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Introduction
Let A and B be differential graded augmented algebras over a commutative

ring K. Their free product A B is always defined; A B is a differential
graded augmented K-algebra which together with canonical injections

tA tBA- ; A,B B

forms a universal diagram in this category. In connection with certain
topological questions, Berstein [1] first studied the free product of algebras
and its homology; he showed for example that the homology of the loop
space of X /X. (where X are spaces with "nice" base point) is the free
product H(tX) H(tX). We shall study the free product and its homology
from a somewhat different viewpoint.
The first section is devoted to the definition and basic properties of the

free product, including a consideration of Hopf algebras. Some of this
material appears in Berstein [1], but is stated here for convenience since our
notation is different and our definitions are somewhat more general (Berstein
considers only positively graded connected K-algebras).
Palermo [10] and the author [5], [6] have studied the relationship between

the vaious homologies H(A), H(B), and H(A (R) B). The chief purpose of
this paper is to extend these investigations to H(A B). In particular since
A B is defined in terms of the tensor product it seems natural to ask whether
or not H(A (R) B) completely determines H(A B). Examples in Section
2 show that the answer is negative; furthermore neither does H(A B) de-
termine H(A (R) B). For K Z and A, B torsion-free, it is known that the
algebras H(A) and H(B) do not determine the algebra H(A (R) B) but
H(A (R) B) is completely determined by the homology spectra of A and B
(cf. Palermo [10], and [5]). The analogues of these facts are presented in
Section 3: H(A) and H(B) are not sufficient to determine H(A B) (Ex-
ample 3.4), but the algebra H(A, B) is completely determined by the
homology spectra of A and B (Theorem 3.3).

In the final sections, the work of Dold and Puppe [4] is used to develop
a theory of derived functors for the nonadditive functor A B. Not sur-
prisingly these derived functors turn out to be closely related to the ordinary
derived functors of the multiple tensor product (c.f [6]). Using these results
we are able to state a "Kfinneth theorem" which relates the (additive) struc-
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ture of H(A), H(B) and H(A B) with the derived functors of A B (The-
orem 5.2).

1. Definitions and basic properties
Let K be a (fixed) commutative ring with identity 1K; (R) means @K

throughout. We shall use the terminology and definitions of chapter VI of
MacLane [8], with one exception" we call an object graded if it is Z-graded
in the sense of MacLane, "Differential graded augmented algebra" is ab-
breviated as DGA-algebra. Homomorphisms of DGA-algebras are called
DGA-homomorphisms or DGA-maps. All algebras are assumed to be aug-
mented, unless specifically stated otherwise. Direct sums are denoted by
-t- and/or ’.
Let A be an algebra over K, with identity I Ia K --* A and augmenta-

tion=e’A--K. Let kerc;thenA =NK . This is an iso-
morphism of DG-K-modules if A is a DGA-algebra.

If C and D are (differential graded) K-modules, for each n >_ 1, let Tn(C, D)
be the (differential graded) K-module given by

T(C,D) C (R) D (R) C (R) D (n factors).

DEFiNiTION 1.1. Let A and B be (augmented) algebras over K. The free
product of A and B is the algebra A B given by

A B g -5 Zn_l Tn(l,/) + T.(/, .).
The augmentation map is the projection onto the summand K; the identity
map I is the injection of K into the sum A B. The product is given as
follows. Let k, k’ e K,

u u(R)u(R) (R)useT.(fi,/) or T(,fi),
and

then
v v (R) v2 (R) (R) veT(fi-..,[) or T(/, fi_);

k. k’ is given by multiplication in K;

k.u (ku) (R) u2 (R) (R) u,

u.k u (R) u2 (R) (R) (uk);

U’V Ul ( U2 ( ( Un ( Vl ( V2 ( (

if ue/ and Vle., or u.efi and

i u and vl are bothin or both in

If A and B are DGA-algebras, then A B as the direct sum of differential
graded modules has an obvious grading and differential, and is a DGA-algebra.
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It is readily .verified that A B is in fact a (DGA-) algebra with identity
1 e K. Henceforth we shall deal for the most part with DGA-algebras.
We have

A B K -b ,+/ + .>. T.(i,/) + T.(@,
Then the isomorphism A K + induces map A A, B, which is
readily seen to be a DGA-map; . B A B is defined similarly.

