A CLASS OF REPRODUCING KERNELS ${ }^{1}$

BY
J. R. Hattemer

Let $P(x)$ be a homogeneous positive definite polynomial of order $2 m, m>0$ an integer, in $x \in E_{n}$ having constant coefficients. We will show that the kernel

$$
K(x, y)=\int_{z \in E_{n}} e^{-2 \pi i x \cdot z} \exp \left(2 \pi i \beta|P(z)|^{1 / 2 m} y\right) d z
$$

where $x \in E_{n}, y>0, \beta^{2 m}+1=0$, the imaginary part of β is positive and the real part of β^{2} is negative, satisfies the following five properties:
(1) $K(x, y) \in L^{1}\left(E_{n}\right)$, independently of y;
(2) $\int_{E_{n}} K(x, y) d x=1$;
(3) $\quad \int_{|x| \geq \delta>0}|K(x, y)|^{q} d x \rightarrow 0$ as $y \rightarrow 0,1 \cdot \leq q$;
(4) $|K(x, y)|<A y^{-n}, A$ independent of x, y;
(5) $|K(x, y)|<B y|x|^{-n-1}, B$ independent of x, y. ${ }^{2}$

These are sufficient to guarantee that K is a reproducing kernel in the sense that, if we define

$$
f(x, y)=f * K(x, y)=\int_{z \in E_{n}} f(z) K(x-z, y) d z
$$

then $f(x, y) \rightarrow f(x)$ as $y \rightarrow 0$ in L^{p} norm and almost everywhere for any $f \in L^{p}\left(E_{n}\right), 1 \leq p<\infty$.

These kernels are of interest, since $K(x, y)$ and, hence, $f(x, y)$, as defined above will satisfy the elliptic equation

$$
\left(\partial^{2 m} / \partial y^{2 m}\right) u+P(D) u=0
$$

in $E_{n+1}^{+}=\left\{(x, y) \mid x \in E_{n}, y>0\right\}$, where $P(D)$ is the differential operator obtained from $P(x)$ by replacing each occurrence of x_{i} by $\partial / \partial x_{i}, i=1, \cdots, n$.

Letting $x=|x| x^{\prime},|x|=\sum_{i=1}^{n} x_{i}^{2}$, from the homogeneity of P, we obtain by a simple change of variable the following identities for K :

$$
K(x, y)=y^{-n} K\left(x y^{-1}, 1\right)=|x|^{-n} K\left(x^{\prime}, y|x|^{-1}\right) \quad \text { for all } x \in E_{n}, y>0
$$

Received March 3, 1967.
${ }^{1}$ This research was partially supported by a National Science Foundation grant in applications of functional analysis at Princeton University.
${ }^{2}$ Throughout this paper the letters A, B, C will denote constants which are independent of x, y, z, t, or v. They may, however, have differing values in different parts of the same argument.

To prove that K has the indicated properties, we will first assume property 5 and prove the other four properties. Then, we will prove property 5.

To show property 1 we first observe that $|K(x, 1)| \leq A$ for $|x| \leq 1$ since $K(x, 1)$ is continuous. We then have

$$
\begin{aligned}
\int_{x \in E_{n}} \mid K(x & y) \mid d x \\
& =\int_{x \in E_{n}} y^{-n}\left|K\left(x y^{-1}, 1\right)\right| d x \\
& \left.=\int_{z \in E_{n}}|K(z, 1)| d z . \quad \text { (letting } x_{i}=y z_{i}\right) \\
& \leq A \Omega_{n}+B \int_{|r| \geq 1}|z|^{-n-1} d z \quad \text { (by property } 5 \text { and continuity) } \\
& \leq A \Omega_{n}+B \omega_{n}, \quad \text { which is independent of } y
\end{aligned}
$$

Since we have shown that $K(x, y)$ is in $L^{1}\left(E_{n}\right)$, property 2 follows by the Fourier inversion formula, i.e.,

$$
\int_{x \in E_{n}} K(x, y) d x=\exp \left[2 \pi i \beta|P(0)|^{1 / 2 m} y\right]=1
$$

