A) >_ .h(r, B)h(s, A)

This is also trivially true when h(r, A)h(s, Ak) O.
By the corollary on page 109 of [3] which we used to prove Lemma 3(ii) we

can find states r, s, such that h(r, B), h(s, C) both exceed 1 ,/4) and hence
h(s, B) < ,/4. Since these contradict (2.16) we see that A does not contain

disioint almost closed sets and so A is atomic. This completes the proof of
the lemma.

Remarks. From Lemma 3(iv) it follows that if h(r, A) 0 then
f(r, A) 0 and hence also f(r, j) 0 for all j in Ak, and similarly with s
instead of r. This means that, in general, either (2.13) holds under the re-
quired conditions or both sides of (2.13) are 0.
By suitably modifying the proof of the lemma in the case of a multiply

atomic chain we can show that the lemma remains true for such chains with
"almost closed sets A1, As,..." replaced by "a finite sequence of sets
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A, A, ..., A ". The A’s in this case can only be shown to be subsets
of almost closed sets.
FromLemma 4 we can obtain a sequence of transient sets T, corresponding to, 1 2-’. By the method of Lemma 2 we can construct a set such that

(T, ) is finite for positive . From (2.13) we then deduce the following
corollary which could also be obtained from Martin boundary theory.

COOLLAY. A Marlcov chain is atomic if and only if the state space I can be
divided into a transient set and almost closed sets 1, such that for each
positive k, r, s, we have

(2.17) f(s, j)/f(r, j) -+ h(s, k)/h(r, )
as j ----> in (with the understanding that for recurrent states j in there is
equality in (2.17) and also that we have a 0 in numerator and/or denominator on
the right of (2.17) if and only if it occurs in the same position on the left of (2.17)
for all j

Proof. The sufficiency of (2.17) follows trivially from the lemma. To prove
the necessity we put . C for each/. For any positive/c, , r, s for
which h(r, k)h(s, ) > 0 we have

f(s,j). > (1 2-’) h(s,J[)
f(r,j) h(r,)

for all recurrent j and all sufficiently large j in , and similarly with r and s
interchanged. Therefore (2.17) holds as required when h(r, k)h(s, ) > 0.

As in the above remarks in the case when h(s, A)h(r, A) 0 it follows
from Lemma 3(iv) that any zero or the right of (2.17) is matched by one ia
the same position on the left for all j.
We can also prove results similar to Lemma 4 and its corollary giving criteria

for individual sets C to be atomic. In (2.13) and (2.17), k is then fixed and
r, s, are in C, the condition (2.14) now being superfluous. We can also prove
a somewhat simpler

IEMMA 5. Let 0 < " < 1; then the almost closed set C is atomic if and only if
it is the union of a transient set T and an almost closed set Av such that for each
r, s, in A the inequality

(2.18) f(s, j) > .f(r, j)

holds for all recurrent j in A and for all suciently large j in A
Proof. By Lemma 3 the set

D {j h(j, C) <_ % j C}

is transient. For each r, s, in (C D) we define

T, {j f(s, j) <_ "f(r, j), j e Ckl.
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From Lemma 1 we then deduce that

(2.19) h(s, T) <_ "h(r, T).

From Lemma 3 and the atomicity of C it follows that either h(i, T)
h(i, C), or 0, identically. Since the first possibility contradicts (2.19) with s
in (C D) we see that T, is transient.

We then proceed exactly as in Lemma 4 to construct a transient set T, such
that (T T) is finite for each r, s, in (C D), and put T T U D,,
A C T. We can easily check that (2.18) is satisfied as required.
The proof of the sufficiency of (2.18) follows similar lines to those of Lemma

4. Instead of (2.16) we get the inequality

h(s, B) >_ "h(r, B)

for subsets B of A, r, s in A, and a contradiction follows, as before, if A is
not atomic.
Remark. We can similarly prove a criterion for a M:arkov chain to be atomic

with (2.18) holding in each of a sequence of almost closed sets A and the state
space being the union of a transient set T and the sets A, A, ....
We now prove a lemma concerning the behaviour of f(i, j) as i --* , rather

than j, which is really a restatement of a result of Doob [5].

