the free product of algebras ${ }^{1}$

BY
Thomas W. Hungerford
Introduction

Let A and B be differential graded augmented algebras over a commutative ring K. Their free product $A * B$ is always defined; $A * B$ is a differential graded augmented K-algebra which together with canonical injections

$$
A \xrightarrow{\iota_{A}} A * B \stackrel{\iota_{B}}{\longleftrightarrow} B
$$

forms a universal diagram in this category. In connection with certain topological questions, Berstein [1] first studied the free product of algebras and its homology; he showed for example that the homology of the loop space of $X_{1} \vee X_{2}$ (where X_{i} are spaces with "nice" base point) is the free product $H\left(\Omega X_{1}\right) * H\left(\Omega X_{2}\right)$. We shall study the free product and its homology from a somewhat different viewpoint.

The first section is devoted to the definition and basic properties of the free product, including a consideration of Hopf algebras. Some of this material appears in Berstein [1], but is stated here for convenience since our notation is different and our definitions are somewhat more general (Berstein considers only positively graded connected K-algebras).

Palermo [10] and the author [5], [6] have studied the relationship between the vaious homologies $H(A), H(B)$, and $H(A \otimes B)$. The chief purpose of this paper is to extend these investigations to $H(A * B)$. In particular since $A * B$ is defined in terms of the tensor product it seems natural to ask whether or not $H(A \otimes B)$ completely determines $H(A * B)$. Examples in Section 2 show that the answer is negative; furthermore neither does $H(A * B)$ determine $H(A \otimes B)$. For $K=Z$ and A, B torsion-free, it is known that the algebras $H(A)$ and $H(B)$ do not determine the algebra $H(A \otimes B)$; but $H(A \otimes B)$ is completely determined by the homology spectra of A and B (cf. Palermo [10], and [5]). The analogues of these facts are presented in Section 3: $H(A)$ and $H(B)$ are not sufficient to determine $H(A * B)$ (Example 3.4), but the algebra $H(A * B)$ is completely determined by the homology spectra of A and B (Theorem 3.3).

In the final sections, the work of Dold and Puppe [4] is used to develop a theory of derived functors for the nonadditive functor $A * B$. Not surprisingly these derived functors turn out to be closely related to the ordinary derived functors of the multiple tensor product (c.f [6]). Using these results we are able to state a "Künneth theorem" which relates the (additive) struc-

[^0]ture of $H(A), H(B)$ and $H(A * B)$ with the derived functors of $A * B$ (Theorem 5.2).

1. Definitions and basic properties

Let K be a (fixed) commutative ring with identity $1_{K} ; \otimes$ means \otimes_{K} throughout. We shall use the terminology and definitions of chapter VI of MacLane [8], with one exception: we call an object graded if it is Z-graded in the sense of MacLane, "Differential graded augmented algebra" is abbreviated as DGA-algebra. Homomorphisms of DGA-algebras are called DGA-homomorphisms or DGA-maps. All algebras are assumed to be augmented, unless specifically stated otherwise. Direct sums are denoted by + and/or \sum.

Let A be an algebra over K, with identity $I=I_{A}: K \rightarrow A$ and augmenta$\operatorname{tion} \varepsilon=\varepsilon_{A}: A \rightarrow K$. Let $\bar{A}=\operatorname{ker} \varepsilon ;$ then $A \cong K+\bar{A}$. This is an isomorphism of DG- K-modules if A is a DGA-algebra.

If C and D are (differential graded) K-modules, for each $n \geq 1$, let $T_{n}(C, D)$ be the (differential graded) K-module given by

$$
T_{n}(C, D)=C \otimes D \otimes C \otimes D \cdots \quad(n \text { factors })
$$

Definition 1.1. Let A and B be (augmented) algebras over K. The free product of A and B is the algebra $A * B$ given by

$$
A * B=K+\sum_{n \geq 1} T_{n}(\bar{A}, \bar{B})+T_{n}(\bar{B}, \bar{A})
$$

The augmentation map is the projection onto the summand K; the identity map I is the injection of K into the sum $A * B$. The product is given as follows. Let $k, k^{\prime} \in K$,

$$
u=u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n} \in T_{n}(\bar{A}, \bar{B}) \quad \text { or } \quad T_{n}(\bar{B}, \bar{A})
$$

and

$$
v=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m} \epsilon T_{m}(\bar{A}, \bar{B}) \quad \text { or } \quad T_{m}(\bar{B}, \bar{A})
$$

then

$$
\begin{aligned}
& k \cdot k^{\prime} \text { is given by multiplication in } K \\
& k \cdot u=\left(k u_{1}\right) \otimes u_{2} \otimes \cdots \otimes u_{n} ; \\
& u \cdot k=u_{1} \otimes u_{2} \otimes \cdots \otimes\left(u_{n} k\right) ; \\
& u \cdot v=u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n} \otimes v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m}, \\
& \text { if } u_{n} \in \bar{B} \text { and } v_{1} \in \bar{A}, \quad \text { or } u_{n} \in \bar{A} \text { and } v_{1} \in \bar{B} ; \\
& u \cdot v=u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n-1} \otimes\left(u_{n} v_{1}\right) \otimes v_{2} \otimes \cdots \otimes v_{m},
\end{aligned}
$$

$$
\text { if } u_{n} \text { and } v_{1} \text { are both in } \bar{A} \text { or both in } \bar{B} .
$$

If A and B are DGA-algebras, then $A * B$ as the direct sum of differential graded modules has an obvious grading and differential, and is a DGA-algebra.

It is readily verified that $A * B$ is in fact a (DGA-) algebra with identity $1_{K} \in K$. Henceforth we shall deal for the most part with DGA-algebras.

