AN EXAMPLE OF NON-LOCALIZATION FOR FOURIER SERIES ON $S U(2)$

BY
R. A. Mayer ${ }^{1}$

Let $G=S U(2)$ and for each integer $n>0$ let χ_{n} be the n-dimensional irreducible character of G. Any function $f \epsilon L^{1}(G)$ has a Fourier series

$$
f \sim \sum_{n=1}^{\infty} P_{n} f, \quad P_{n} f=f_{*} n \chi_{n}
$$

where $*$ denotes convolution. Let N be a subset of G and f a measurable function on G. We will say that f lives on N if f vanishes on the complement N^{\prime} of N.

The Riemann localization theorem says that if x is any point of the circle group T, then any integrable function on T which vanishes on a neighborhood of x has a convergent Fourier series at x. In [4], Theorem C, it was shown that the analogous theorem for $G=S U(2)$ fails in a strong way: if $y \epsilon G$ and V is any neighborhood of y such that V^{\prime} has an interior, then there is a function g of bounded variation on G such that g lives on V^{\prime} and the Fourier series for g diverges at y. In this paper we will show that the function g can be chosen so that its Fourier series diverges at y and $-y$ and nowhere else. (It follows from Lemma 1 below that if g vanishes near y and the Fourier series for g diverges at y then the Fourier series for g must also diverge at $-y$.)

Theorem. Let $x_{0} \in G$ and let N be any non-void open subset of G. Then there exists a bounded function f of bounded variation on G, such that f lives on N, f is infinitely differentiable except on a closed set of measure zero, and the Fourier series for f diverges on $\left\{x_{0}\right\} \cup\left\{-x_{0}\right\}$ and converges to f everywhere else. If f is a function in $L^{1}(G)$ such that f vanishes near x_{0} and the Fourier series for f diverges at x_{0}, then the Fourier series for f also diverges at $-x_{0}$. Thus the set $\left\{x_{0}\right\} \cup\left\{-x_{0}\right\}$ in the conclusion of the theorem cannot be replaced by $\left\{x_{0}\right\}$.

Proof of the theorem. Without loss of generality we assume that $x_{0}=e$ is the identity for G. Let

$$
\theta(x)=\arccos \frac{1}{2} \chi_{2}(x), \quad x \in G
$$

Choose $a \in N$ such that $a \neq \pm e$ and $\theta(a) \neq \pi / 2$. For $r>0$ let

$$
B_{r}(a)=\left\{x \in G: \theta\left(x^{-1} a\right)<r\right\}
$$

and let

$$
S_{a}=\{x \in G: \theta(x)=\theta(a)\}
$$

Choose $\varepsilon>0$ so that $B_{\varepsilon}(a) \subset N$ and $\left(B_{\varepsilon}(a)\right)^{-} \cap\{e,-e\}=\emptyset$ (where the bar
Received February 20, 1967.
${ }^{1}$ This research was supported in part by the U. S. Army Research Office (Durham),
denotes closure). By compactness of S_{a} choose $s_{1}, \cdots, s_{k} \in S_{a}$ so that

$$
\bigcup_{n=1}^{k} B_{\varepsilon}\left(s_{n}\right) \supset S_{a} .
$$

Then $B_{\varepsilon}\left(s_{1}\right), \cdots, B_{\varepsilon}\left(s_{k}\right), S_{a}^{\prime}$ is an open cover for G. Let f_{1}, \cdots, f_{k+1} be a C^{∞} partition of unity subordinate to this cover, sosupp $f_{i} \subset B_{\varepsilon}\left(s_{i}\right), 1 \leq i \leq k$, and $\operatorname{supp} f_{k+1} \subset S_{a}^{\prime}$. Let λ_{a} be the function on G defined by

$$
\begin{array}{rlll}
\lambda_{a}(x) & =0 & \text { if } & \chi_{2}(x)<\chi_{2}(a) \\
& =\frac{1}{2} & \text { if } & \chi_{2}(x)=\chi_{2}(a) \tag{1}\\
& =1 & \text { if } & \chi_{2}(x)>\chi_{2}(a)
\end{array}
$$

Then λ_{a} is infinitely differentiable except on S_{a}, and in [4], Lemma 3.30, it is shown that the Fourier series for λ_{a} diverges at $\pm e$ and converges to λ_{a} everywhere else. Let $g_{n}=f_{n} \lambda_{a}(1 \leq n \leq k+1)$ so that

$$
\lambda_{a}=\sum_{n=1}^{k+1} g_{n}
$$

Since g_{k+1} is a C^{∞} function it has an everywhere convergent Fourier series, and it follows that some $g_{j}(1 \leq j \leq k)$ has a divergent Fourier series at e. Since $\theta\left(s_{j}\right)=\theta(a)$ we have $s_{j}=u a u^{-1}$ for some $u \in G$. Now define

$$
f(x)=g_{j}\left(u x u^{-1}\right)=f_{j}\left(u x u^{-1}\right) \lambda_{a}(x)
$$

Then f lives on $B_{\varepsilon}(a)$ and hence f vanishes near $\pm e$. Also

$$
\sum_{k=1}^{n} P_{k} f(e)=\sum_{k=1}^{n} P_{k} g_{j}(e) \quad \text { for all } n
$$

so f has a divergent Fourier series at e. In Section 4 of [4] it is shown that all of the first order derivatives of λ_{a} are measures, and hence λ_{a} is a function of bounded variation. Since f is the product of λ_{a} and a C^{∞} function, it follows that f is a function of bounded variation (it was observed in [4] that the functions of bounded variation form a module over the C^{∞} functions). Also f is clearly infinitely differentiable off of S_{a} which is a closed set of measure zero. Hence the theorem will follow if we prove the following two lemmas.