LEMMA 6. If 0 < 8 < 1 then the state space I in a Markos chain can be divided
into a transient set V and a recurrent set W such that for each transient state j the
inequality

(2.20) f(i,j) < 8

holds for all suciently large i in W.

Proof. From the corollary to Theorem (2.1) in [5] it follows that for any
transient state j we have f(x ,j) -- 0 as n -- for almost all sample paths in
f, which is equivalent to saying that

V i f( i, j). >_ }
is transient for each transientj. We then use Lemma 2 to construct a transient
set V such that V V) is finite for each transient j. Putting W I V
we see immediately that (2.20) holds as required.

Combining Lemmas 5 and 6 we can obtain a division of each atomic almost
closed set C into "shells" analogous to those used by Lamperti in [2].

LEMMA 7. Let 0 < 1, 1/2 < " < 1, then the almost closed set C is atomic,
containing no recurrent states, if and only if C is the union of a transient set B and
an infinite sequence of disjoint finite non-empty sets ("shells")
S0 {s}, S, S, such that

(C So S S,)
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is not transient and

(2.21) ,f(i, j) < f(s, j), f(j, i) < f(s, i)

forieS,,jeS,,m >_ 2.

Proof. We will first prove the necessity in the case when C is one of the
atomic closed sets C of the decomposition of Lemma 3. We then choose A
and T as the corresponding sets defined in Lemma 5 and take V, W as the sets
defined in Lemma 6. Let s Ibe an element of A so that, by Lemma 5, we have
f(s, j) > 0 for all sufficiently large j in A. Therefore, putting

(2.22) E {i ieAa W,f(s, i) > 0}, B C E,

we see immediately that B is transient.

Assuming that So, $1, S,_1 have been defined as sets in E satisfying
the required conditions we then pu;

Tt ,noSn
(2.23)

U, [J,r, {j: .f(i,j) >_ f(s,j) and/or f(j, i)

This latter set U, is finite since T, is finite and Lemmas 5, 6, imply that for i
in E each of the inequalities

,f( i, j) >_ f( s, j) f(j, i) >_ f( s, i)

is satisfied for only finitely many j in E. We can then take S, as any finite
non-empty set such that

U, T, c S, I T,, eeT, uS, u(I E).

From the method of construction of the sets S, we see immediately that
E U S,, each S, is transient and so (C So S,) is not transient,
and the inequalities (2.21) are satisfied as required.

In the general case of an atomic lmost closed set C’ not among the C of
Lemma 3 we remark that by [4] the decomposition is unique modulo transient
sets and so C’ A C is transient for some k. To obtain sets satisfying the con-
ditions of the lemma we need only choose s in A a C’ in the above argument,
then put

B’ (C’ nB) u (C’ C)

and choose as our shells the sequence of non-empty sets of the form S, n C’, in
the natural order. This will still be an infinite sequence since each set (S, n C’)
is transient and their union

U C’ C’,=o(S n En
is not transient.
The proof of the sufficiency of (2.21 follows similar lines to those of Lemma

4. We suppose that C is not atomic and so contains two almost closed sets
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F, G. Since
h(s, F) + h(s, G) _< h(s, C)

we must have one of the terms, h(s, F) say, _< 1/2.
As in Lemma 4 we deduce from (2.21) that

.y h(i,F) <_ h(s,F) <_ 1/2
for all i in C B. As in Lemma 4 we need only choose i in (F B) such
that h(i, F) > (2,)- to get a contradiction. Therefore C is atomic.

If C contains recurrent state, i e S, say, then it also contains the recurrent
class R. IfR is finite thenR T for some/c and so by atomicity (C T)
is transient, contradicting one of the assumptions of the Lemma. On the
other hand, if R is infinite then R n S is non-empty for some m

_
W 2

and hence there is a state j in S such that f(j, i) 1 contradicting the
second part of (2.21). This completes the proof of the lemma.
Remarks. In the simple case of a d-dimensional random walk with zero

mean and finite second moments, as treated by Spitzer in [6], the construction
of the shells given above simplifies for suitable , , to give us I divided up
into concentric spherical shells with radii increasing geometrically, as in [6].