We have

$$
A * B=K+\bar{A}+\bar{B}+\sum_{n \geq 2} T_{n}(\bar{A}, \bar{B})+T_{n}(\bar{B}, \bar{A}) .
$$

Then the isomorphism $A \cong K+\bar{A}$ induces a map $\iota_{A}: A \rightarrow A * B$, which is readily seen to be a DGA-map; $\iota_{B}: B \rightarrow A * B$ is defined similarly.

Theorem 1.2. If A, B, C are $D G A$-algebras and $f: A \rightarrow C, g: B \rightarrow C$ are $D G A$-homomorphisms, then there is a unique $D G A$-homomorphism $\varphi: A * B \rightarrow C$ such that the diagram

is commutative; i.e.,

$$
A \xrightarrow{\iota_{A}} A * B \stackrel{\iota_{B}}{\longleftrightarrow} B
$$

is a universal diagram with ends A, B in the category of DGA-algebras and DGA-maps.

Since f and g are DGA-maps (hence $\varepsilon_{c} f=\varepsilon_{A}, \varepsilon_{C} g=\varepsilon_{B}$)

$$
\bar{f}=f \mid \bar{A}: \bar{A} \rightarrow \bar{C} \quad \text { and } \quad \bar{g}=g \mid \bar{B}: \bar{B} \rightarrow \bar{C}
$$

The theorem now follows immediately by defining $\varphi \mid K=I_{C}$ and $\varphi \mid T_{n}(\bar{A}, \bar{B})$ as the composition

$$
T_{n}(\bar{A}, \bar{B}) \xrightarrow{T_{n}(\bar{f}, \bar{g})} T_{n}(\bar{C}, \bar{C}) \xrightarrow{\mu} C,
$$

where μ is multiplication in C. We denote φ by $\langle f, g\rangle$.
$A * B$ can be considered as a covariant functor of two variables as follows: If $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$, define

$$
f * g: A * B \rightarrow A^{\prime} * B^{\prime} \quad \text { by } \quad f * g=\left\langle\iota_{A^{\prime}} f, \iota_{B^{\prime}} g\right\rangle
$$

Note however that it is not an additive functor.
The above definition of free product is somewhat more general than that given in [1] where consideration was restricted to positively graded connected DGA-algebras. In fact this seems to be as general as possible since if A and B are not augmented there may not be a universal diagram with ends A, B in the category of DG-algebras (of course the direct sum $A+B$ is universal in the category of DG-K-modules). For a trivial example of this let $K=Z$ and let $A=Z_{2}$ in dimension zero and 0 elsewhere; similarly let $B=Z_{8}$.

Since DGA-maps preserve the identity element, if there were a diagram

$$
A \xrightarrow{\iota_{A}} D \stackrel{\iota_{B}}{\longleftrightarrow} B
$$

the identity element of D would have (additive) order dividing 2 and 3. Hence $D=0$ and the diagram would not be universal.

Next we consider the situation when A and B are Hopf algebras (as defined in VI. 9 of MacLane [8]).

Proposition 1.3. If A and B are (differential graded) Hopf algebras, then $A * B$ is a (differential graded) Hopf algebra.

Proof. Let $\Psi_{A}: A \rightarrow A \otimes A$ and $\Psi_{B}: B \rightarrow B \otimes B$ be the coproduct maps for A and B respectively. By the definition of a Hopf algebra Ψ_{A} and Ψ_{B} are DGA-maps. Therefore, by Theorem 1.2, the DGA-maps

$$
\left(\iota_{A} \otimes \iota_{A}\right) \Psi_{A}: A \rightarrow(A * B) \otimes(A * B)
$$

and

$$
\left(\iota_{B} \otimes \iota_{B}\right) \Psi_{B}: B \rightarrow(A * B) \otimes(A * B)
$$

induce a DGA-map

$$
\Psi: A * B \rightarrow(A * B) \otimes(A * B)
$$

Proposition 1.4. In the category of DG-Hopf algebras and DG-Hopf algebra maps, the diagram

$$
A \xrightarrow{\iota_{A}} A * B \stackrel{\iota_{B}}{\longleftrightarrow} B
$$

is universal with ends A, B.
Proof. First note that by the definition of Ψ, ι_{A} and ι_{B} are Hopf algebra maps. We need only show that the $\operatorname{map} \varphi: A * B \rightarrow C$ defined in the proof of Theorem 1.2 is a map of DG-coalgebras when f and g are DG-Hopf algebra maps; this is a straightforward verification.

$$
\text { 2. } H(A * B) \text { and } H(A \otimes B)
$$

In the next two sections we shall examine the homology of $A * B$ (the so called zero-stage homology; cf. MacLane [8]). If A and B are DGA-algebras, then so are $H(A * B), H(A \otimes B), H(A)$ and $H(B)$ (all with trivial differential). We shall study some of the relationships between them. First, one might ask for DGA-algebras E and F if $H(E * F)$ completely determines $H(E \otimes F)$, or vice versa. The answer to both questions is negative, as shown by the following examples.