Lemma 1. Let $f \in L^{1}(G)$. If f vanishes near $b \in G$ and the Fourier series for f diverges at b then the Fourier series for f also diverges $a t-b$.

Lemma 2. Let a be an element of G such that $\theta(a) \neq \pi / 2$, let λ_{a} be as in (1) and let $g \in C^{\infty}(G)$. Then the Fourier series for $g \lambda_{a}$ converges to $g \lambda_{a}$ except possibly at $\pm e$.

Proof of Lemma 1. If $f \in L^{1}(G)$, the Riemann Lebesgue set for f is

$$
r(f)=\left\{x \in G: \lim _{n \rightarrow \infty} P_{n} f(x)=0\right\}
$$

If f vanishes near b and the Fourier series for f diverges at b, then it follows from Theorem C of [5] that $b \notin r(f)$. Let U_{n} be an irreducible n dimensional matrix representation of G. Then $U_{n}(-e)=(-1)^{n+1} I_{n}$ where I_{n} is the
$n \times n$ identity matrix, so $U_{n}(-b)=(-1)^{n+1} U_{n}(b)$ for all $b \epsilon G$. Since $P_{n} f$ is a linear combination of the coordinates of U_{n} it follows that $P_{n} f(-b)=$ $(-1){ }^{n+1} P_{n} f(b)$ for all n. Hence $-b \notin r(f)$ and hence the Fourier series for f diverges at $-b$.

The proof of Lemma 2 will require a number of preliminary lemmas, and before considering these lemmas we give a general outline of the proof.

First we show that if g is in the representative ring of G then $r\left(g \lambda_{a}\right)$ contains all points of G except possibly $\pm e$ (Lemmas 3-6). From this we will conclude that the Fourier series for $g \lambda_{a}$ converges to $g \lambda_{a}$ except possibly at $\pm e$ for any such g. Next we show that if $b \neq \pm e$ is an element of G which is not conjugate to $-a$, and h is any function in $C^{\infty}(G)$ which vanishes at b together with all of its derivatives of order ≤ 6, then the Fourier series for $h \lambda_{a}$ converges to 0 at b. Since any $h \in C^{\infty}(G)$ can be written $h=h_{1}+h_{2}$ where h_{1} is in the representative ring of G and h_{2} vanishes at b together with its derivatives of order ≤ 6 (Lemma 10), we conclude that for any $h \in C^{\infty}(G)$ the Fourier series for $h \lambda_{a}$ converges to $h \lambda_{a}$ except possibly at $\pm e$ and on the set S_{-a} of points conjugate to -a. Since $\theta(a) \neq \pi / 2, a$ and $-a$ are not conjugate, and the Fourier series for $h \lambda_{a}$ converges on S_{a}. Using this fact we show that the Fourier series for $h \lambda_{a}$ must also converge on S_{-a}, and Lemma 2 follows.

The Lie algebra \mathfrak{g} of G is isomorphic to the Lie algebra \mathfrak{g}^{\prime} of 2×2 skew Hermitian matrices with zero trace under the map $M \rightarrow D_{M}$ where

$$
\begin{equation*}
D_{M} f(x)=\left.\frac{d}{d t} f(x \exp t M)\right|_{t=0}, \quad \quad M \in \mathfrak{g}^{\prime}, D_{M} \in \mathfrak{g}, f \in C^{\infty}(G) \tag{2}
\end{equation*}
$$

Since χ_{2} has a maximum at $e, D \chi_{2}(e)=0$ for all $D \epsilon \mathfrak{g}$. It is easy to verify that

$$
\begin{equation*}
\left(D_{M}\right)^{2} \chi_{2}=-(\operatorname{det} M) \chi_{2}, \quad M \in \mathfrak{g}^{\prime} \tag{3}
\end{equation*}
$$

Let M_{1}, M_{2}, M_{3} be a basis for g^{\prime}, and let $D_{i}=D_{M_{i}}(1 \leq i \leq 3)$. Let $a_{0}, a_{1}, a_{2}, a_{3}$ be complex numbers such that

$$
a_{0} \chi_{2}+a_{1} D_{1} \chi_{2}+a_{2} D_{2} \chi_{2}+a_{3} D_{3} \chi_{2}=0
$$