THEOREM 1.2. If A, B, C are DGA-algebras and f A C, g B C are
DGA-homomoThisms, then there is a unique DGA-homomorphism A B C
such that the diagram

A A,B -. B
//

C

is commutative; i.e.,

A " A,B B

is a universal diagram with ends A, B in the category of DGA-algebras and
DGA-maps.

Since f and g are DGA-maps (hence tc f ta,

]=f[’fit---- and g[’.
The theorem now follows immediately by defining K Ic and T,(A, B)
as the composition

where is multiplication in C. We denote
A B can be considered as a covariant functor of two variables as follows"

If f" A A’ and g B B, define

f ,g A ,B A’ ,B’ by f ,g (a,f, ,g).

Note however that it is not an additive functor.
The above definition of free product is somewhat more general than that

given in [1] where consideration was restricted to positively graded connected
DGA-algebras. In fact this seems to be as general as possible since ff A and B
are not augmented there may not be a universal diagram th ends A, B
in the category of DG-algebras (of course the direct sum A + B is uversal
in the category of DG-K-modules). For a tribal example of this let K Z
and le A Z in dimension zero and 0 elsewhere; silarly let B Z,.
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Since DGA-maps preserve the identity element, if there were a diagram

A D -’ B,
the identity element of D would have (additive) order dividing 2 and 3.
Hence D 0 and the diagram would not be universal.
Next we consider the situation when A and B are Hopf algebras (as de-

fined in VI.9 of MacLane [8]).

PROPOSTIO 1.3. If A and B are (differential graded) Hopf algebras,
hen A B is a (differential graded) Hopf algebra.

Proof. Leta A ---, A (R) A and xI,s B -- B @ B be the coproduct maps
for A and B respectively. By the definition of a Hopf algebra and
are DGA-maps. Therefore, by Theorem 1.2, the DGA-maps

(a (R) a)I’x A -- (A B) (R) (A B)
and

(,, (R) ,,)xI,, B --, (a B) (R) (A B)
induce a DGA-map

xI,’A,B--,(A,B) (R) (A,B).

PROPOSlTIO 1.4. In the category of DG-Hopf algebras and DG-Hopf al-
gebra maps, the diagram

tBA a>A,B B

is universal with ends A, B.

Proof. First note that by the definition of I,, ,a and , are Hopf algebra
maps. We need only show that the map A B --, C defined in the proof
of Theorem 1.2 is a map of DG-eoalgebras when f and g are DG-Hopf algebra
maps; this is a straightforward verification.

2. H(A B)md H(A (R) B)
In the next two sections we shall examine the homology of A B (the so

called zero-stage homology; cf. MacLane [8]). If A .and B are DGA-algebras,
then so are H(A B), H(A (R) B), H(A) and H(B) (all with trivial dif-
ferential). We shall study some of the relationships between them. First,
one might ask for DGA-algebras E and F if H(E F) completely determines
H(E (R) F), or vice versa. The answer to both questions is negative, as shown
by the following examples.

Example 2.2. Let K Z and let A, B, C be differential graded algebras
which are zero in all dimensions except 0, 1, 2 and are given there by

A" Z(ao) -- Z(a) Z(a) Oa O, Oa 4a;
B A (bo (-- Z (b Z b. Ob O, Obj. 2b
C" Z(co) ,-- Z(c) ,--- Z(c); Oc O, Oc. 3c .
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In each case the augmentation is the identity map Z(Xo) Z (x a, b, c);
the multiplicative structure is given by

x0 x x. xo x for all j;

xxj 0 fori, j > 0;(x-- a,b,c).

Now letE A .B, F C, E’ A, F’ B .C. By theassociativity
of the free product E F == F, hence H(E F)

_
H(E’ F’). How-

ever direct computation shows that H.(E (R) F) g2 + 2, while
H.(E’ (R) F’) 7 Thus H(E F) does not determine H(E (R) F).

Example 2.3. Let K Z and A, B, C be as in the previous example. Let
E’F’ B@C. ThenE@F (R) andE A(R)B,F C,E’ A,

hence H(E (R) F) H(E’ (R) F’). By using the fact that

A(R) B_ @ [ + ft + t,
and some properties of the homology of tensor products of elementary com-
plexes (cf. Lemma 3 of the Appendix of [5] and Lemma 3.2 of [6]) a straight-
forward calculation shows

H.(E F)

__
g(. (R)/)

_
Z

but
H:(E’ F’) H.(fi (R) [) + H([ (R) l) --- g +

Thus H(E F) H(E’ F’) and hence H(E (R) F) does not determine
H(E.F).