Example 2.2. Let $K=Z$ and let A, B, C be differential graded algebras which are zero in all dimensions except $0,1,2$ and are given there by

$$
\begin{array}{lll}
A: & Z\left(a_{0}\right) \leftarrow Z\left(a_{1}\right) \leftarrow Z\left(a_{2}\right) ; & \partial a_{1}=0, \\
B: & \quad \partial\left(a_{2}=4 a_{1}\right.
\end{array} ;
$$

In each case the augmentation is the identity map $Z\left(x_{0}\right)=Z(x=a, b, c)$; the multiplicative structure is given by

$$
\begin{aligned}
& x_{0} x_{j}=x_{j} x_{0}=x_{j} \text { for all } j \\
& x_{i} x_{j}=0 \text { for } i, j>0 ;(x=a, b, c)
\end{aligned}
$$

Now let $E=A * B, F=C, E^{\prime}=A, F^{\prime}=B * C$. By the associativity of the free product $E * F \cong E^{\prime} * F^{\prime}$, hence $H(E * F) \cong H\left(E^{\prime} * F^{\prime}\right)$. However direct computation shows that $H_{2}(E \otimes F) \cong Z_{2}+Z_{2}$, while $H_{2}\left(E^{\prime} \otimes F^{\prime}\right) \cong Z_{2}$. Thus $H(E * F)$ does not determine $H(E \otimes F)$.

Example 2.3. Let $K=Z$ and A, B, C be as in the previous example. Let $E=A \otimes B, F=C, E^{\prime}=A, F^{\prime}=B \otimes C$. Then $E \otimes F \cong E^{\prime} \otimes F^{\prime}$ and hence $H(E \otimes F) \cong H\left(E^{\prime} \otimes F^{\prime}\right)$. By using the fact that

$$
\overline{A \otimes B} \cong \bar{A} \otimes \bar{B}+\bar{A}+\bar{B},
$$

and some properties of the homology of tensor products of elementary complexes (cf. Lemma 3 of the Appendix of [5] and Lemma 3.2 of [6]) a straightforward calculation shows

$$
H_{2}(E * F) \cong H_{2}(\bar{A} \otimes \bar{B}) \cong Z_{2}
$$

but

$$
H_{2}\left(E^{\prime} * F^{\prime}\right) \cong H_{2}(\bar{A} \otimes \bar{B})+H_{2}(\bar{B} \otimes \bar{A}) \cong Z_{2}+Z_{2}
$$

Thus $H(E * F) \npreceq H\left(E^{\prime} * F^{\prime}\right)$ and hence $H(E \otimes F)$ does not determine $H(E * F)$.

3. The multiplicative structure of $H(A * B)$

The next question to be considered is whether or not $H(A)$ and $H(B)$ completely determine $H(A * B)$. The discussion will be restricted to the case $K=Z$, with A and B torsion-free. Analogous questions were considered in [5] with regard to $H(A), H(B)$ and $H(A \otimes B)$ and, not surprisingly, many of these earlier results carry over to the present situation.

Recall that the homology spectrum of a torsion-free DGA-algebra A over Z consists of the rings $H(A, m)=H\left(A \otimes Z_{m}\right)$ (for all $m \geq 0$, where $Z_{0}=Z$), together with the coefficient maps induced by the projections $Z_{m k} \rightarrow Z_{m}$ ($m k \geq 0$) and injections $Z_{m} \rightarrow Z_{m k}(m k>0)$, and the Bockstein map $\mu_{0}^{m}: H(A, m) \rightarrow H(A)=H(A, 0)$ induced by the exact sequence

$$
0 \rightarrow Z \xrightarrow{m} Z \rightarrow Z_{m} \rightarrow 0 .
$$

The homology spectrum is denoted by $\{H(A, m)\}$; for more details consult [5] and [6].

Definition 3.1. Let A and B be torsion-free DGA-algebras over Z. The free product of the homology spectra of A and B, denoted
$\{H(A, m)\} *\{H(B, m)\}$, is the graded abelian group

$$
\begin{aligned}
Z+H(\bar{A})+H(\bar{B})+\sum_{n \geq 2}\left[\tilde{T}_{n}(\{H(\bar{A}, m)\}\right. & ,\{H(\bar{B}, m)\}) \\
& \left.+\tilde{T}_{n}(\{H(\bar{B}, m)\},\{H(\bar{A}, m)\})\right]
\end{aligned}
$$

where $\tilde{T}_{n}(\{H(\bar{A}, m)\},\{H(\bar{B}, n)\})$ denotes the n-fold tensor product of homology spectra

$$
\{H(\bar{A}, m)\} \otimes\{H(\bar{B}, m)\} \otimes\{H(\bar{A}, m)\} \otimes\{H(\bar{B}, m)\} \otimes \cdots
$$

as defined on page 261 of [6].
Theorem 3.2. If A and B are torsion-free augmented $D G A$-algebras over Z then there is a natural isomorphism of graded groups:

$$
\{H(A, m)\} *\{H(B, m)\} \cong H(A * B)
$$

Proof. Since H is an additive functor, the definition of $A * B$ implies that $H(A * B) \cong Z+H(\bar{A})+H(\bar{B})+\sum_{n \geq 2} H\left(T_{n}(\bar{A}, \bar{B})\right)+H\left(T_{n}(\bar{B}, \bar{A})\right)$.
But Theorem 3.1 of [6] states in slightly different notation that for each $n \geq 2$, there is a natural isomorphism

$$
\begin{equation*}
H\left(T_{n}(\bar{A}, \bar{B})\right) \cong \widetilde{T}_{n}(\{H(\bar{A}, m)],\{H(\bar{B}, m)\}) \tag{1}
\end{equation*}
$$

The theorem now follows immediately.
The next step is to define a product in $\{H(A, m)\} *\{H(B, m)\}$ so that it becomes not just a group but a graded ring in such a way that the isomorphism of Theorem 3.2 becomes a ring isomorphism. The construction of such a product is very similar mutatis mutandis, to the construction of the product in the tensor product of homology spectra as given in Section 3 of [5]; consequently the details are omitted here. We can summarize these facts as follows.