By evaluating at e we get $a_{0}=0$ and $D_{M} \chi_{2}=0$ where

$$
M=a_{1} M_{1}+a_{2} M_{2}+a_{3} M_{3}
$$

By (3), $\operatorname{det} M=0$ and hence $M=0$ since any non-zero element of g^{\prime} has a non-zero determinant. We conclude that $\left\{x_{2}, D_{1} \chi_{2}, D_{2} \chi_{2}, D_{3} \chi_{2}\right\}$ is linearly independent. Let E_{n} be the two sided ideal in $L_{2}(G)$ with generating idempotent $n \chi_{n}$. Since each E_{n} is invariant under every $D \in \mathfrak{g}$, and $\operatorname{dim} E_{2}=4$, we see that $\left\{\chi_{2}, D_{1} \chi_{2}, D_{2} \chi_{2}, D_{3} \chi_{2}\right\}$ is a basis for E_{2}. Let J_{n} be the subspace of $C(G)$ consisting of all functions of the form $P\left(\chi_{2}, D_{1} \chi_{2}, D_{2} \chi_{2}, D_{3} \chi_{2}\right)$ where P is a complex polynomial in 4 variables of degree $\leq n$. Then J_{n} is left and right translation invariant, and hence is a two-sided ideal in $L_{2}(G)$. Since
we can write $\chi_{n}=p\left(\chi_{2}\right)$ where p is a polynomial of degree $n-1, \chi_{j} \in J_{n}$ for $1 \leq j \leq n+1$. By the structure theory for ideals in $L^{2}(G)$ (see [2, page 158]) $J_{n} \supset E_{1} \oplus \cdots \oplus E_{n+1}$. The space $J=\bigcup_{n=0}^{\infty} J_{n}=\bigcup_{n=1}^{\infty} E_{n}$ is the representative ring of G. We will call J the space of trigonometric polynomials, and J_{n} the space of trigonometric polynomials of degree $\leq n$. If $n>0$ then every element f of J_{n} can be written in the form

$$
\begin{equation*}
f=f_{0} \chi_{2}+f_{1} D_{1} \chi_{2}+f_{2} D_{2} \chi_{2}+f_{3} D_{3} \chi_{2}, \quad f_{j} \in J_{n-1}, 0 \leq j \leq 3 \tag{4}
\end{equation*}
$$

Also any $f \in J$ can be written in the form

$$
f=a+b \chi_{2}^{p}+f_{1} D_{1} \chi_{2}+f_{2} D_{2} \chi_{2}+f_{3} D_{3} \chi_{2}
$$

where, $a, b \in \mathbf{C}, p$ is a positive integer, $f_{1}, f_{2}, f_{3} \in \mathcal{J}$. If $f(e)=0$ then $a+2^{p} b=0$, and this implies that $a+b \chi_{2}^{p}=\left(2-\chi_{2}\right) f_{0}$ for some $f_{0} \in J$. Thus any $f \in \mathcal{J}$ which vanishes at 0 can be written in the form

$$
\begin{equation*}
f=\left(2-\chi_{2}\right) f_{0}+f_{1} D_{1} \chi_{2}+f_{2} D_{2} \chi_{2}+f_{3} D_{3} \chi_{2}, \quad f_{i} \in \mathcal{J}, 0 \leq i \leq 3 \tag{5}
\end{equation*}
$$

Let \mathbf{D} be the algebra of all left invariant differential operators on G, and for each $n \geq 0$ let $\mathbf{D}^{(n)}$ be the subspace of \mathbf{D} consisting of all operators of degree $\leq n$. Let $\mathrm{D}^{(-1)}$ be the zero subspace of D .

Lemma 3. Let $n \geq 0$ and let $X \in \mathbf{D}^{(n)}$. Then there exists an integer $k \geq 0$, a finite subset $\left\{f_{1}, \cdots, f_{k}\right\}$ of E_{2} and a finite subset $\left\{Y_{1}, \cdots, Y_{k}\right\}$ of $\mathbf{D}^{(n-1)}$ such that

$$
\begin{equation*}
\chi_{2} X \chi_{m}=X \chi_{m-1}+X \chi_{m+1}+\sum_{j=1}^{k} f_{j} Y_{j} \chi_{m} \quad \text { for all } m \geq 1 \tag{6}
\end{equation*}
$$

For each $D \in \mathfrak{g}$ and $X \in \mathbf{D}^{(n)}$ there is an integer $l \geq 0$, a finite subset $\left\{g_{1}, \cdots, g_{l}\right\}$ of E_{2} and a finite subset $\left\{Z_{1}, \cdots, Z_{l}\right\}$ of $\mathrm{D}^{(n-1)}$ such that

$$
\begin{equation*}
D \chi_{2} X \chi_{m}=m^{-1} X D\left(\chi_{m+1}-\chi_{m-1}\right)+\sum_{j=1}^{l} g_{j} Z_{j} \chi_{m} \text { for all } m \geq 1 \tag{7}
\end{equation*}
$$