3. The mlfipliccfive strtre of H(A B)
The next question to be corsidered is whether or not H(A) and H(B)

completely determine H(A. B). The discussion will be restricted to the
case K g, with A and B torsion-free. Analogous questions were considered
in [5] with regard to H(A), H(B) and H(A (R) B) and, not surprisingly,
many of these earlier results carry over to the present situation.

Recall that the homology spectrum of a torsion-free DGA-algebra A over
g consists of the rings H(A, m) H(A @ gin) (for all m >_ 0, where g0 g),
together with the coefficient maps induced by the projections Zm --(m/ >_ 0) and injections g --* g (m/ > 0), and the Bockstein map

’ H(A, m) H(A) H(A, 0) induced by the exact sequence

0--* Z m; g --. --0.

The homology spectrum is denoted by {H(A, m)}; for more details consult
[5] and [6].

DWFNTON 3.1. Leg A and B be torsion-free DGA-algebras
over . The free product of the homology spectra of A and B, denoted
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H(A, m) H(B, m) }, is the graded abelian group

Z @ H(fi) --I- H(/) --I-- >_ [({g(2{, m)}, {H(/, m)})- ({H(/, m)}, {H(2{, m)} )l

where ({H(2{, m)}, {H(/, n)}) denotes the n-fold tensor product of
homology spectra

{H(i, m)} (R) {H(/, m)} (R) {H(fi, m)} @ {g(/, m)} (R) ...,
as defined on page 261 of [6].

THEOREM 3.2. If A and B are torsion-free augmented DGA-algebras over
Z then there is a natural isomorphism of graded groups"

{H(A, m)} {H(B, m)} ----- H(A B).

Proof. Since H is an additive functor, the definition of A B implies that

H(A .B) ._ Z W H(I) -k- H() - _>2H(T,(2{, [)) + H(T([, )).
But Theorem 3.1 of [6] states in slightly different notation that for each
n >_ 2, there is a natural isomorphism

(1) H(T,(I,/)) -- ({H(2{, m)], {H(/, m)}).

The theorem now follows immediately.
The next step is to define a product in {H(A, m)} {H(B, m)} so that it

becomes not just a group but a graded ring in such a way that the isomorphism
of Theorem 3.2 becomes a ring isomorphism. The construction of such a
product is very similar mutatis mutandis, to the construction of the product
in the tensor product of homology spectra as given in Section 3 of [5]; con-
sequently the details are omitted here. We can summarize these facts as
follows.

THEOREM 3.3. If A and B are torsion-free DGA-algebras over Z, then the
homology spectra of A and B completely determine H(A B); in particular,
there is a natural isomorphism of graded rings:

{H(A, m)} {H(B, m)} .. H(A B).

Palermo [10] has given an example to show that for K Z, the ring
H(A (R) B) need not be completely determined by the rings H(A) and H(B).
The same example serves to show that H(A) and H(B) alone do not determine
H(A B).

Example 3.4. Let four identical complexes of abelian groups, A1, A,
A8, A be given as follows (i 1, 2, 3, 4)"

A0i Z(e,); A_I Z(a) + Z(c,); A Z(b);

A 0 for j # 0, -1, -2; 0e 0; Oa 2b; Oc 0; Ob O.
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In each A the augmentation map is the identity map Z(e) .--, Z.
multiplicative structure is given as follows:

Fori--1,2" A
e
c
a

et c at b fori-- 3, 4: At
et c at bt e
c 0 b 0 c
a b bi 0 a
bt 0 0 0 b

The

e c a b
ei c ai b
cO0 0
aO0 0
bO0 0

It is readily verified that each A is in fact a DGA-algebra and that there
are algebra isomorphisms H(A1)

_
H(As)

_
H(Aa) H(A4). The situa-

tion is different when homology is taken mod 2. There are algebra iso-
morphisms H(A, 2) ---’ H(A, 2) and H(Aa, 2) --’ H(A, 2), but there is no
algebra isomorphism of H(A, 2) and H(Aa, 2), although all the additive
structures are the same; (cf. Palermo [10] in slightly different terminology).
We claim that there is no algebra isomorphism of H(A As) and H(A A4).
Thus H(A) and H(B) do not determine H(A B).