Theorem 3.3. If A and B are torsion-free $D G A$-algebras over Z, then the homology spectra of A and B completely determine $H(A * B)$; in particular, there is a natural isomorphism of graded rings:

$$
\{H(A, m)\} *\{H(B, m)\} \cong H(A * B)
$$

Palermo [10] has given an example to show that for $K=Z$, the ring $H(A \otimes B)$ need not be completely determined by the rings $H(A)$ and $H(B)$. The same example serves to show that $H(A)$ and $H(B)$ alone do not determine $H(A * B)$.

Example 3.4. Let four identical complexes of abelian groups, A^{1}, A^{2}, A^{3}, A^{4} be given as follows ($i=1,2,3,4$):

$$
\begin{array}{ll}
& A_{0}^{i}=Z\left(e_{i}\right) ; \quad A_{-1}^{i}=Z\left(a_{i}\right)+Z\left(c_{i}\right) ; \quad A_{-2}^{i}=Z\left(b_{i}\right) \\
A_{j}^{i}=0 & \text { for } j \neq 0,-1,-2 ; \quad \partial e_{i}=0 ; \quad \partial a_{i}=2 b_{i} ; \quad \partial c_{i}=0 ; \quad \partial b_{i}=0
\end{array}
$$

In each A^{i} the augmentation map is the identity map $Z\left(e_{i}\right) \rightarrow Z$. The multiplicative structure is given as follows:

It is readily verified that each A^{i} is in fact a DGA-algebra and that there are algebra isomorphisms $H\left(A^{1}\right) \cong H\left(A^{2}\right) \cong H\left(A^{3}\right) \cong H\left(A^{4}\right)$. The situation is different when homology is taken mod 2. There are algebra isomorphisms $H\left(A^{1}, 2\right) \cong H\left(A^{2}, 2\right)$ and $H\left(A^{3}, 2\right) \cong H\left(A^{4}, 2\right)$, but there is no algebra isomorphism of $H\left(A^{1}, 2\right)$ and $H\left(A^{3}, 2\right)$, although all the additive structures are the same; (cf. Palermo [10] in slightly different terminology). We claim that there is no algebra isomorphism of $H\left(A^{1} * A^{2}\right)$ and $H\left(A^{3} * A^{4}\right)$. Thus $H(A)$ and $H(B)$ do not determine $H(A * B)$.

In low dimensions the additive structure of $H\left(A^{i} * A^{j}\right)$ is given as follows (where $(i, j)=(1,2)$ or $(3,4)$ and η denotes homology class).

$$
H_{0}\left(A^{i} * A^{j}\right)=Z
$$

$H_{-1}\left(A^{i} * A^{j}\right)=Z\left[\eta\left(c_{i}\right)\right]+Z\left[\eta\left(c_{j}\right)\right] ;$
$H_{-2}\left(A^{i} * A^{j}\right)=Z_{2}\left[\eta\left(b_{i}\right)\right]+Z_{2}\left[\eta\left(b_{j}\right)\right]+Z\left[\eta\left(c_{i} \otimes c_{j}\right)\right]+Z\left[\eta\left(c_{j} \otimes c_{i}\right)\right] ;$
$H_{-3}\left(A^{i} * A^{j}\right)=Z_{2}\left[\eta\left(b_{i} \otimes c_{j}\right)\right]+Z_{2}\left[\eta\left(c_{i} \otimes b_{j}\right)\right]+Z_{2}\left[\eta\left(b_{i} \otimes a_{j}-a_{i} \otimes b_{j}\right)\right]$
$+Z_{2}\left[\eta\left(b_{j} \otimes c_{i}\right)\right]+Z_{2}\left[\eta\left(c_{j} \otimes b_{i}\right)\right]+Z_{2}\left[\eta\left(b_{j} \otimes a_{i}-a_{j} \otimes b_{i}\right)\right]$
$+Z\left[\eta\left(c_{i} \otimes c_{j} \otimes c_{i}\right)\right]+Z\left[\eta\left(c_{j} \otimes c_{i} \otimes c_{j}\right)\right] ;$
$H_{-4}\left(A^{i} * A^{j}\right)=Z_{2}\left[\eta\left(b_{i} \otimes b_{j}\right)\right]+Z_{2}\left[\eta\left(b_{j} \otimes b_{i}\right)\right]+$ other terms.
Suppose there were an isomorphism of graded algebras

$$
f: H\left(A^{1} * A^{2}\right) \rightarrow H\left(A^{3} * A^{4}\right)
$$

Then it is easy to see that $f \mid Z$ is the identity. Since f preserves degrees

$$
f\left[\eta\left(c_{1}\right)\right]=x \eta\left(c_{3}\right)+y \cdot \eta\left(c_{4}\right)
$$

for some $x, y \in Z$. Since $c_{1}^{2}=0, f\left[\eta\left(c_{1}\right)\right]^{2}=0$; but

$$
f\left[\eta\left(c_{1}\right)\right]^{2}=x y \eta\left(c_{3} \otimes c_{4}\right)+x y \eta\left(c_{4} \otimes c_{3}\right)
$$

This will be zero if and only if $x=0$ or $y=0$. It follows that $f\left[\eta\left(c_{1}\right)\right]=$ $\pm \eta\left(c_{3}\right)$ or $\pm \eta\left(c_{4}\right)$; by changing indices if necessary we can assume $f\left[\eta\left(c_{1}\right)\right]= \pm \eta\left(c_{3}\right)$. Then the same argument shows that $f\left[\eta\left(c_{2}\right)\right]= \pm \eta\left(c_{4}\right)$.