3. Wiener’s test for atomic chains

At this point we can proceed to establish our form of Wiener’s test either by
using an analytical or a probabilistic argument as in [2] or [6]. We choose the
analytical approach and note that the same idea could also be used in proving
Lamperti’s form of Wiener’s test. Our results cannot in general be stated in
terms of capacities as are those in [1], [2] and [6].
We will first obtain a criterion for transience or recurrence for simply atomic

chains and then show how similar results can be obtained for more general
atomic chains. In the following section of the paper we will consider arbitrary
Markov chains and show that the tests we have obtained are not valid for
any more general types of chains, so that our tests are, in a sense, best pos-
sible.

THEOREM 1. In a Markov chain an atomic almost closed set C which does not
contain recurrent states can be divided into shells o {s}, 2, 2, such that
an arbitrary set A in C is transient if and only if the series

(3.1)

is convergent.

Proof. Let us assume that the set A is transient and take B, So s}, S,
as the sets defined in Lemma 7. The sets

A A n U..o S+2
are also transient for all m

_
0 and we can find an integer p such that f( s, A)
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< /2 for m >_ p. For such m we expand

(3.2) f(i, A,) ’,, e(j, A,,)f(i, j)G

as in (1.5). From (3.2) and (2.21) it then follows that

(3.3) m-s,+ e(j, A,)f(i, j)G < .-lf(s, A,) < 1/2
for i e S+o.k, ]c >_ 0, m >_ p, and so also

(3.4) 2 ,nsm+ e(j, A,)f(i, j)G >_ f(i, A n S,+k)

for i e A n S+o.. From the minimal property of the function f(i, A n S+)
among those functions which are regular and non-negative outside A S+
and >_ 1 in A n S+ we deduce that (3.4) holds for all i in I. Putting i s
in (3.4) and summing from k 0 to we obtain

(3.5)
2f(s, Am) 2.e(j, A,,)f(s, j)G_

o f( i, A n S,+
for all m > p which immediately shows that the series

(3.6) ,-0 f(s, A n S,)

is convergent for any transient set A.

Since B is transient we can choose integers no 1 nl n2 such that

(3.7) f(i, Bn {n,, n,-t- 1, ...}) < 2-’

for1 _< i_< . If we now put

(3.8) 2o So, 2, S,u (B {n,_l, n,- 1})

we can deduce that

(3.9) f(s, A a 2,) _< f(s, A S) - 21-’
for s _< and therefore from the convergence of (3.6) it follows that the series
(3.1) is also convergent.

Conversely, if we are given a sequence of sets for which the series (3.1)
converges the Borel-Cantelli Lemma immediately implies that A is transient
from s and hence is transient, by Lemma 3, since s is chosen in Lemma 7 to
satisfy h(s, C) > 0.
Remark. In the course of the proof of Theorem 1 we have really proved

more than stated. From (3.4) we can also deduce that

,-0 f(i, A n S,)

is convergent for all i and from (3.7) and (3.8) it follows that

f(i, An,) <_f(i, AnS,) - 2-’
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for > i. Therefore the series

(3.10) ,0f(i, A 2,)

is convergent for all i if and only if A is transient, the converse trivially follow-
ing from the theorem.
The function h(i, A) can be expressed by Lemma 3 in the form

(3.11) h(i, A) h(i, A C)

where C, C ,... is some decomposition of the state space I and for each
atomic C either h(i, A a C) is 0, if A C is transient, or h(i, C) otherwise.
For an arbitrary set A and any atomic almost closed set C we define the

function
x(A, C) 0 if the corresponding series.. (3.1) converges,

(3.12) 0 if CnR 0, ArCaR 0,

1 otherwise,

where R is the set of recurrent states in I. We can then state for any decom-
position I C u C u the

THEORE 2. In an atomic Markov chain the function h( i, A can be expressed
in the form
(3.13) h(i, A) x(A, C)h(i, C)

or all sets A and all states i in I.