In low dimensions the additive structure of H(A At) is given as follows
(where (i, j) (1, 2) or (3, 4) and v denotes homology class).

Ho(A , Aj) Z;

H_(A’, A) Z[,(ct)] - Z[(c.)];

H_.(A, A) Z[n(b)] + Z[v(b.)]-t- gin(c, @ c)] -t- Z[n(c (R) c)];

H_a(A’, At) Zs[(bt (R) c)] + Z.[v(c (R) b)] -t- g[(b (R) at a (R) b)]

-t-- Z[(b (R) c)] - Z[?(c (R) b)] -t- Z.[(b (R) a at (R) b)]

+ Z[(c (R) c (R) c)] + Z[(c (R) c (R) c.)];
H_(A, At) Zs[(bt @ b)] + Z.[n(b (R) b)] - other terms.

Suppose there were an isomorphism of graded algebras

f H(A , As) H(Aa, A4).
Then it is easy to see that f[Z is the identity. Since f preserves degrees

f[,(c)] x,(ca) + y.,(c)

for some x, y e Z. Since c 0, f[v(c)] 0; but

f[v(c)]s xyy(ca (R) c) + xyv(c (R) ca).

This will be zero if and only if x 0 or y 0. It follows that f[(c_)]
=t=v(c) or =t=v(c); by changing indices if necessary we can assume
fly(c1)] =i=(ca). Then the same argument shows that f[(cs)] v(c).
A similar argument shows that f[v(b)] v(ba) or v(b). The facts that

f[v(c)] =i=v(ca) and c.b 0 imply that f[v(b)] v(ba), since
v(c).(b) v(ca @ b) 0 in H(Aa,A4). Likewise f[(b)] (b).
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Letu-- (bl (R) a2-- al(R) b2). InH(A.A),
(cl).q(u) (b (R) b) O.

Hence
f[q(c)l.f[q(u)] ,(ca).f[q(u)] (ba (R) 54).

Since each A is torsion-free, the homology product maps (which define the
product in H(A3 A4)

and . H_() (R) H_( (R) (R) A)- H_(i (R) ’ (R) (R) i)
are both monic (cf. MacLane [9]; this means that in this case the product of
nonzero elements is nonzero. Since f[(u)] must have additive order 2, the
only possibility, therefore, for fly(u)] is a linear combination of

v(ba (R) c), v(ca (R) b), v(ba (R) a4-- as (R) b).

But the product of v(ca) (on the left) with each of these terms is zero in
H(A3.A4). Hence ][v(cl)].f[q(u)] v(ba (R) b4), a contradiction. There-
fore there can be no algebra isomorphism between H(A A) and H(A

4. Derived functors
In an abelian category (with sufficient proper projectives) the derived

functors of an additive functor T are always defined (cf. [8]). Furthermore,
Dold and Puppe [4] have defined the derived functors of an arbitrary functor
T on an abelian category in such a way that they agree with the usual derived
functors if T is additive. Unfortunately, however, the cateogry of augmented
algebras (or augmented K-modules) is not abelian and the functor A B is
not additive. On the other hand, the functor T(fi_,/) A B, considered
as a functor of the K-modules fi and/, is a (nonadditive) functor of two
variables on the abelian category of K-modules. Also, it is clear that a DGA-
algebra A completely determines the K-module fi_. Since some analogue of
derived functors may prove useful for A B, it seems reasonable to define the
derived functors of A B to be the derived functors of T(fi,/) and apply the
definitions and results of [4].
The reader should consult [4] or [8] for the definition of a semisimplicial

obiect; kX will denote the chain complex determined by the semisimplicial
(s.s.) K-module X. If X and Y are s.s. objects on an abelian category A with
face and degeneracy operators d:, s, d’, s" respectively and F is a covariant
functor of two variables from the category A to itself, then F(X, Y) is the .s:s.
object given by F(X, Y) F(X, Y), with face and degeneracy operators
d F(d, d) and s F(s, s’) similarly for functors of more than two
variables. If F is the tensor product of K-modules then the Eilenberg Zilber
Theorem states that there is a natural chain equivalence of complexes"

(1) kF(X, Y) kX (R) kY.
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DEFINITION 4.1. Let A be a K-module and n _> 0 an integer. A projecitve
semi-simplicial resolution of (A, n) is an s.s. module X such that" X is pro-
jective for all i; X 0 for i < n; H(kX) 0 for i > n; H(kX) A.