Using property 5 , we obtain property 3 as follows:

$$
\int_{|x| \geq \delta}|K(x, y)|^{q} d x \leq B^{q} y^{q} \int_{|x| \geq \delta}|x|^{-q(n+1)} d x \leq B^{q} y^{q} \omega_{n} \frac{\delta^{n-q n-q}}{-n+q n+q}
$$

which tends to zero as $y \rightarrow 0$.
Property 4 is shown directly from the definition. Thus,

$$
\begin{array}{r}
|K(x, y)|=y^{-n}\left|K\left(x y^{-1}, 1\right)\right| \leq y^{-n} \int_{z \in E_{n}} \exp \left[-2 \pi I(\beta)|P(z)|^{1 / 2 m}\right] d z \leq A y^{-n} \\
I(\beta)=\text { imaginary part of } \beta .
\end{array}
$$

We now must prove property $5,|K(x, y)| \leq B y|x|^{-n-1}$, to complete this derivation of the properties of K. This will be done through a sequence of lemmas. The heart of the argument will be found in the proofs of Lemmas 2 and 3.

We first need to introduce some notation. For α an n-tuple of non-negative integers, i.e., $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right), \alpha_{i} \geq 0, i=1, \cdots, n$, we define

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}, \quad D=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}}, \quad \text { and } \quad x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} .
$$

Lemma 1. $D^{\alpha}\left(|P(z)|^{j / 2 m)}=C_{\alpha, j}|P(z)|^{(j / 2 m)-k} Q(z), j=1,2\right.$, where m is any integer greater than or equal to 1 if $j=1$ and m is any integer greater

[^0]than or equal to 2 if $j=2, k=|\alpha|$, and Q is either a homogeneous polynomial of degree $k(2 m-1)$ or Q is identically zero, $(Q(z) \equiv 0)$.

Proof. $\quad\left(\partial / \partial z_{i}\right)\left(|P(z)|^{(j / 2 m)}\right)=(j / 2 m)|P(z)|^{(j / 2 m)-1} \partial P / \partial z_{i}$. Since $\partial P / \partial z_{i}$ is either homogeneous of degree $2 m-1$ or identically zero, the lemma is true for $k=1$.

We proceed by induction on k. Suppose the lemma is true for $k=q$, i.e.,

$$
D^{\alpha}\left(|P(z)|^{1 / 2 m)}=C_{\alpha, j}|P(z)|^{(j / 2 m)-q} Q(z)\right.
$$

for all α such that $|\alpha|=q$, and the order of $Q(z)$ is $q(2 m-1)$ or else $Q(z) \equiv 0$. Then

$$
\begin{aligned}
& \frac{\partial}{\partial z_{i}}\left[D^{\alpha}(\mid\right.\left.\left.\left.P(z)\right|^{j / 2 m}\right)\right] \\
& \quad=C_{\alpha, j}((j / 2 m)-q)|P(z)|^{(j / 2 m)-q-1} Q(z) \frac{\partial P}{\partial z_{i}}+C_{\alpha, j}|P(z)|^{(j / 2 m)-q} \frac{\partial Q}{\partial z_{i}} \\
& \quad=C_{\alpha, j}|P(z)|^{(j / 2 m)-q-1}\left[((j / 2 m)-q) Q(z) \frac{\partial P}{\partial z_{i}}+\frac{\partial Q}{\partial z_{i}} P(z)\right] .
\end{aligned}
$$

The polynomial in brackets is either zero or homogeneous of degree $(q+1)$ $(2 m-1)$. Thus, the lemma is true for all k.
Lemma 2. (a) $|K(x, 1)| \leq B|x|^{-n-1}$ for n even.
(b) $\quad \operatorname{Let} K^{*}(x)=\int_{z \in I_{n}} \exp \left[-2 \pi i x \cdot z+\pi^{2} \beta^{2}|P(z)|^{2 / 2 m}\right] d z$. Then, for n odd, $\left|K^{*}(x)\right| \leq B|x|^{-n-2}$.

Proof. (a) Since

$$
|x|^{n+1}|K(x, 1)| \leq\left(\left|x_{i}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|\right)^{n+1}|K(x, 1)|
$$

it suffices to show that $\left|x^{\alpha}\right||K(x, 1)|$ is bounded for all α such that $|\alpha|=n+1$.