Proof. From (3.11) we see that it is only necessary to show that

(3.14) h(i, A r C) x(A, C)h(i, C)

for all A I, i e I, and all C. This follows from the above remarks and the
definition (3.12) since (A, C) 0 if and only if A C is transient.

From Theorems 1 and 2 we can now deduce our general Wiener’s tests for
transience or recurrence of arbitrary sets in atomic Markov chains. Firstly
the test for a simply atomic chain is

THEOREM 3. In a transient simply atomic Markov chain there is a subdivision
of the state space I into shells o {s}, 2;, 2;., such that an arbitrary set A
is transient or recurrent according to whether the series (3.1) is convergent or
divergent.

Proof. This is obtained directly from Theorem 1 by putting C I and
noting that in a simply atomic chain a set A is either transient or recurrent.

In the case of a multiply or countably atomic Markov chain we take a
decomposition of the state space into the recurrent classes R, R, (with
(J R R) and atomic almost closed sets Q, Q, which do not contain
recurrent states. We can then prove
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THEOREM 4. In an atomic Markov chain there is a subdivision of the state
space I into the set R of recurrent states and the shells ,=0, such
that an arbitrary set A is transient if and only if A c, R is empty and each series

(3.15) ,0 f(
is convergent.

Proof. From Theorem 2 it follows that A is transient if and only if all the
functions (A, Qk) 0 and x(A, R) 0. From Theorem 1 it follows that
x(A, Q) 0 if and only if the corresponding series (3.15) converges for a
suitable s. From (3.12) it follows that each x(A, R) 0 if and only if
each A n Rk is empty, which is equivalent to saying that A n R is empty. This
completes the proof of the theorem.

The corresponding test for recurrence is

THEOREM 5. In an atomic Markov chain there is a subdivision of the state
space I into sets R R, and shells {,},=o, /Z},-.o,, such that an ar-
bitrary set A is recurrent if and only if each series (3.15) is divergent and each
set A R is non-empty.

Proof. From Theorem 2 it follows that A is recurrent if and only if all the
functions x(A, Q) 1 and x(A, R) 1. From Theorem 1 it follows
that (A, Qk) 1 if and only if the corresponding series (3.15) diverges for a
suitable s. From (3.12) it follows that x(A, Rk) 1 if and only if each
A a R is non-empty. This completes the proof of the theorem.

Remarks. As in the remark after Theorem 1 we can show in Theorem 3
that A is transient if and only if the series (3.11) is convergent for all i >_ 1.
In Theorem 4 we can similarly show that A is transient if and only if A a R is
empty and the series

(3.16) ,o f(i, A ,)
is convergent for all/ and all i >_ 1.
On the other hand we can also show that A is recurrent in Theorem 3 if and

only if the series (3.11) is divergent for some positive i. Similarly in Theorem
5 the set A is recurrent if and only if each set A R is non-empty and each
series (3.16) is divergent for some positive i.

In Theorem 3 we can still show that a set A is transient if nd only if the
series (3.11) is convergent for some positive i. This follows from the fact that
the convergence of the series implies that A is transient from i, by the Borel-
Cantelli Lemma, and by atomicity we see then that A is transient.
Theorems 1, 3, 4, 5 could also be stated and proved as tests for transience or

recurrence from fixed state So, by replacing s, sl, s, in series (3.1) and
(3.15) by So. A set which is transient (recurrent) from So is also transient
(recurrent) from each state accessible from So. Thus, if all states in I,
except possibly in a transient set, are accessible from So then Theorems 4
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and 5 can be stated with all the s in the series (3.15) replaced by the single
state So.

4. Tests for general Markov chains

In a general Markov chain, which is not atomic, we will show that there are
not tests for transience or recurrence of the type obtained in Theorems 3, 4, 5.
Theorem I is of course true for any atomic almost closed set C in such a chain
and Theorem 2 can be modified to remain true in the general case, by the addi-
tion of a single term h(i, Co) on the right of (3.13) where Co is the non-atomic
part of I.
One can obtain similar tests to Theorems 1, 3, 4, 5 but with shells 20,21,

which are not fixed in advance. Thetest for transience, with R1, R, R
defined as before, is

THEOREM 6. A set A is transient if and only if A n R is empty and (I R)
can be divided into finite sets o, 1, such that

(4.1) ,o f(i, A ,)

is convergent for all positive i.