DEFN.TION 4.2. Let A be a graded K-module; for each m e Z, let X be
a projective s.s. resolution of (A, m). The direct sum X -X is called
a projective s.s. resolution of A.

This is an extension of definition 4.8 of [4]. The work in [4] is all done in the
context of an abelian category; hence arbitrary direct sums may not exist.
The technique of taking X to be a projective s.s. resolution of (A, m)
rather than of (A, 0) insures that for positively graded objects A, the pro-
jective s.s. resolution X of A is well defined, since for each q >_ 0 Xq is a finite
sum <q X. However, since infinite direct sums do exist in the category
of K-modules, the definition can be extended in this case to arbitrarily graded
K-modules.
The following facts are proved in [4]. For every K-module A and every

n >__ 0 there is a projective s.s. resolution of (A, n). Hence every graded
K-module has a projective s.s. resolution. If X and Y are projective s.s
resolutions of A and B respectively, then every K-module map f" A -- B can
be lifted to an s.s. map ]" X -- Y; ] is unique up to chain homotopy. If F
is a (not necessarily additive) covariant functor of two variables on the cate-
gory of K-modules, then H(kF(X, Y)) is determined up to natural iso-
morphism and depends only on F, A and B, and not on X or Y. The same

facts hold if A and B are graded K-modules.

DEFINITION 4.3. Let F(A, B) be a covariant functor from the category
of graded K-modules to itself. The q-th left derived functor of F is

LF(A, B) Hq(kF(X, Y)),

where X and Y are projective s.s. resolutions of A and B respectively.

The preceding remarks show that Lq F(A, B) is well defined. Note that
since negative gradings are allowed for A and B, the derived functors
Lq E(A, B) are defined for negative as well as positive q.

Before applying Definition 4.3 to the functor T(,/) A B, we first
consider the n-fold tensor product of K-modules, A (R) A (R) (R) A. It is
a covariant, additive, right exact functor of n variables on the category of
K-modules, whose i-th left derived functor is generally denoted by
Mult’ (A, A). For n 2, Mult’ is just Tor and for every n,

Multff, (A,..., A) A (R) A (R) (R) A.
If K is a hereditary ring, then Mult’ (A1, A) 0 for i >_ n.
We shall use the following notation. Let A and B be graded K-modules;
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p, n, i integers (i > 0). Then

Mult’ [A, B] Mult’ (A, B, A, B, ,...) (n factors),

where the sum is taken over all (p, p) such that _- p p. We
also adopt the conventions that

Mult’[A,B] A for p 0; 0 for p 0;

Mult’[A,B] K for i p 0; 0 otherwise.

We can consider >0 Mult’ [A, B] >0 Mult’ [A, B] as a
(bi)graded K-module, with an element of Mult’’ [A, B] having bidegree
(i, p) and total degree i A- p. Now let T(A, B) be the n-fold tensor product
of alternate copies of A and B as above.

THEOREM 4.4. If A and B are graded K-modules, then there is a natural iso-
morphism of graded K-modules"

L T,(A, B) >o Mult’’ [A, B];
in particular,

Lq T,(A, B) -’>0 Mult’ [A, B]_.

Proof. We shall use the following notation"

is the sum over all (p, ..., p) such that ?,=x pc k. Let X and Y be s.s.
projective resolutions of A and B respectively; then, by the Eilenberg-Zilber
Theorem and the appropriate definitions,

Lq T(A, B) Hq(kT,(X, Y)

g(T(kZ, kY)

(2) H.( )=kX @ kY @ kX @ kY @ ..)

H,[(qp=q(k: @ kfq @ .
...)1... g.(pkZ @ kY @...)

q()=H,((qp=qk: @ kYq @ ...);

the first sum is actually over all i e Z, but for each (m, m) such that
%m i > q and each (q, q) such that q q, some me > q
and thus Xq/ (or Yq]) is 0 since each is a s.s. projective resolution of
(A, m). Now by using this last fact, (2) becomes

()= Mult= (A, B, Am, Bin, ) Multz [A, B].
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Now a change of indices (j q i) gives

’>_0 Mult’ [A, B]_
as desired.
We are now in a position to compute the left derived functors of

A B T(./, /), which we denote by L(A B). From the appropriate
definitions and Theorem 4.4 we immediately obtain"

THEOREM 4.5. If A and B are DGA-algebras, then the left derived functors oi
A B are given by

Lo(A B) g + ,> >o (Multi" [, /]_ -5 Mult’ [/, .]-),
and for q O,

Lq(A B) ,
>1 ’>0 (Multi" [./,/]q_ + Mult’’ [/, 2: ]q_).