A similar argument shows that $f\left[\eta\left(b_{1}\right)\right]=\eta\left(b_{3}\right)$ or $\eta\left(b_{4}\right)$. The facts that $f\left[\eta\left(c_{1}\right)\right]= \pm \eta\left(c_{3}\right)$ and $c_{1} \cdot b_{1}=0$ imply that $f\left[\eta\left(b_{1}\right)\right]=\eta\left(b_{3}\right)$, since $\eta\left(c_{3}\right) \cdot \eta\left(b_{4}\right)=\eta\left(c_{3} \otimes b_{4}\right) \neq 0$ in $H\left(A^{3} * A^{4}\right) . \quad$ Likewise $f\left[\eta\left(b_{2}\right)\right]=\eta\left(b_{4}\right)$.

Let $u=\left(b_{1} \otimes a_{2}-a_{1} \otimes b_{2}\right) . \quad$ In $H\left(A^{1} * A^{2}\right)$,

$$
\eta\left(c_{1}\right) \cdot \eta(u)=\eta\left(b_{1} \otimes b_{2}\right) \neq 0
$$

Hence

$$
f\left[\eta\left(c_{1}\right)\right] \cdot f[\eta(u)]=\eta\left(c_{3}\right) \cdot f[\eta(u)]=\eta\left(b_{3} \otimes b_{4}\right) .
$$

Since each A^{i} is torsion-free, the homology product maps (which define the product in $H\left(A^{3} * A^{4}\right)$)

$$
\alpha: H_{-1}\left(\bar{A}^{3}\right) \otimes H_{-3}\left(\bar{A}^{4} \otimes \bar{A}^{3}\right) \rightarrow H_{-4}\left(\bar{A}^{3} \otimes \bar{A}^{4} \otimes \bar{A}^{3}\right)
$$

and

$$
\alpha: H_{-1}\left(\bar{A}^{3}\right) \otimes H_{-3}\left(\bar{A}^{4} \otimes \bar{A}^{3} \otimes \bar{A}^{4}\right) \rightarrow H_{-4}\left(\bar{A}^{3} \otimes \bar{A}^{4} \otimes \bar{A}^{3} \otimes \bar{A}^{4}\right)
$$

are both monic (cf. MacLane [9]; this means that in this case the product of nonzero elements is nonzero. Since $f[\eta(u)]$ must have additive order 2 , the only possibility, therefore, for $f[\eta(u)]$ is a linear combination of

$$
\eta\left(b_{3} \otimes c_{4}\right), \quad \eta\left(c_{3} \otimes b_{4}\right), \quad \eta\left(b_{3} \otimes a_{4}-a_{3} \otimes b_{4}\right)
$$

But the product of $\eta\left(c_{3}\right)$ (on the left) with each of these terms is zero in $H\left(A^{3} * A^{4}\right)$. Hence $f\left[\eta\left(c_{1}\right)\right] \cdot f[\eta(u)] \neq \eta\left(b_{3} \otimes b_{4}\right)$, a contradiction. Therefore there can be no algebra isomorphism between $H\left(A^{1} * A^{2}\right)$ and $H\left(A^{3} * A^{4}\right)$.

4. Derived functors

In an abelian category (with sufficient proper projectives) the derived functors of an additive functor T are always defined (cf. [8]). Furthermore, Dold and Puppe [4] have defined the derived functors of an arbitrary functor T on an abelian category in such a way that they agree with the usual derived functors if T is additive. Unfortunately, however, the cateogry of augmented algebras (or augmented K-modules) is not abelian and the functor $A * B$ is not additive. On the other hand, the functor $T(\bar{A}, \bar{B})=A * B$, considered as a functor of the K-modules \bar{A} and \bar{B}, is a (nonadditive) functor of two variables on the abelian category of K-modules. Also, it is clear that a DGAalgebra A completely determines the K-module \bar{A}. Since some analogue of derived functors may prove useful for $A * B$, it seems reasonable to define the derived functors of $A * B$ to be the derived functors of $T(\bar{A}, \bar{B})$ and apply the definitions and results of [4].

The reader should consult [4] or [8] for the definition of a semisimplicial object; $\mathbf{k} X$ will denote the chain complex determined by the semisimplicial (s.s.) K-module X. If X and Y are s.s. objects on an abelian category A with face and degeneracy operators $d_{i}^{X}, s_{i}^{X}, d_{i}^{Y}, s_{i}^{Y}$ respectively and F is a covariant functor of two variables from the category A to itself, then $F(X, Y)$ is the s.s. object given by $F_{n}(X, Y)=F\left(X_{n}, Y_{n}\right)$, with face and degeneracy operators $d_{i}=F\left(d_{i}^{X}, d_{i}^{Y}\right)$ and $s_{i}=F\left(s_{i}^{X}, s_{i}^{Y}\right)$; similarly for functors of more than two variables. If F is the tensor product of K-modules then the Eilenberg Zilber Theorem states that there is a natural chain equivalence of complexes:

$$
\begin{equation*}
\mathbf{k} F(X, Y) \leftrightarrow \mathbf{k} X \otimes \mathbf{k} Y \tag{1}
\end{equation*}
$$

Definition 4.1. Let A be a K-module and $n \geq 0$ an integer. A projecitve semi-simplicial resolution of (A, n) is an s.s. module X such that: X_{i} is projective for all $i ; X_{i}=0$ for $i<n ; H_{i}(\mathbf{k} X)=0$ for $i>n ; H_{n}(\mathbf{k} X) \cong A$.

Definition 4.2. Let A be a graded K-module; for each $m \in Z$, let X^{m} be a projective s.s. resolution of $\left(A_{m}, m\right)$. The direct sum $X=\sum^{m} X_{m}$ is called a projective s.s. resolution of A.