Proof. From the convergence of (4.1) we see immediately by the Borel-
Cantelli Lemma that (A R) is transient from each state i and hence is
transient. Since A R is empty then A is also transient.

Conversely, if A is transient, then A n R is empty and we can choose integers
1 no < nl < n. such that

(4.2) f(i, A n In,, n, - 1, }) < 2-’

for i <_ i <_ , for each >_ 1, as in the proof of Theorem 1. If we.now define

,_= {n,_,n,_l- 1, ...,n,-- 1} -R

for > 1 we see that
f(i, 2;,hA) < 2-’

for >_ i and therefore the series (4.1) is convergent for all positive i. Ob-
viously I R (J,0 2;, and so the proof of the theorem is complete.
The corresponding test for recurrence is

THEOREm 7. A set A is recurrent if and only if each set A Rk is non-empty
and also the series (4.1) is divergent for all i in I and all sequences of finite sets
o, for which

(4.2) Pr (i, L{(J,0Z,I) > 0.

Proof. Let A be a recurrent set, then it follows, as in the proof of Theorem
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5, that each set A n R is non-empty. Also we can deduce from the recurrence
that

h(i, A n {U,02,}) > Pr (i, L/[J ,-0,}) > 0

and so the series (4.1) must diverge by the Borel-Cantelli Lemma, for all
i, 2:0,2:1, for which (4.2) holds, as required.

If A is not recurrent then either some set A n Rk is empty or, failing that,
Pr(i,L{I-A -R}) > 0.

In the latter case we choose Z0, Z1, as any sequence of finite sets whose
union is (I A R) and let i be any state for which h(i, I A R) > 0.
The series (4.1) is then trivially convergent and (4.2) is satisfied. The proof
of the theorem is now complete.
We will say that there is a simple (multiple, countable) Wiener test for

transience of a set if there is a sequence of disjoint finite sets S,, and real-
valued functions k(. defined for subsets of all the S,, such that an arbitrary
set A is transient if and only if the series

(4.3) ,0(A
is [are] convergent.for k 1 [1 </ < N, 1 < 1 < ]. We similarly say that
there is a simple [multiple, countable] Wiener test for recurrence with the
series (4.3) required to be divergent. By convention the series (4.3) is said
to be divergent if any one term is infinite.

In the case of transience tests there is no loss of generality in assuming that
each (. is non-negative. If A is non-transient then the divergence of
(4.3) for some/ implies the divergence of

(4.4) ,o 16(A fl S,) I.
Applying (4.3) to the empty set 0 we see that 6,(0) 0 for all k. For an
arbitrary transient set A we put

A+ U A+(ns,)>0(A n S,), A- A

from the transience of A+ and A- it follows that the series of positive, and of
negative, terms of (4.3) are each convergent and hence (4.4) is convergent.
Thus the tests for transience are still valid with (. replaced by 16(" )I.
We may also drop the subscript k on (. since the only subset common
to any S, and S,’,, with k k’, is the empty set 0 for which (0) 0.

THEOREM 8. There is a simple Wiener test for transience if and only if
I R) is the union of finitely many atomic almost closed sets.

Proof. If (I R) satisfies the given condition we can choose sets 2, by
Theorem 4 with 1 <_ k _< N. We choose an infinite sequence of disjoint
finite sets {S}:_0 containing each set which is either of the form
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or consists of a single recurrent state r}. We then put

and
({r}) , () 0

(An{ U::: } k=lf(N Sk, A n S,).
Since there are only finitely many terms in the latter sum, the series

’,0(A n S) converges if and only if each series (3.15) is convergent and
also A contains no recurrent states, that is to say, if and only if A is transient.

Conversely let us assume that (I R) contains infinitely many disioint
almost closed sets B1, B2, and that there is a simple Wiener test for
transience, with non-negative O(A n S,), of the form

"A is transient = 04(A n S,) < ".