5. K{jnneth theorems
If A and B are DGA-algebras over K, then so are H(A), H(B), and

H(A B). Furthermore H(A) H() and H(B) H(9). Define a map

," H(A) H(B) H(A B)

as follows, a, K, a lH(A), a lH(B) are the respective identity maps on K,
H(A) H(), H(B) H([). a T,[H(A), H(B)] is the usual homology
product map

a" T[H(./), H(/)] --* H[T(I,/)];
similarly for a, IT,[H(B), H(A)]. It can verified be that a, is a DGA-map.
In general, of course, it is not an isomorphism; however, we do have:

THEOREM 5.1. If A and B are DGA-algebras over K such that the modules
of cycles and the homology modules Z, A H, A ) Z, B H, B are projective
K-modules for every n, then

a "H(A) H(B) ----> H(A ,B)
is a DGA-isomorphism.

Proof. We need only show that a, is an isomorphism of graded K-modules.
Under the hypothesis that just one of A or B have projective cycles and
homology in every dimension, the ordinary Kiinneth theorem (see, for ex-
ample, Theorem V.10.1 of MacLane [6]) states that the homology product map
a" H() (R) H(/) --, H(./_ (R) /) is an isomorphism of graded K-modules.
An inductive procedure then shows that the map

a" T,[H(i), H(/)] --+ H[T,,(i,

ia a graded K-module isomorphism for all n >_ 2. Therefore from the defi-
nition of a, we see that a, is an isomorphism.
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If K is a hereditary ring we can also state a Kiinneth theorem of sorts for
the free product, corresponding to similar theorems for the tensor product, as
given in [3], [6], and elsewhere.

THEOREM 5.2. f A and B are fiat DGA-algebras over a hereditary ring K,
then there is a (nonnatural) isomorphism of graded K-modules:

H(A B) qLq(H(A) H(B)).

Proof. The multiple Ktinneth theorem of [6] states that for K Z and
A, B torsion-free (i.e. Z-flat) there is for each q and each n _> 2 a (nonnatural)
isomorphism of graded groups"

(1) H(T,(, [) ._’ y,,-l_o Mult’ [H(fi), H(/)]_.

Since for hereditary rings, Mult’ ( is 0 for i >_ n, (for q 0) Theorem 4.5
gives

H(A ,B) ,>IH(T,,(t,)) -q- Hq(T,,([,))

-t Mult, [H()H([)]q_En >1 i----0

+ Mult’" [H(), H()]q_
Lq(H(A) H(B)).

The proof for q 0 is similar. Essentially the same multiple Kfinneth
theorem as above is given for an arbitrary hereditary ring K Dold [3].
Although the theorem is stated there only for the case n 2, the proof given
applies equally well, mutatis mundis, to the case n > 2. Hence the theorem
follows as above.

CORORY 5.3. If A and B are fiat DGA-algebras over a hereditary ring K,
then there is an exact sequence of graded K-modules:

0---> H(A) H(B) H(A B)-- .>x ’,_-x (Mult’ [H(2{), H(/)]_,

+ Mult’ [H(/), H(2:)]q_) --* 0.

where a, is the DGA-map defined above.

Proof. It is shown in [6] that the isomorphism (1) in the proof of the
theorem is given for each q by the identity map on the summands H(A),
H(/) (and Z, if q 0) and for each n by the homology product a on the
summand

Mult:’’ [H(A), H(B)]q (T,(H(A), H(B) ).
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Hence the isomorphism H(A B) - Lq(H(A) H(B) is given on

H(A) ,H(B) g + H() + H(i}) + ,,>_ T(H(), H([))

+ T,(H([), H())
g + q.> Mult’’iH(i), H(/)]q

+ Mult:’= [H(/), H(2:)]
L(H(A) H(B)

by the map a, and the corollary follows immediately.
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