Now

$$
\begin{aligned}
\left|x^{\alpha} K(x, 1)\right| & =\left|x^{\alpha} \int_{E_{n}} \exp \left[-2 \pi i x \cdot z+2 \pi i \beta|P(z)|^{1 / 2 m}\right] d z\right| \\
& =\left|C_{\alpha} \int_{E_{n}} \exp [-2 \pi i x \cdot z] D^{\alpha}\left(\exp \left[2 \pi i \beta|P(z)|^{1 / 2 m}\right]\right) d z\right|^{4}
\end{aligned}
$$

where C_{α} is a constant depending only on α.
Let $\phi(z)$ be a C^{∞} function with support in $|z| \leq 2$ such that $\phi(z) \equiv 1$ for $|z| \leq 1$. Then

$$
\begin{aligned}
& \int_{E_{n}} e^{-2 \pi i x \cdot z} D^{\alpha}\left(\exp \left[2 \pi i \beta|P(z)|^{1 / 2 m}\right]\right) d z \\
&=\int_{E_{n}} e^{-2 \pi i x \cdot z} D^{\alpha}\left(-2 \pi i \beta|P(z)|^{1 / 2 m} \phi(z)+\exp \left[2 \pi i \beta|P(z)|^{1 / 2 m}\right]\right) d z \\
&+2 \pi i \beta \int_{E_{n}} e^{-2 \pi i x \cdot z} D^{\alpha}\left(|P(z)|^{1 / 2 m} \phi(z)\right) d z
\end{aligned}
$$

[^1]The first of these integrals is bounded since all of the derivatives of order $n+1$ of the function

$$
-2 \pi i \beta|P(z)|^{1 / 2 m} \phi(z)+\exp \left[2 \pi i \beta|P(z)|^{1 / 2 m}\right]
$$

are in $L^{1}\left(E_{n}\right)$. It is enough to show that

$$
\int_{E_{n}} e^{-2 \pi i x \cdot z} D^{\alpha}\left(|P(z)|^{1 / 2 m} \phi(z)\right) d z
$$

is bounded. Indeed, we need only show that

$$
\int_{|z| \leq 1} e^{-2 \pi i x \cdot z} D^{\alpha}\left(|P(z)|^{1 / 2 m}\right) d z
$$

is bounded, $|\alpha|=n+1$, since the function

$$
\begin{aligned}
f(z) & =D^{\alpha}\left(|P(z)|^{1 / 2 m} \phi(z)\right), & & |z|>1, \\
& =0, & & |z| \leq 1
\end{aligned}
$$

is in $L^{1}\left(E_{n}\right)$.
By Lemma 1, we see that we need only show that

$$
\int_{|z| \leq 1} e^{-2 \pi i x \cdot z} Q(z)|P(z)|^{(1 / 2 m)-n-1} d z
$$

is bounded, where $Q(z)$ is homogeneous of degree $(n+1)(2 m-1)$. The case where $Q(z) \equiv 0$ is clearly bounded.

Letting $z^{\prime}=z /|z|$, we can write this integral as

$$
\int_{|z| \leq 1} e^{-2 \pi i x \cdot z}\left[Q\left(z^{\prime}\right)\left|P\left(z^{\prime}\right)\right|^{(1 / 2)-n-1}\right]|z|^{-n} d z
$$

From the order of homogeneity, for n even, we have $Q\left(z^{\prime}\right)=-Q\left(-z^{\prime}\right)$. Hence,

$$
\left[Q\left(z^{\prime}\right)\left|P\left(z^{\prime}\right)\right|^{(1 / 2 m)-n-1}\right]|z|^{-n}
$$

satisfies the conditions for a singular integral kernel, and, therefore, this last integral is bounded as a principle value integral. ${ }^{5}$ This completes the proof of (a).
(b) is trivial in the case $m=1$ since $\exp \left(\pi^{2} \beta^{2} P(z)\right), R\left(\beta^{2}\right)<0$ has rapidly decreasing derivatives of all orders, and thus, its Fourier transform multiplied by any polynomial is bounded. In the case $m>1$, (b) can be proved by the same technique used to prove (a), using Lemma 1 with $j=2$.

Lemma 3. $\left|K\left(x^{\prime}, y\right)\right| \leq A y$.
Proof. We use essentially different techniques to prove this lemma in the cases n even and n odd. It is interesting that this difference depends only on

[^2]the dimension of the space and not at all on the degree of the polynomial P. I have been unable to discover a way of avoiding this.