Since none of the sets B, B2, is transient and each set B n S, is transient
the series

’-,=0 4(B n S)

is a divergent series of finite terms for each k >_ 1.
1 0 < < < such that

Thus we can choose integers

(4.5) ,=,k-1 (Bk n S,) > 1 (/c >_ 1)

If we now define
A U= U’- (B n S,)

we see immediately from (4.5) that the series ,=0(A n S, is divergent nd
hence A is not transient.
However from the transience of ech B n S, we deduce that

Pr (/’(A)) Pr (F{A UM S,})
_< ’k=M Pr (F(B)

for each M >_ 1. From Lemma 3 it follows that the latter series converges and
so Pr (F(A) 0 and A is transient. We thus have a contradiction and it
follows that (I R) is the union of finitely many atomic almost closed sets.

COROLLARY 1. In a transient Markov chain there is a simple Wiener test for
transience if and only if the chain is simply or multiply atomic.

Proof. We need only note in this case that R is empty and hence I de-
composes into finitely many atoms.

Remarks. In the proof of the theorem and its corollary we have tacitly
assumed an initial probability distribution on I with Pr (x0(0) i) > 0
for all positive i. If instead we assume Pr (x0() s) 1 for a particular s
we can obtain similar results for transience from s. In particular there is a
simple Wiener test for transience from s in a transient Markov chain if and only
if only a finite number of disjoint atomic almost closed sets are accessible from
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s. We can also prove results similar to those of the theorem giving necessary
and sufficient conditions for the existence of Wiener tests for transience of
subsets of a fixed set S.
We now prove the corresponding theorem on the existence of a countable

Wiener test for transience. We need not concern ourselves with multiple
Wiener tests for transience since these are seen to be equivalent to simple
transience tests by replacing several series (4.3) by their sum.

THEOREM 9.
I is atomic.

There is a countable Wiener test for transience if and only if

Proof. If I is atomic we can choose sets 2, by Theorem 4 whose union is
I R. For the case already covered by Theorem 8 we can then define S
as before and put S, 0 for all >_ 0, k >_ 2, and obtain trivially a countable
Wiener test for transience. In the other case when (I R) is the union of an
infinite sequence {Qk}kl of atomic almost closed sets we then put S, 2,
for _> 0 when/c is not a recurrent state and S0 {k}, S,+ 2 for >_ 0
when k is recurrent. We then put ({/c} if/c is recurrent, (0) 0
and otherwise

(A n 2,) f(s, A n

All the series (4.3) are then convergent if and only if A contains no recurrent
states and also each series (3.15) is convergent, that is to say, if and only if
A is transient.

Conversely let us assume that I contains a non-atomic almost closed set C
and that there is a countable Wiener test for transience with non-negative
k(A n S). The series

(4.6) 7-0(c s,)
must then diverge for some k , say. For subsets A of

c’ Cn (O ,-0S,)
the convergence of (4.3), with k , is then a necessary and sufficient condi-
tion for transience of A since the series (4.3) is trivially convergent to 0 for
other values of k. C’ is not transient, by the divergence of (4.6) with k .
Since C is non-atomic we can write it as the disjoint union of non-atomic al-
most closed sets C,, ..., C such that

Pr (/’(C) < Pr (/’(C’) 1 _< i _< m).

CWriting C’ C n for 1 < i < m we deduce that at least two sets C’, C,
are non-transient. Repeating the same argument we can show that there is an
infinite sequence of disjoint non-atomic almost dosed sets A, A., for
which each B A n C’ is non-transient. Applying the same argument as
used in Theorem 8 we can construct a transient subset A of C’ for which the
series
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diverges, which gives us a contradiction. Therefore I contains no non-atomic
almost closed set C, that is to say, I is atomic. This completes the proof of
the Theorem.
We now turn to the question of the existence of Wiener tests for recurrence.

In this case we need to assume tha our set functions b(’ ) are subadditive,
that is to say, that

(4.7) (A u B) _< ,(A) + (B)
for any subsets A, B, of the same S,. Then trivially ,(. is non-negative
for each k.