Proof. We will prove (7) by induction on the order of X. (The proof of (6) is similar.) Since

$$
\begin{equation*}
D \chi_{2} \cdot \chi_{m}=m^{-1}\left(D \chi_{m+1}-D \chi_{m-1}\right) \quad \text { for all } D \in \mathfrak{g} \tag{8}
\end{equation*}
$$

by [4, Lemma 3.3], (7) holds for $X \in \mathrm{D}^{(0)}$. Assume that (7) holds for all $X \in \mathbf{D}^{(n)}$, and let $Y \in \mathbf{D}^{(n)}, D^{\prime} \in \mathfrak{g}$. Then

$$
D \chi_{2}\left(D^{\prime} Y\right) \chi_{m}=D^{\prime}\left(D \chi_{2} \cdot Y \chi_{m}\right)-D^{\prime} D \chi_{2} \cdot Y \chi_{m}
$$

since D^{\prime} is a derivation. Express $D \chi_{2} \cdot Y \chi_{m}$ by (7) and then use the fact that D^{\prime} is a derivation and the fact that any operator in \mathbf{D} maps E_{2} into itself to conclude that (7) holds for all operators in $\mathbf{D}^{(n+1)}$ of the form $D^{\prime} Y, D^{\prime} \in \mathfrak{g}$, $Y \in \mathbf{D}^{(n)}$. Thus (7) holds for all $X \in \mathbf{D}^{(n+1)}$ since $\mathrm{D}^{(n+1)}$ is generated by $\mathbf{D}^{(n)}$ and elements of the form $D^{\prime} Y$.

Lemma 4. For any $x, y \in G$ let $J_{x y}$ be the linear functional on $C(G)$ defined by

$$
\begin{equation*}
J_{x y}(f)=\int_{G} f\left(x^{-1} u y u^{-1}\right) d u \tag{9}
\end{equation*}
$$

If x, y are both distinct from $\pm e$ then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{-n} J_{x y}\left(f X \chi_{m}\right)=0 \tag{10}
\end{equation*}
$$

for all trigonometric polynomials f, and all $X \in \mathrm{D}^{(n)}, 0 \leq n<\infty$.
Proof. First observe that for any $f \in E_{m}$ we have

$$
\begin{equation*}
J_{x y}(f)=m^{-1} f\left(x^{-1}\right) \chi_{m}(y) \tag{11}
\end{equation*}
$$

This is easily verified if f is a coordinate function of an irreducible m dimensional representation of G, (cf. [6, page 87]) and these coordinate functions form a basis for E_{n}. Since any $X \in \mathbf{D}$ maps each ideal E_{n} into itself we have by (11)

$$
\begin{equation*}
m^{-n} J_{x y}\left(X \chi_{m}\right)=m^{-n \upharpoonright 1} X_{\chi_{m}}\left(x^{-1}\right) \chi_{m}(y) \tag{12}
\end{equation*}
$$

Using the relations

$$
\chi_{m}(x)=\sin m \theta(x) / \sin \theta(x)
$$

and

$$
\begin{equation*}
D \chi_{m}=\left((m+1) \chi_{m-1}-(m-1) \chi_{m+1}\right)\left(3-\chi_{3}\right)^{-1} D \chi_{2} \tag{13}
\end{equation*}
$$

(see [4, Lemma 3.3]), together with the fact that $3-\chi_{3}$ vanishes only at $\pm e$, one can easily prove by induction on n ($=$ order X) that the set $\left\{m^{-n} X_{\chi_{m}}\left(x^{-1}\right): 1 \leq m<\infty\right\}$ is bounded for each $X \in \mathrm{D}^{(n)}, 0 \leq n<\infty$, $x \neq \pm e$. Hence it follows from (12) that if x and y are both distinct from $\pm e$ then

$$
\lim _{m \rightarrow \infty} m^{-n} J_{x y}\left(X \chi_{m}\right)=0, \quad X \in \mathbf{D}^{(n)}, 0 \leq n<\infty
$$

Thus (10) holds for $f=1$ for all $X \in \mathrm{D}$. We will now prove (10) by induction on the degree of f. Assume the result for all trigonometric polynomials of degree $\leq p$ and all $X \in \mathrm{D}$. By (4) we see that (10) holds for all trigonometric polynomials of degree $\leq p+1$ if and only if
(14) $\lim _{m \rightarrow \infty} m^{-n} J_{x y}\left(f \chi_{2} X \chi_{m}\right)=0, \quad \lim _{m \rightarrow \infty} m^{-n} J_{x y}\left(f D \chi_{2} X \chi_{m}\right)=0$
for all $f \in J_{p}, D \in \mathfrak{g}, 0 \leq n<\infty, X \in \mathrm{D}^{(n)}$. We will prove (14) (for any $\left.f \in J_{p}, D \in \mathfrak{g}\right)$ by induction on n. For $n=0$ we have

$$
\lim _{m \rightarrow \infty} J_{x y}\left(f \chi_{2} \cdot \chi_{m}\right)=\lim _{m \rightarrow \infty}\left[J_{x y}\left(f \cdot \chi_{m+1}\right)+J_{x y}\left(f \cdot \chi_{m-1}\right)\right]=0
$$

for $f \in \mathcal{J}_{p}$, and by (8)
$\lim _{m \rightarrow \infty} J_{x y}\left(f D \chi_{2} \cdot \chi_{m}\right)=\lim _{m \rightarrow \infty}\left[m^{-1} J_{x y}\left(f \cdot D \chi_{m+1}\right)-m^{-1} J_{x y}\left(f \cdot D \chi_{m-1}\right)\right]=0$.
Assume that (14) holds for all $f \in J_{p}$ and $X \in \mathrm{D}^{(n)}$. Then (10) holds for all
$f \in \mathcal{J}_{p+1}$ and $X \in \mathrm{D}^{(n)}$. Let $X_{0} \in \mathrm{D}^{(n+1)}$, and express $\chi_{2} X_{0} \chi_{m}$ and $D \chi_{2} X_{0} \chi_{m}$ by (6) and (7). We then conclude that (14) holds with $X=X_{0}$ from the fact that (10) holds for all $f \in \mathcal{J}_{p}, X \in \mathrm{D}$, and all $f \in \mathcal{J}_{p+1}, X \in \mathrm{D}^{(n)}$.
Lemma 5. Let $D \in \mathfrak{g}$. Then the set of numbers $\left\{n^{-1}\left\|D \chi_{n}\right\|_{2}: n>0\right\}$ is bounded.