For n even, using Lemma 2(a), we have

$$
\left|K\left(x^{\prime}, y\right)\right|=y^{-n}\left|K\left(\left(x^{\prime} / y\right), 1\right)\right| \leq y^{-n} B\left|\left(x^{\prime} / y\right)\right|^{-n-1}=B y .
$$

For n odd, we use the fact that for $R(\beta)<0, R\left(\beta^{2}\right)>0$, we have

$$
e^{\beta}=\pi^{-1 / 2} \int_{0}^{\infty} u^{-1 / 2} e^{-u} e^{-\left(\beta^{2} / 4 u\right)} d u
$$

Thus

$$
\begin{aligned}
& \left|K\left(x^{\prime}, y\right)\right| \\
& =\pi^{-1 / 2}\left|\int_{E_{n}} e^{-2 \pi i x^{\prime} \cdot z}\left(\int_{0}^{\infty} u^{-1 / 2} e^{-u} \exp \left[\pi^{2} \beta^{2}|P(z)|^{2 / 2 m} y^{2} u^{-1}\right] d u\right) d z\right| \\
& =\frac{y}{\sqrt{ } \pi}\left|\int_{E_{n}} e^{-2 \pi i x^{\prime} \cdot z}\left(\int_{0}^{\infty} \frac{e^{-t y^{2}}}{\sqrt{ } t} \exp \left[\pi^{2} \beta^{2}|P(z)|^{2 / 2 m} t^{-1}\right] d t\right) d z\right| \text {, letting } u=t y^{2} \text {, } \\
& =\frac{y}{\sqrt{ } \pi}\left|\int_{0}^{\infty} e^{-t y^{2}} t^{-1 / 2}\left(\int_{E_{n}} \exp \left[-2 \pi i x^{\prime} \cdot z+\pi^{2} \beta^{2}|(z)|^{2 / 2 m} t^{-1}\right] d z\right) d t\right| \text {, } \\
& \text { by Fubini's theorem, } \\
& =\frac{y}{\sqrt{ } \pi}\left|\int_{0}^{\infty} e^{-t y^{2} t^{(n-1) / 2}}\left(\int_{E_{n}} \exp \left[-2 \pi i x^{\prime} \eta \cdot t^{1 / 2}+\pi^{2} \beta^{2}|P(\eta)|^{2 / 2 m}\right] d \eta\right) d t\right| \text {, } \\
& \text { letting } z_{i}=t^{1 / 2} \eta_{i}, \\
& =\frac{y}{\sqrt{ } \pi}\left|\int_{0}^{\infty} e^{-t y^{2}} t^{(n-1) / 2} K^{*}\left(t^{1 / 2} x^{\prime}\right) d t\right| \\
& =\frac{2 y}{\sqrt{ } \pi}\left|\int_{0}^{\infty} e^{-v^{2} y^{2}} v^{n} K^{*}\left(v x^{\prime}\right) d v\right| \text {, } \\
& \leq y\left|\frac{2}{\sqrt{ } \pi} \int_{0}^{\infty} v^{n}\right| K^{*}\left(v x^{\prime}\right)\left|d v+\frac{2}{\sqrt{ } \pi} \int_{0}^{\infty} v^{n}\right| K^{*}\left(v x^{\prime}\right)|d v| .
\end{aligned}
$$

The first integral is clearly bounded since K^{*} is a continuous function. The second integral is dominated by $\int_{1}^{\infty} v^{n} B v^{-n-2} d v=B$ by Lemma 2(b).

We are now ready to show property 5 of our kernel, i.e.,

$$
|K(x, y)| \leq B y|x|^{-n-1} .
$$

Thus,

$$
\left.K(x, y)\left|=|x|^{-n}\right| K\left(x^{\prime}, y|x|^{-1}\right)\left|\leq|x|^{-n} A y\right| x\right|^{-1}=A y|x|^{-n-1}
$$

by Lemma 3 . This completes the derivation of the properties of K.

Southern Illinois University
 Edwardsville, Illinois

[^0]: ${ }^{3} \Omega_{n}$ is the volume of the unit sphere in $E_{n},|x| \leq 1 . \omega_{n}$ is the area of the surface, $|x|=1$, of the unit sphere in E_{n}.

[^1]: ${ }^{4}$ This and all future integrals in this lemma will be taken in the Cauchy principle value sense at the origin.

[^2]: ${ }^{5}$ See A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math., vol. 88 (1952), pp. 85-139.