In the case of recurrence tests we get a more precise correspondence between
the type of test and the type of atomic chain.

THEOREM 10. There is a multiple (N-ple) Wiener test for recurrence if and
only if I is multiply (N-ply) atomic.

Proof. If I is N-ply atomic we can divide I into N atomic almost closed
sets C,, C, C by Lemma 3. Each C is then either a recurrent class
or can be written, by Theorem 1, as a disjoint union of sets {2;,} ,-0. In the
former case we putS C,, S, 0 >_ 1), and ,(A n S,) 0 or depend-
ing on whether .An S is empty or not. In the latter case we put S, 2, and

(A n S,) f(s, A n S,).
The divergence of (4.3) for each k in [1, N] is then, by Theorem 5, a necessary
and sufficient condition for the recurrence of A.

Conversely if there is a N-ple Wiener test for recurrence, we suppose first
that I contains (N -k- 1) disjoint almost closed sets Bx, ..., B+. Since
the complementary sets B, B, , B+ are not recurrent there is for each
i in [1, N -+- 1] an integer k in [1, N] such that

Z,-0,,(S n S,’) < .
Therefore k k. , say, for some pair of distinct integers i, j. From the
subadditivity of ,(. we deduce that

and hence 1 B n B is not recurrent. his contradiction implies ha I
is M-ply aomie, wih M _< N.

Suppose now ha M < N and ha I is the disjoin union of the atomic
almost closed sets D, ..., DM. By the recurrence test the sets T I

[J,=0 S, with 1 _< i _< N, are not recurrent and hence T D is transient
for some h in [1, M]. Therefore h h , say, for some pair of distinct
integers i, j. We .deduce that

(TenDs,) o (TnD,) D,
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is transient, .which is impossible. Hence M N and the proof of the theorem
is complete.
The corresponding result for countably atomic chains is contained in

THEOREM 11. There is a countable Wiener test for recurrence if and only if I
is countably atomic.

Proof. If I is countably atomic we can show as in Theorem 10 that there
is a countable Wiener test for recurrence.

Conversely we can show that if there is a countable Wiener test then, by the
method of Theorem 10, I cannot be expressed as the union of M atomic al-
most closed sets for any finite M. Suppose that I contains a non-atomic al-
most closed set C, so that C is not recurrent and hence the series (4.6) must
converge for some ] , say. Therefore by (4.3) the set

D Cu (I- U,.0S)
is also not recurrent, so that

Pr (/’(D)) < 1.

Since C is non-atomic it can be written as a finite union (J- C of non-atomic
almost closed sets C for which

Pr(/’(C)) < 1 Pr(/(D)) (1_< i._<n).

Hence we have also
Pr (/(Du C)) < 1 (1 _< i _<n)

which means that each set D u C is non-recurrent. By subadditivity

since I is recurrent, so that the convergent series (4.3) must be

,_o,((Due,)rS,) < o (1 _< i _< n).

From the subadditivity of (. we then derive

,0((D u C) n S,) ’,-0 (I n S:) < o,

which is impossible, by the recurrence of I. Therefore I contains no non-atomic
almost closed set and, together with the fact that I is not multiply atomic,
this shows that I is countably atomic and the proof of the Theorem is com-
plete.
We turn finally to the question which initiated this research, the existence

of a Wiener test for a Random Walk on a group [7]. By such a random walk
we mean a Markov chain in which the state space I forms a group under an
operation o, with identity 1 and inverse .- such that 1 o i i o 1 i,
i o i- =/- o i 1 for all i in I, and for which the transition probabilities p,
and hence also p) and G, are functions of Co j.



We say that a Markov chain is indecomposable [3] if it is not possible to
find two non-empty sets J, K in I such that G’k 0 Gk for any pair j e J,
k e K. In the case of a random walk on a group [7] this is equivalent to the
definition of aperiodicity in [6], that I is the smallest group containing all
states i for which pl > 0. This implies that for each i in I there are integers
n, il, i2, i, 1 j, j2, j such that

(4.8) PJlI Pi2il p.i P3z P,, P, > O,

since the set of i for which this is true form a group which is contained in any
group containing all i for which p > 0.
We can now prove our

THEOREM 12. An aperiodic random walk on a group, considered as a Markov
chain, is either simply atomic or simply non-atomic.