This is an extension of definition 4.8 of [4]. The work in [4] is all done in the context of an abelian category; hence arbitrary direct sums may not exist. The technique of taking X^{m} to be a projective s.s. resolution of $\left(A_{m}, m\right)$ rather than of $\left(A_{m}, 0\right)$ insures that for positively graded objects A, the projective s.s. resolution X of A is well defined, since for each $q \geq 0 X_{q}$ is a finite sum $\sum_{m \leq q} X_{q}^{m}$. However, since infinite direct sums do exist in the category of K-modules, the definition can be extended in this case to arbitrarily graded K-modules.

The following facts are proved in [4]. For every K-module A and every $n \geq 0$ there is a projective s.s. resolution of (A, n). Hence every graded K-module has a projective s.s. resolution. If X and Y are projective s.s resolutions of A and B respectively, then every K-module map $f: A \rightarrow B$ can be lifted to an s.s. map $\bar{f}: X \rightarrow Y ; \bar{f}$ is unique up to chain homotopy. If F is a (not necessarily additive) covariant functor of two variables on the category of K-modules, then $H(\mathbf{k} F(X, Y))$ is determined up to natural isomorphism and depends only on F, A and B, and not on X or Y. The same $\mathrm{f}^{\text {acts hold if } A}$ and B are graded K-modules.

Definition 4.3. Let $F(A, B)$ be a covariant functor from the category of graded K-modules to itself. The q-th left derived functor of F is

$$
L_{q} F(A, B)=H_{q}(\mathbf{k} F(X, Y))
$$

where X and Y are projective s.s. resolutions of A and B respectively.
The preceding remarks show that $L_{q} F(A, B)$ is well defined. Note that since negative gradings are allowed for A and B, the derived functors $L_{q} F(A, B)$ are defined for negative as well as positive q.

Before applying Definition 4.3 to the functor $T(\bar{A}, \bar{B})=A * B$, we first consider the n-fold tensor product of K-modules, $A^{1} \otimes A^{2} \otimes \cdots \otimes A^{n}$. It is a covariant, additive, right exact functor of n variables on the category of K-modules, whose i-th left derived functor is generally denoted by $\operatorname{Mult}_{i}^{K, n}\left(A^{1}, \cdots, A^{n}\right)$. For $n=2, \operatorname{Mult}_{i}^{K, 2}$ is just Tor ${ }_{i}^{K}$ and for every n,

$$
\operatorname{Mult}_{0}^{K, n}\left(A^{1}, \cdots, A^{n}\right)=A^{1} \otimes A^{2} \otimes \cdots \otimes A^{n}
$$

If K is a hereditary ring, then $\operatorname{Mult}_{i}^{K, n}\left(A^{1}, \cdots, A^{n}\right)=0$ for $i \geq n$.
We shall use the following notation. Let A and B be graded K-modules;
p, n, i integers $(i \geq 0)$. Then

$$
\operatorname{Mult}_{i}^{K, n}[A, B]_{p}=\sum \operatorname{Mult}_{i}^{K, n}\left(A_{p_{1}}, B_{p_{2}}, A_{p_{8}}, B_{p_{4}}, \cdots\right) \quad(n \quad \text { factors })
$$

where the sum is taken over all $\left(p_{1}, \cdots, p_{n}\right)$ such that $\sum_{r=1}^{n} p_{r}=p$. We also adopt the conventions that

$$
\begin{aligned}
& \operatorname{Mult}_{i}^{K, 1}[A, B]_{p}=A_{i} \quad \text { for } \quad p=0 ; \quad 0 \quad \text { for } \quad p \neq 0 \\
& \operatorname{Mult}_{i}^{K, 0}[A, B]_{p}=K \quad \text { for } \quad i=p=0 ; \quad 0 \quad \text { otherwise. }
\end{aligned}
$$

We can consider $\sum_{i \geq 0} \operatorname{Mult}_{i}^{K, n}[A, B]=\sum_{i \geq 0} \sum_{p} \operatorname{Mult}_{i}^{K, n}[A, B]_{p}$ as a (bi)graded K-module, with an element of $\mathrm{Mult}_{i}^{K, n}[A, B]_{p}$ having bidegree (i, p) and total degree $i+p$. Now let $T_{n}(A, B)$ be the n-fold tensor product of alternate copies of A and B as above.

Theorem 4.4. If A and B are graded K-modules, then there is a natural isomorphism of graded K-modules:
in particular,

$$
\sum_{q} L_{q} T_{n}(A, B) \cong \sum_{i \geq 0} \operatorname{Mult}_{i}^{K, n}[A, B]
$$

$$
L_{q} T_{n}(A, B)=\sum_{j \geq 0} \operatorname{Mult}_{j}^{K, n}[A, B]_{q-j}
$$