Proof. We assume without loss of generality that D has norm 1 with respect to the Killing form on \mathfrak{g}. Write $D=D_{1}$ and choose D_{2}, D_{3} so that $\left\{D_{1}, D_{2}, D_{3}\right\}$ is an orthonormal basis for g with respect to the Killing form. Then $\Delta=D_{1}^{2}+D_{2}^{2}+D_{3}^{2}$ is the Laplace operator for G and there exists a constant Λ such that

$$
\begin{equation*}
\Delta \chi_{n}=\Lambda\left(n^{2}-1\right) \chi_{n} \quad \text { for } n \geq 1 \tag{15}
\end{equation*}
$$

Thus $\left\|D \chi_{n}\right\|_{2}^{2} \leq \sum_{i=1}^{3}\left(D_{i} \chi_{n}, D_{i} \chi_{n}\right)=-\left(\Delta \chi_{n}, \chi_{n}\right)=-\Lambda\left(n^{2}-1\right)\left\|\chi_{n}\right\|_{2}^{2}$, and the lemma follows from this.

If f is any function on G and $x \epsilon G$, let $L(x) f$ be the function on G defined by $L(x) f(y)=f\left(x^{-1} y\right)$. Note that if f is a trigonometric polynomial so is $L(x) f$.

Lemma 6. Let $a, x \in G, a \neq \pm e$. Let λ_{a} be as in (1) and let f be a function in $C^{1}(G)$ such that

$$
J_{x a}\left(D \chi_{n} L\left(x^{-1}\right)\left(f D \chi_{2}\right)\right)=o(n)
$$

for all $D \in \mathfrak{g}$. Then x is in the Riemann Lebesgue set of $f \lambda_{a}$. In particular, if f is a trigonometric polynomial then the Riemann Lebesgue set of $f \lambda_{a}$ contains all points of G except possibly $\pm e$ (see Lemma 4).

Proof. Let D_{1}, D_{2}, D_{3} be a basis for g which is orthonormal with respect to the Killing form. Then for any $f \in C^{1}(G)$ we have for all $n>1$ (cf. 15)

$$
\begin{align*}
P_{n}\left(f \lambda_{a}\right)(x)= & \left(f \lambda_{a}\right) * n \chi_{n}(x) \\
= & \sum_{i=1}^{3} \frac{n}{\Lambda\left(n^{2}-1\right)}\left(D_{i}\left(f L(x) D_{i} \chi_{n}\right), \lambda_{a}\right) \tag{16}\\
& \quad-\sum_{i=1}^{3} \frac{n}{\Lambda\left(n^{2}-1\right)}\left(D_{i} \chi_{n}, L\left(x^{-1}\right)\left(\lambda_{a} D_{i} \bar{f}\right)\right) .
\end{align*}
$$

Since $\lambda_{a} D_{i} \bar{f} \in L_{2}(G)$ it follows from Lemma 5 and the fact that $\left\{D_{i} \chi_{n}: 1 \leq n<\infty\right\}$ is an orthogonal set in $L_{2}(G)$ that the second sum in (16) tends to zero as $n \rightarrow \infty$. Thus $x \in r\left(f \lambda_{a}\right)$ provided that

$$
\left(D\left(f L(x) D \chi_{n}\right), \lambda_{a}\right)=o(n)
$$

for all $D \in \mathfrak{g}$. In [4] (4.10) it was shown that

$$
\begin{equation*}
\left(D f, \lambda_{a}\right)=-\pi^{-1} \sin \theta(a) \int_{G} f\left(u a u^{-1}\right) D \chi_{2}\left(u a u^{-1}\right) d u \tag{17}
\end{equation*}
$$

for any $D \in \mathfrak{g}$ and $f \in C^{\infty}(G)$ (and hence any $f \in C^{1}(G)$). Thus

$$
\left(D\left(f L(x) D \chi_{n}\right), \lambda_{a}\right)=-\pi^{-1} \sin \theta(a) J_{x a}\left(D \chi_{n} \cdot L\left(x^{-1}\right)\left(f D \chi_{2}\right)\right)
$$

and the lemma follows.
Lemma 7. Let g be a trigonometric polynomial, $a \in G, a \neq \pm e$, and let λ_{a} be as defined in (1). Then the Fourier series for $g \lambda_{a}$ converges to $g \lambda_{a}$ except possibly at $\pm e$.