Proof. Suppose that I contains an atomic almost closed set C. We then
choose a state for which

Pr{/’(C)lx0() } > 0.

From the group property it then follows that

D d-oC {d-oi:ieC}
is an atomic almost closed set for which

Pr{P(D)[xo(oo) 1} /t > 0.

Let 0 < < 1/2/t and choose by Lemma 3 a state m for which

Pr {P(m- o D)[ x0() 1} Pr {P(D)[x0(0) m} > 1 e > 1/2.

Since D and m- o D are both atomic almost closed sets it follows from Lemma 3
that (m- o D) and D differ only by a transient set and so

ti Pr {P(D)[ x0(o) 1} Pr {P(m-loD)[ x0(o) 1} > 1 e

for each positive e < 1/2 ti. Therefore

(4.9) Pr {F(D)I x0() 11 1.

If either p > 0 or p > 0 then

Pr{P(D)lx0(o) --j} 1 Pr{/’(D)lx0(0) k} > 0

and a similar argument shows immediately that

(4.10) Pr{/’(D)lx0(w) =j} 1 Pr{P(D)]x0(w) =k} 1.

Due to the aperiodieity of the random walk we can find, for each i in I, in-
tegers n, i, ..., in, 1 j, j satisfying (4.8). Therefore by a repeated
application of (4.10) we deduce that

er F(D)] x0(o) = 11 1 Pr I’(D)I xo(w) i,}
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(4.11) 1 ... Pr{/’(D)lx0(0) ix}

1 Pr {/’(D)] x0(0) i} 1

for each i in I, which implies that I is simply atomic. Therefore either (a) I
contains an atomic almost closed set and is itself simply atomic or (b) I con-
tains no atomic almost closed set and so is simply non-atomic. This completes
the proof of the theorem.
We can immediately deduce the

COROLLARY. An aperiodic random walt on a group has either no Wiener
test of any type or else has simple Wiener tests for transience and for recurrence.

Proof. By Theorem 12 the random walk is either simply atomic and so by
Theorems 8, 10 has simple Wiener tests for transience and recurrence or is
simply non-atomic and so by Theorems 8-11 has no Wiener tests of any
type.

Remark. We can also prove more generally that a general random walk on
a group is either simply non-atomic or else it is atomic withone atomic almost
closed set consisting of the smallest group G containing all states i for which
pl > 0 and the other atomic almost closed sets being merely the cosets of G
in I. We can then deduce that there is either no Wiener test for transience or
recurrence from a state i or else there are simple Wiener tests for recurrence
and for transience from each state i, since from i only states of the atomic
almost closed set i o G are accessible.

Note. By an application of the zero-or-one law for symmetric events [8]
one can show that an aperiodic random walk on an Abelian group is neces-
sarily simply atomic. On the other hand an aperiodic random walk on a non-
Abelian group G may be either simply non-atomic, as for instance if G is the
free group on m >_ 2 generators [9], or simply atomic, as in the following
example.

Let G be the group generated by three elements a, b, c of infinite order for
which

(4.12) ab ba-1, ac ca, bc cb.

We define a random walk on this group by putting

p 1/6 if g-lh a, a-, b, b-, c
(4.13)

0 otherwise.

-1or c

Let A be an arbitrary subset of G and put

(4.14) (x, y, z) h(abYc, A).
From (4.12), (4.13) and (4.14) we can then deduce that

6(x, y, z) (x d- 1, y, z) d- (x 1, y, z) J (x, y - 1, z)
(4.15)

+ @(x, y- 1, z) -t-@(x, y, z + 1) d-@(x, y, z- 1),
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since ab’ca"* a*(-z)’bc’. From the simple atomicity of the simple 3-di-
mensional random walk it follows that any bounded solutions of (4.15) are
necessarily constant and hence by [4] the random walk on G is simply atomic.
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