Proof. We shall use the following notation:

$$
\sum_{\left(p_{j}\right)=k} M_{p_{1}} \otimes M_{p_{2}} \otimes \cdots \otimes M_{p_{n}}
$$

is the sum over all $\left(p_{1}, \cdots, p_{n}\right)$ such that $\sum_{j=1}^{n} p_{j}=k$. Let X and Y be s.s. projective resolutions of A and B respectively; then, by the Eilenberg-Zilber Theorem and the appropriate definitions,

$$
\begin{align*}
L_{q} T_{n}(A, B)= & H_{q}\left(\mathbf{k} T_{n}(X, Y)\right) \\
\cong & H_{q}\left(T_{n}(\mathbf{k} X, \mathbf{k} Y)\right) \\
\cong & H_{*}\left(\sum_{\left(q_{j}\right)=q} \mathbf{k} X_{q_{1}} \otimes \mathbf{k} Y_{q_{2}} \otimes \mathbf{k} X_{q_{3}} \otimes \mathbf{k} Y_{q_{4}} \otimes \cdots\right) \tag{2}\\
= & H_{*}\left[\sum _ { (q _ { j }) = q } \left(\sum_{m_{1}} \mathbf{k} X_{q_{1}}^{m_{1}} \otimes \sum_{m_{2}} \mathbf{k} Y_{q_{2}}^{m_{2}} \otimes \sum_{m_{3}} \mathbf{k} X_{q_{3}}^{m_{3}}\right.\right. \\
& \otimes \cdots)] \\
= & \sum_{m_{1}} \cdots \sum_{m_{n}} H_{*}\left(\sum_{\left(q_{j}\right)=q} \mathbf{k} X_{q_{1}}^{m_{1}} \otimes \mathbf{k} Y_{q_{2}}^{m_{2}} \otimes \cdots\right) \\
= & \sum_{i \leq q} \sum_{\left(m_{j}\right)=i} H_{*}\left(\sum_{\left(q_{j}\right)=q} \mathbf{k} X_{q_{1}}^{m_{1}} \otimes \mathbf{k} Y_{q_{2}}^{m_{2}} \otimes \cdots\right)
\end{align*}
$$

the first sum is actually over all $i \in Z$, but for each $\left(m_{1}, \cdots, m_{n}\right)$ such that $\sum_{r=1}^{n} m_{r}=i>q$ and each $\left(q_{1}, \cdots, q_{n}\right)$ such that $\sum_{r} q_{r}=q$, some $m_{j}>q_{j}$ and thus $X_{q_{j}}^{m_{j}}$ (or $Y_{q_{j}}^{m_{j}}$) is 0 since each X^{m} is a s.s. projective resolution of $\left(A_{m}, m\right)$. Now by using this last fact, (2) becomes
$\sum_{i \leq q} \sum_{\left(m_{j}\right)=i} \operatorname{Mult}_{q-i}^{K, n}\left(A_{m_{1}}, B_{m_{2}}, A_{m_{3}}, B_{m_{4}}, \cdots\right)=\sum_{i \leq q} \operatorname{Mult}_{q \rightarrow i}^{K, n}[A, B]_{i}$.

Now a change of indices $(j=q-i)$ gives

$$
\sum_{j \geq 0} \operatorname{Mult}_{j}^{K, n}[A, B]_{q-j}
$$

as desired.
We are now in a position to compute the left derived functors of $A * B=T(\bar{A}, \bar{B})$, which we denote by $L_{q}(A * B)$. From the appropriate definitions and Theorem 4.4 we immediately obtain:

Theorem 4.5. If A and B are $D G A$-algeb ras, then the left derived functors of $A * B$ are given by
$L_{0}(A * B)=K+\sum_{n \geq 1} \sum_{i \geq 0}\left(\operatorname{Mult}_{i}^{K, n}[\bar{A}, \bar{B}]_{-i}+\operatorname{Mult}_{i}^{K, n}[\bar{B}, \bar{A}]_{-i}\right)$, and for $q \neq 0$,

$$
L_{q}(A * B)=\sum_{n \geq 1} \sum_{i \geq 0}\left(\operatorname{Mult}_{i}^{K, n}[\bar{A}, \bar{B}]_{q-i}+\operatorname{Mult}_{i}^{K, n}[\bar{B}, \bar{A}]_{q-i}\right) .
$$

5. Künneth theorems

If A and B are DGA-algebras over K, then so are $H(A), H(B)$, and $H(A * B)$. Furthermore $\overline{H(A)}=H(\bar{A})$ and $\overline{H(B)}=H(\bar{B})$. Define a map

$$
\alpha_{*}: H(A) * H(B) \rightarrow H(A * B)
$$

as follows. $\quad \alpha_{*}|K, \alpha| \overline{H(A)}, \alpha \mid \overline{H(B)}$ are the respective identity maps on K, $\overline{H(A)}=H(\bar{A}), \overline{H(B)}=H(\bar{B}), \quad \alpha \mid T_{n}[\overline{H(A)}, \overline{H(B)}]$ is the usual homology product map

$$
\alpha: T_{n}[H(\bar{A}), H(\bar{B})] \rightarrow H\left[T_{n}(\bar{A}, \bar{B})\right]
$$

similarly for $\alpha_{*} \mid T_{n}[\overline{H(B)}, \overline{H(A)}]$. It can verified be that α_{*} is a DGA-map. In general, of course, it is not an isomorphism; however, we do have:

Theorem 5.1. If A and B are $D G A$-algebras over K such that the modules of cycles and the homology modules $Z_{n}(A), H_{n}(A), Z_{n}(B), H_{n}(B)$ are projective K-modules for every n, then

$$
\alpha: H(A) * H(B) \rightarrow H(A * B)
$$

is a DGA-isomorphism.
Proof. We need only show that α_{*} is an isomorphism of graded K-modules. Under the hypothesis that just one of A or B have projective cycles and homology in every dimension, the ordinary Künneth theorem (see, for example, Theorem V.10.1 of MacLane [6]) states that the homology product map $\alpha: H(\bar{A}) \otimes H(\bar{B}) \rightarrow H(\bar{A} \otimes \bar{B})$ is an isomorphism of graded K-modules. An inductive procedure then shows that the map

$$
\alpha: T_{n}[H(\bar{A}), H(\bar{B})] \rightarrow H\left[T_{n}(\bar{A}, \bar{B})\right]
$$

ia a graded K-module isomorphism for all $n \geq 2$. Therefore from the definition of α_{*} we see that α_{*} is an isomorphism.

