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Let P(x) be a homogeneous positive definite polynomial of order 2m, m > 0
an teer, hang constant coecients. e show that the
emel

K(x, y) ’ exp (2vi P(z) dz,

where x e E, y > 0, W 1 0, the imaginary prt of is positive nd the
rel prt of is negative, stisfies the follog five properties"

(1) K(x, y) e L (E), dependently of y;

(2) f g(x, y) dx 1;

(3) f>oIg(x,y)qdxOyO,l. q;

(4) K(x, y) < A, A dependent of x, y;

(5) K(x, y) < By Ix -’-, B dependent of x, y.
These are sufficient to arantee that K is a reproducg kernel the sense

that, if we define

f(x, y) ] y) f z, y) dz
dz

then f(x, y) f(x) as y 0 in L no and almost eye,where for any
feL(E.), 1 p < .

These kernels are of terest, sce K(x, y) d, hence, f(x, y), as defined
above will satfy the elliptic equation

(O/Oy)u T P(D)u 0

in + {(x, y) x e E,, y > 0}, where P(D) is the erential operator
obtaed from P(x) by replacg each occurrence of x by O/Ox, i 1, n.
Lettg x x x’, x

_
x from thehomogeneity of P, we obtain

by a simple change of variable the follog identities for K"

g(x, y) y- g(xy-, 1) x - g(x’, y x]-) for all x e E, y > 0.
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To prove that K has the indicated properties, we will first assume property
5 and prove the other four properties. Then, we will prove property 5.
To show property 1 we first observe that K(x, 1) -< A for x -< 1 since

K(x, 1) is continuous. We then have

K(x

f y-n g(xy-1, 1) dx
el

f K(z, 1) dz. (letting x yz)

An B z -- dz (by property 5 nd continuity)

A + B, which is independent of y"
Since we huve sho that K(x, y) is ia L(E), property 2 follows by the

Fourier inversion formula, i.e.,

f y) exp [2i P(0)=K(x, dx 1.

Using property 5, we obtain property 3 s follows:

which tends to zero as y 0.
Property 4 is sho directly from the deition. Thus,

]K(x, y)] y-n]g(xy-, l)] y--n exp [--2I()[P(z)I/] dz Ay-’,

I() imaginary part of .
We now must prove property 5, K(x, y) By x -"-, to complete this

defivution of the properties of K. This will be done through a sequence of
lemmas. The heart of the argument 11 be found in the proofs of Lemms 2
and 3.
We first need to introduce some notation. For a an n-tuple of non-negative

integers, i.e., a (a, a, a), a 0, i 1, n, we define

ai, D 0 0"
xa[ = Ox...Ox nd x x

LEMMA 1. Da( P(z) [/) C. P(z) [(/- Q(z), j 1, 2, where m
is any integer greater than or equal to 1 if j 1 and m is any integer greater

is the volume of the unit sphere in E, x 1. is the re of the surface,
x 1, of the unit sphere in E.
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than or equal to 2 ifj := 2, k a I, and Q is either a homogeneous polynomial of
degree k(2m 1) or Q is identically zero, (Q(z) 0).

Proof. (O/Oz)( P(z) (jl’*)) (j/2m) IF(z) (’)-1 OF/Oz,. Siace
oP/oz is either homogeneous of degree 2m 1 or identically zero, the lena
is tree for k 1.
We proceed by ductio on k. Suppose the 1emma is tree for q, i.e.,

D"( P(z) [/) C.[ P(z) (/)-qQ(z)
for all a such that [a q, and the order of Q(z) is q(2m-1) or
rise Q(z) O. Thea

Oz

C,.((j/2m)- q)]P(z)()-q-Q(z) oP W C,.P(z)()-q OQoz
C., P(z) ]()--[((j/2m) q)Q(z) P + Q p(z)].

The polynomial brackets is either zero or homogeneous of degree (q + 1)
(2m 1). Thus, the lena is te for a k.

LEM 2. (a) K x, 1) B x ]-- for n even.
(b) Let K* (x) f,, exp [-2ix.z + B P(z) ] dz. Then, fern

odd, K*(x) B x --.
Proof. (a) Sce
lxl+lK(x, 1) (i + [x + + Ixi)+K(x, )i,

it suffices to show that Ix’I] K(x, 1)[ is boded for all a such tha

:Now

x"K(x, 1) x"/ exp [--2rix.z - 2rilP(z)111’] dz

where . is a eonsgan depeng only on .
Leg 4() be a funegion Mh supporg N 2 such ha 4() 1 for

e (exp [2i P(z) dz

2*’"D"(-2ilP(z)i(z) + exp [2vi[P(z) ll/im]) dz

This and all future integrals in this lemma will be taken in the Cauchy principle value
sense at the origin.
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The first of these integrals is bounded since all of the derivatives of order
of the function

-2ri P(z I/2m (Z) - exp [2ri P(z) ’’]
are in LI(En). It is enough to show that

-2ix"ZDa l/2m(z)e ([ P(z) ) dz

is bounded. Indeed, we need only show tha

e (] P(z) dz

is bounded, a n -t- 1, since he function

f(z) D"( P(z) lt" (z)),

O,
is in L(E,,).
By Lemma 1, we see that we need only show that

Izl > 1,

Izl<l,

The

-2ri.ZQ (l/2m)-n-1e (z) lP(z) dz
z]<l

is bounded, where Q(z) is homogeneous of degree (n q- 1) (2m 1).
ease where Q (z) 0 is clearly bounded.

Letting z’ z/! z I, we can write this integral as

f e-’’[Q(z’)[ P(z’)I(’)-’-] z dz.
zl<l

From the order of homogeneity, for n even, we have Q(z’) -Q(-z’).
Hence,

[Q(z’) P(z’) I(1/m)-"-1] z -
satisfies the conditions for a singular integral kernel, and, therefore, this last
integral is bounded as a principle value integral. This completes the proof
of (a).

(b) is trivial in the case m 1 since exp (rP(z)), R(2) < 0 has
rapidly decreasing derivatives of all orders, and thus, its Fourier transform
multiplied by any polynomial is bounded. In the case m > 1, (b) can be
proved by the same technique used to prove (a), using Lemma 1 with j 2.

LMMA 3. IK(x’,Y) -<AY.
Proof. We use essentially different techniques to prove this lemma in the

cases n even and n odd. It is interesting that this difference depends only on

See A. P. Calder6n and A. Zygmund, On the existence of certain singular integrals,
Acta Math., vol. 88 (1952), pp. 85-139.
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the dimension of the space and not at all on the degree of the polynomial P.
I have been unable to discover a way of avoiding this.
For n even, using Lemma 2(a), we have

K(x’, Y) y-’[g((x’/y), 1)[ <_ y-’*S (x’/y)]-’- By.

For n odd, we use the fact that for R() < O, R($) > O, we have

e 7r-l f u-]e-Ue-(ltu) du.

Thus

1K(x’, y)

--1/2

Y

2y

e-tUt(n-)/K* tl/x dt

e-V2yvnK* vx’ dv

all2letting z n,

letting v,
<-- Y K* vx’ dv "t- vx’ ) dv

The first integral is clearly bounded since K* is a continuous function.
second integral is dominated by vBv-- dv B by Lemma 2(b).
We are now ready to show property 5 of our kernel, i.e.,

g(x, y) SYlx
Thus,

The

K(x, y) Ix I- K(x’, Y lx -) < Ix I-A I-’ aylx --by Lemma 3. This completes the derivation of he properties of K.
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