Proof. For any $x \in G, n \geq 1, f \in L^{1}(G)$ put

$$
\begin{equation*}
S_{n} f(x)=\sum_{k=1}^{n} P_{k} f(x) \tag{18}
\end{equation*}
$$

Then

$$
S_{n}\left(g \lambda_{a}\right)(x)=g(x) S_{n} \lambda_{a}(x)+S_{n}\left((g-g(x)) \lambda_{a}\right)(x)
$$

Since $S_{n} \lambda_{a}(x) \rightarrow \lambda_{a}(x)$ except for $x= \pm e$ the lemma will follow if we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}\left(h \lambda_{a}\right)(x)=0 \tag{19}
\end{equation*}
$$

for all $h \in J$ such that $h(x)=0,(x \neq \pm e)$. Now

$$
\begin{equation*}
S_{N}\left(h \lambda_{a}\right)(x)=\left(L\left(x^{-1}\right) h \cdot L\left(x^{-1}\right) \lambda_{a}, \sum_{k=1}^{N} k \chi_{k}\right) \tag{20}
\end{equation*}
$$

and $L\left(x^{-1}\right) h$ is a trigonometric polynomial which vanishes at e. Thus if we show that

$$
\begin{array}{r}
\lim _{N \rightarrow \infty}\left(\left(2-\chi_{2}\right) f L\left(x^{-1}\right) \lambda_{a}, \sum_{k=1}^{N} k \chi_{k}\right)=0 \\
\lim _{N \rightarrow \infty}\left(\left(D \chi_{2}\right) f L\left(x^{-1}\right) \lambda_{a}, \sum_{k=1}^{N} k \chi_{k}\right)=0 \tag{22}
\end{array}
$$

for all $f \in \mathfrak{J}, D \in \mathfrak{g}, x \neq \pm e$, then (19) will follow because of (5). Using the relations

$$
\begin{align*}
\left(2-\chi_{2}\right) \sum_{k=1}^{N} k \chi_{k} & =(N+1) \chi_{N}-N \chi_{N+1} \tag{23}\\
D \chi_{2} \sum_{k=1}^{N} k \chi_{k} & =D\left(\chi_{N}+\chi_{N+1}\right) \tag{24}
\end{align*}
$$

(see [3] (5.12) and [4] (3.5)) we can rewrite (21) and (22) as
(21') $\quad \lim _{N \rightarrow \infty} \frac{N+1}{N} P_{N}\left(\lambda_{a} L(x) f\right)(x)-\frac{N}{N+1} P_{N+1}\left(\lambda_{a} L(x) f\right)(x)=0$

$$
\begin{align*}
\lim _{N \rightarrow \infty}\left(D\left(L(x)\left(f\left(\chi_{N}+\chi_{N+1}\right)\right)\right), \lambda_{a}\right)-\lim _{N \rightarrow \infty} & \left(L\left(x^{-1}\right) \lambda_{a}\right. \\
& \left.\cdot D f, \chi_{N}+\chi_{N+1}\right)=0
\end{align*}
$$

Now (21^{\prime}) is a consequence of Lemma 6, and the second limit in (22') is 0 because $\left\{\chi_{n}\right\}(1 \leq n<\infty)$ is an orthonormal set in $L_{2}(G)$. To evaluate the first limit in (22') we use (17) to get

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left(D \left(L (x) \left(f \left(\chi_{N}+\right.\right.\right.\right. & \left.\left.\left.\left.\chi_{N+1}\right)\right)\right), \lambda_{a}\right) \\
& =\lim _{N \rightarrow \infty}-\frac{\sin \theta(a)}{\pi} J_{x a}\left(f\left(\chi_{N}+\chi_{N+1}\right) L\left(x^{-1}\right) D \chi_{2}\right)
\end{aligned}
$$

and this limit is zero by Lemma 4. This completes proof of Lemma 7.
Lemma 8. Let f be $a C^{\infty}$ function on G which vanishes at e together with all of its derivatives of order ≤ 6. Then f can be written $f=\left(2-\chi_{2}\right)^{2} g$ where $g \in C^{1}(G)$.

Proof. The function $g=\left(2-\chi_{2}\right)^{-2} f$ is clearly of class C^{1} except possibly at e. Define $\Phi: \mathrm{R}^{3} \rightarrow G$ by

$$
\Phi(x, y, z)=\exp \left(\begin{array}{cc}
i z & x+i y \\
-x+i y & -i z
\end{array}\right)
$$

Φ maps a neighborhood of the origin diffeomorphically onto a neighborhood of e in G. Let r be the function on \mathbf{R}^{3} defined by $r(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. A routine calculation shows that $\left(2-\chi_{2}\right) \circ \Phi=r^{2} h$ where h is analytic on \mathbf{R}^{3} and $h(0,0,0)=1$. Hence the lemma will follow if we show that any function F in $C^{\infty}\left(\mathbf{R}^{3}\right)$ which vanishes at the origin together with all of its derivatives of order ≤ 6 can be written $F=r^{4} G$ where $G \epsilon C^{1}\left(\mathbf{R}^{3}\right)$. This follows by a straightforward argument using Taylor's theorem.

Lemma 9. Let a, x be elements of G such that $a \neq \pm e, x \neq \pm e$, and suppose that a and $-x$ are not conjugate in G. Let f be a function in $C^{\infty}(G)$ which vanishes at x together with all of its derivatives of order ≤ 6. Then the Fourier series for $f \lambda_{a}$ converges to 0 at x.