If K is a hereditary ring we can also state a Künneth theorem of sorts for the free product, corresponding to similar theorems for the tensor product, as given in [3], [6], and elsewhere.

Theorem 5.2. If A and B are flat $D G A$-algebras over a hereditary ring K, then there is a (nonnatural) isomorphism of graded K-modules:

$$
H(A * B) \cong \sum_{q} L_{q}(H(A) * H(B))
$$

Proof. The multiple Künneth theorem of [6] states that for $K=Z$ and A, B torsion-free (i.e. Z-flat) there is for each q and each $n \geq 2$ a (nonnatural) isomorphism of graded groups:

$$
\begin{equation*}
H_{q}\left(T_{n}(\bar{A}, \bar{B}) \cong \sum_{i=0}^{n-1} \operatorname{Mult}_{i}^{K}, n[H(\bar{A}), H(\bar{B})]_{q-i}\right. \tag{1}
\end{equation*}
$$

Since for hereditary rings, Mult $_{i}^{K, n}(-)$ is 0 for $i \geq n$, (for $q \neq 0$) Theorem 4.5 gives

$$
\begin{aligned}
H_{q}(A * B)= & \sum_{n \geq 1} H_{q}\left(T_{n}(\bar{A}, \bar{B})\right)+H_{q}\left(T_{n}(\bar{B}, \bar{A})\right) \\
= & \sum_{n \geq 1} \sum_{i=0}^{n-1} \operatorname{Mult}_{i}^{K, n}[H(\bar{A}) H(\bar{B})]_{q-i} \\
& +\operatorname{Mult}_{i}^{K, n}[H(\bar{B}), H(\bar{A})]_{q-i} \\
= & L_{q}(H(A) * H(B)) .
\end{aligned}
$$

The proof for $q=0$ is similar. Essentially the same multiple Künneth theorem as above is given for an arbitrary hereditary ring K in Dold [3]. Although the theorem is stated there only for the case $n=2$, the proof given applies equally well, mutatis mutandis, to the case $n>2$. Hence the theorem follows as above.

Corollary 5.3. If A and B are flat $D G A$-algebras over a hereditary ring K, then there is an exact sequence of graded K-modules:

$$
\begin{aligned}
& 0 \rightarrow H(A) * H(B) \xrightarrow{\alpha_{*}} H(A * B) \\
& \\
& \rightarrow \sum_{q} \sum_{n \geq 1} \sum_{i-1}^{n-1}\left(\operatorname{Mult}_{i}^{K, n}[H(\bar{A}), H(\bar{B})]_{q-i}\right. \\
& \\
& \left.\quad+\operatorname{Mult}_{i}^{K, n}[H(\bar{B}), H(\bar{A})]_{q-i}\right) \rightarrow 0 .
\end{aligned}
$$

where α_{*} is the DGA-map defined above.
Proof. It is shown in [6] that the isomorphism (1) in the proof of the theorem is given for each q by the identity map on the summands $H_{q}(\bar{A})$, $H_{q}(\bar{B})$ (and Z, if $q=0$) and for each n by the homology product α on the summand

$$
\operatorname{Mult}_{0}^{K, n}[H(A), H(B)]_{q}=\left(T_{n}(H(A), H(B))_{q}\right.
$$

Hence the isomorphism $H(A * B) \cong \sum_{q} L_{q}(H(A) * H(B))$ is given on

$$
\begin{aligned}
H(A) * H(B)= & K+H(\bar{A})+H(\bar{B})+\sum_{n \geq 2} T_{n}(H(\bar{A}), H(\bar{B})) \\
& +T_{n}(H(\bar{B}), H(\bar{A})) \\
= & \left.K+\sum_{q} \sum_{n \geq 1} \operatorname{Mult}_{0}^{K, n}{ }_{[} H(\bar{A}), H(\bar{B})\right]_{q} \\
& +\operatorname{Mult}_{0}^{K, n}[H(\bar{B}), H(\bar{A})]_{q} \\
\subseteq & \sum_{q} L_{q}(H(A) * H(B))
\end{aligned}
$$

by the map α_{*} and the corollary follows immediately.

Bibliography

1. I. Berstein, On co-groups in the category of graded algebras, Trans. Amer. Math. Soc., vol. 115 (1965), pp. 257-269.
2. H. Cartan and E. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, 1956.
3. A. Dowd, Homotopietheorie der Kettenkomplexe, Math. Ann., vol. 140 (1960), pp. 278298.
4. A Dold and D. Puppe, Homologie nicht-additiver Functoren Anwendung, Ann. Inst. Fourier (Grenoble), vol. 11 (1961), pp. 201-312.
5. T. Hungerford, Bockstein spectra, Trans. Amer. Math. Soc., vol. 115 (1965), pp. 225-241.
6. -_, Multiple Künneth formulas for abelian groups, Trans. Amer. Math. Soc., vol. 118 (1965), pp. 257-276.
7. ——, Hyperhomology spectra and a multiplicative Künneth theorem, Illinois J. Math., vol. 10 (1966), pp. 249-254.
8. S. MacLane, Homology, Springer, Berlin, Gottingen and Heidelberg, 1963.
9. ——, Triple torsion products and multiple Künneth formulas, Math. Ann., vol. 140 (1960), pp. 51-64.
10. F. P. Palermo, The cohomology ring of product complexes, Trans. Amer. Math. Soc., vol. 86 (1957), pp. 174-196.

University of Washington
Seattle, Washington

[^0]: Received February 17, 1967.
 ${ }^{1}$ This research was supported by a National Science Foundation grant.