Proof. Using (20) and (23) we get

$$
\begin{aligned}
S_{N}\left(f \lambda_{a}\right)(x)=\frac{N+1}{N} P_{N}((L(x)(2 & \left.\left.\left.-\chi_{2}\right)^{-1}\right) f \lambda_{a}\right)(x) \\
& -\frac{N}{N+1} P_{N+1}\left(\left(L(x)\left(2-\chi_{2}\right)^{-1}\right) f \lambda_{a}\right)(x)
\end{aligned}
$$

so the lemma will follow if we show that

$$
\lim _{N \rightarrow \infty} P_{N}\left(\left(L(x)\left(2-\chi_{2}\right)^{-1}\right) f \lambda_{a}\right)(x)=0
$$

By Lemma 8 we have $L\left(x^{-1}\right) f /\left(2-\chi_{2}\right)=g\left(2-\chi_{2}\right)$ where $g \epsilon C^{1}(G)$. Using this in (16) we get

$$
\begin{align*}
& P_{n}\left(\left(L(x)\left(2-\chi_{2}\right)^{-1}\right) f \lambda_{a}\right)(x) \\
& \quad=P_{n}\left(\lambda_{a} L(x)\left(g\left(2-\chi_{2}\right)\right)\right)(x) \\
& \quad=\sum_{i=1}^{3} \frac{n}{\Lambda\left(n^{2}-1\right)}\left(D_{i}\left(L(x)\left(g\left(2-\chi_{2}\right) D_{i} \chi_{n}\right)\right), \lambda_{a}\right) \tag{25}\\
& \quad \quad-\sum_{i=1}^{3} \frac{n}{\Lambda\left(n^{2}-1\right)}\left(D_{i} \chi_{n}, L\left(x^{-1}\right)\left(\lambda_{a}\right) D_{i}\left(\bar{g}\left(2-\chi_{2}\right)\right)\right)
\end{align*}
$$

The second sum on the right in (25) tends to zero as $n \rightarrow \infty$ by an argument
given in Lemma 6. Hence Lemma 9 will follow if we show that

$$
\begin{equation*}
\left(D\left(L(x)\left(g\left(2-\chi_{2}\right) D \chi_{n}\right)\right), \lambda_{a}\right)=o(n) \tag{26}
\end{equation*}
$$

for all $g \epsilon C^{1}(G), D \in \mathfrak{g}$. By (17), (26) is equivalent to

$$
\begin{equation*}
J_{x a}\left(g\left(2-\chi_{2}\right) D \chi_{n} L\left(x^{-1}\right) D \chi_{2}\right)=o(n) \tag{27}
\end{equation*}
$$

so the Lemma will certaintly follow if we show that

$$
\begin{equation*}
J_{x a}\left(g\left(2-\chi_{2}\right) D \chi_{n}\right)=o(n) \tag{28}
\end{equation*}
$$

for all $g \epsilon C(G)$. In Lemma 4 we showed that (28) holds if g is a trigonometric polynomial, and since the trigonometric polynomials are dense in $C(G)$, (28) will hold for all $g \epsilon C(G)$ provided that the set of functionals

$$
F_{x a n}: g \rightarrow n^{-1} J_{x a}\left(g\left(2-\chi_{2}\right) D \chi_{n}\right) \quad(n=1,2, \cdots)
$$

is bounded in the dual space of $C(G)$. Now

$$
\left\|F_{x a n}\right\| \leq \sup _{u \epsilon G} n^{-1}\left|D \chi_{n}\left(x^{-1} u a u^{-1}\right)\left(2-\chi_{2}\right)\left(x^{-1} u a u^{-1}\right)\right|
$$

By (13) and the identity $\left(2-\chi_{2}\right)\left(2+\chi_{2}\right)=3-\chi_{3}$ we have

$$
n^{-1} D \chi_{n} \cdot\left(2-\chi_{2}\right)=\left[\left(\chi_{n-1}-\chi_{n+1}\right)+n^{-1}\left(\chi_{n-1}+\chi_{n+1}\right)\right] D \chi_{2} /\left(2+\chi_{2}\right)
$$

Since $\left\|\left(\chi_{n-1}-\chi_{n+1}\right)+n^{-1}\left(\chi_{n-1}+\chi_{n+1}\right)\right\|_{\infty} \leq 4$, we see that

$$
\left\{\left\|F_{x a n}\right\|: n=1,2, \cdots\right\}
$$

will be bounded provided that the compact set $\left\{x^{-1} u a u^{-1}: u \in G\right\}$ does not contain $-e$, i.e. provided that a and $-x$ are not conjugate. Since this is true by hypothesis, the lemma follows.

Lemma 10. Letf $\in C^{\infty}(G), x \in G$, and let n be an integer ≥ 0. Then there exists a trigonometric polynomial t_{n} such that $f-t_{n}$ vanishes at x together with all of its derivatives of order $\leq n$.

Proof. We assume without loss of generality that $x=e$. Let

$$
M_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad M_{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

and let $D_{i}=D_{M_{i}}, 1 \leq i \leq 3$. Then it is easy to verify that

$$
\begin{array}{cr}
D_{i}^{2} \chi_{2}=-\chi_{2}, & i=1,2,3 \\
D_{i} D_{j} \chi_{2}=\operatorname{sgn}(i, j, k) D_{k} \chi_{2}, & i \neq j \tag{30}
\end{array}
$$

where $\operatorname{sgn}(i, j, k)$ is the sign of the permutation (i, j, k). For any 4 -tuple ($n_{0}, n_{1}, n_{2}, n_{3}$) of non negative integers and any $j=1,2,3$ we have

$$
\begin{align*}
D_{j}\left[\chi_{2}^{n_{0}} \prod_{k=1}^{3}\left(D_{k} \chi_{2}\right)^{n_{k}}\right] & \\
& =-n_{j}\left(\chi_{2}\right)^{n_{0}+1}\left(D_{j} \chi_{2}\right)^{n_{j}-1} \prod_{k=1, k \neq j}^{3}\left(D_{k} \chi_{2}\right)^{n_{k}}+R_{j} \tag{31}
\end{align*}
$$

where R_{j} vanishes at e together with all of its derivatives of order $\leq n_{1}+n_{2}+n_{3}-1$. Let p, q, r, a, b, c, be non negative integers with $p+q+r=a+b+c=m$. Then by m applications of (31) we get

$$
\left(D_{1}^{a} D_{2}^{b} D_{3}^{c}\right)\left(\left(D_{1} \chi_{2}\right)^{p}\left(D_{2} \chi_{2}\right)^{q}\left(D_{3} \chi_{2}\right)^{r}\right)(e)=\delta_{a p} \delta_{b q} \delta_{c r}(-2)^{m} p!q!r!.
$$

If $f \in C^{\infty}$ and m is an integer ≥ 0 put

$$
T_{f}^{m}=(-2)^{-m} \sum_{p+q+r=m}\left(D_{1}^{p} D_{2}^{q} D_{3}^{r} f\right)(e) \cdot \frac{\left(D_{1} \chi_{2}\right)^{p}\left(D_{2} \chi_{2}\right)^{q}\left(D_{3} \chi_{2}\right)^{r}}{p!q!r!}
$$

Then $X T_{f}^{m}(e)=0$ for all $X \in \mathbf{D}^{(m-1)}$ and

$$
\left(D_{1}^{p} D_{2}^{q} D_{3}^{r}\right) T_{f}^{m}(e)=\left(D_{1}^{p} D_{2}^{q} D_{3}^{r} f\right)(e)
$$

if $p+q+r=m$. Recall that any $Y \in \mathbf{D}^{(m)}$ can be written in the form

$$
Y=\sum_{0 \leq p+q+r \leq m} A_{p q r} D_{1}^{p} D_{2}^{q} D_{3}^{r}, \quad A_{p q r} \in \mathbf{C}
$$

(see [1, page 98]). The trigonometric polynomials t_{n} can now be constructed inductively. Take $t_{0}=f(e)$, and if t_{n} is constructed choose $t_{n+1}=t_{n}+T_{f-t_{n}}^{n+1}$.

Proof of Lemma 2. Let $g \in C^{\infty}(G)$ and let $x \epsilon G$ be an element such that $x \neq \pm e$ and x is not conjugate to $-a$. By Lemma 10 we can write $g=g_{1}+g_{2}$ where g_{1} is a trigonometric polynomial, and g_{2} vanishes at x together with its derivatives of order ≤ 6. Thus

$$
\lim _{N \rightarrow \infty} S_{N}\left(g \lambda_{a}\right)(x)=g \lambda_{a}(x)
$$

by Lemmas 7 and 9 . Thus the Fourier series for $g \lambda_{a}$ converges except possibly at $\pm e$ and at points conjugate to $-a$. Now suppose $x_{0} \epsilon G$ is conjugate to $-a$. Then $-x_{0}$ is not conjugate to $-a$ (since $\theta(a) \neq \pi / 2$) and hence the Fourier series for $g \lambda_{a}$ converges at $-x_{0}$, and $-x_{0} \in r\left(g \lambda_{a}\right)$. Thus $x_{0} \in r\left(g \lambda_{a}\right)$ since we saw in the proof of Lemma 1 that $r(f)=-r(f)$ for any $f \in L^{1}(G)$. Also $g \lambda_{a}$ is infinitely differentiable at x_{0} (since x_{0} is not conjugate to a). Theorems A and C of [5] imply that the Fourier series of an L_{1} function on G converges at any point of the Riemann Lebesgue set of the function at which the function is C^{1}. Thus the Fourier series for $g \lambda_{a}$ converges at points conjugate to $-a$, and the proof is complete.

Bibliography

1. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
2. L. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.
3. R. Mayer, Summation of Fourier series on compact groups, Amer. J. Math., vol. 89 (1967), pp. 661-691
4. -_, Localization for Fourier series on $S U(2)$, Trans. Amer. Math. Soc., to appear.
5. -, Fourier series of differentiable functions on $S U(2)$, Duke Math. J., vol. 34 (1967), pp. 549-554.
6. A. Weil, L'Intégration dans les groupes topologiques, Actualités Sci. Indust., 1145, Hermann, Paris, 1951.

Harvard University
Cambridge, Massachusftts

