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BY
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Introduction

Let A and B be differential graded augmented algebras over a commutative
ring K. Their free product A B is always defined; A * B is a differential
graded augmented K-algebra which together with canonical injections

A% A+xB B

forms a universal diagram in this category. In connection with certain
topological questions, Berstein [1] first studied the free product of algebras
and its homology; he showed for example that the homology of the loop
space of X; \V/ X, (where X; are spaces with “nice’” base point) is the free
product H(0X;) * H(2X,;). We shall study the free product and its homology
from a somewhat different viewpoint.

The first section is devoted to the definition and basic properties of the
free product, including a consideration of Hopf algebras. Some of this
material appears in Berstein [1], but is stated here for convenience since our
notation is different and our definitions are somewhat more general (Berstein
considers only positively graded connected K-algebras).

Palermo [10] and the author [5], [6] have studied the relationship between
the vaious homologies H(A), H(B), and H(A ® B). The chief purpose of
this paper is to extend these investigations to H(4 * B). In particular since
A * B is defined in terms of the tensor product it seems natural to ask whether
or not H(A ® B) completely determines H (A xB). Examples in Section
2 show that the answer is negative; furthermore neither does H(A * B) de-
termine H(A ® B). For K = Z and A, B torsion-free, it is known that the
algebras H(A) and H(B) do not determine the algebra H(4A ® B); but
H(A ® B) is completely determined by the homology spectra of A and B
(ef. Palermo [10], and [5]). The analogues of these facts are presented in
Section 3: H(A) and H(B) are not sufficient to determine H(A * B) (Ex-
ample 3.4), but the algebra H(A * B) is completely determined by the
homology spectra of A and B (Theorem 3.3).

In the final sections, the work of Dold and Puppe [4] is used to develop
a theory of derived functors for the nonadditive functor A x B. Not sur-
prisingly these derived functors turn out to be closely related to the ordinary
derived functors of the multiple tensor product (c.f[6]). Using these results
we are able to state a “Kiinneth theorem’’ which relates the (additive) struc-
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ture of H(A), H(B) and H(A = B) with the derived functors of 4 « B (The-
orem 5.2).

1. Definitions and basic properties

Let K be a (fixed) commutative ring with identity lg; ® means ®x
throughout. We shall use the terminology and definitions of chapter VI of
MacLane [8], with one exception: we call an object graded if it is Z-graded
in the sense of MacLane, “Differential graded augmented algebra” is ab-
breviated as DGA-algebra. Homomorphisms of DGA-algebras are called
DGA-homomorphisms or DGA-maps. All algebras are assumed to be aug-
mented, unless specifically stated otherwise. Direct sums are denoted by
+ and/or ).

Let A be an algebra over K, with identity I = I, : K — A and augmenta-
tion e =¢e,4:4 — K. Let A = ker ¢; then A = K 4+ A. This is an iso-
morphism of DG-K-modules if 4 is a DGA-algebra.

If C and D are (differential graded) K-modules, for eachn > 1,let T,.(C, D)
be the (differential graded) K-module given by

T.(C,D) =C®D®C®D -+ (nfactors).

DeriniTioN 1.1, Let 4 and B be (augmented) algebras over K. The free
product of A and B is the algebra A * B given by

AxB =K 4+ 2 1 To(4, B) + Ta(B, 4).

The augmentation map is the projection onto the summand K; the identity
map I is the injection of K into the sum A % B. The product is given as
follows. Let k, k' e K,

Uu=u® u® "’®’Um€Tn(fin) or Tn(B,A),
and

V=0 ®0® -+ ®vmeTn(d,B) or T.(B,A);
then

k-k is given by multiplication in K;
ku= (b)) ®uU ® *++ ® Un;
uk=u® u® - ® (u.k);

3
<
Il

MO U - QU BN ®® @ VUn,

if u,eB and ved, or u,eA and v eB;
UV =U @ U® QU ® (Un?) B ® - ® Un,
if u, and v, arebothin A orbothin B.

If A and B are DGA-algebras, then A * B as the direct sum of differential
graded modules has an obvious grading and differential, and is a DGA-algebra.
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It is readily wverified that A = B is in fact a (DGA-) algebra with identity
1x ¢ K. Henceforth we shall deal for the most part with DGA-algebras.
We have

AxB=K+ A+ B+ X Ta(4, B) + Ta(B, 4).

Then the isomorphism A = K + A induces a map ¢, : A — A * B, which is
readily seen to be a DGA-map; 1z : B — A B is defined similarly.

TreoreEm 1.2. If A, B, C are DGA-algebrasand f : A — C,g : B — C are
DGA-homomorphisms, then there is a unique DGA-homomorphisme¢ : A x B— C
such that the diagram

A > AsB <2 B
N
O e //
NS
%,

18 commutative; i.e.,

A% A«B <= B

is a unwersal diagram with ends A, B in the category of DGA-algebras and
DGA-maps.

Since f and g are DGA-maps (hence ec f = €4, €c g = €8)
f=flA:A—C and g=g|B:B—C.
The theorem now follows immediately by defining¢ | K = I and ¢ | Ta(4, B)
as the composition
1.4, B 22D, 160 4 ¢
where u is multiplication in C. 'We denote ¢ by (f, 9).

A * B can be considered as a covariant functor of two variables as follows:
Iff:A— A’and g : B — B, define

fxg:AxB— A"«B" by fxg= (], w9).

Note however that it is not an additive functor.

The above definition of free product is somewhat more general than that
given in [1] where consideration was restricted to positively graded connected
DGA-algebras. In fact this seems to be as general as possible since if A and B
are not augmented there may not be a universal diagram with ends A4, B
in the category of DG-algebras (of course the direct sum A 4 B is universal
in the category of DG-K-modules). For a trivial example of thislet K = Z
and let A = Z; in dimension zero and 0 elsewhere; similarly let B = Z;.
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Since DGA-maps preserve the identity element, if there were a diagram
A LY D B B,

the identity element of D would have (additive) order dividing 2 and 3.
Hence D = 0 and the diagram would not be universal.

Next we consider the situation when A and B are Hopf algebras (as de-
fined in VI.9 of MacLane [8]).

ProrosiTioN 1.3. If A and B are (differential graded) Hopf algebras,
then A * B is a (differential graded) Hopf algebra.

Proof. Let¥,:A— A ® A and¥;: B— B ® B be the coproduct maps
for A and B respectively. By the definition of a Hopf algebra ¥, and ¥
are DGA-maps. Therefore, by Theorem 1.2, the DGA-maps

(ta ® 1) ¥,:A4A— (A*xB) ® (A+B)
and

(6 ® 5)¥:B— (AxB) ® (A*B)
induce a DGA-map

V:AxB— (AxB) ® (A*B).

ProrosiTioN 1.4. In the category of DG-Hopf algebras and DG-Hopf al-
gebra maps, the diagram

A—% A+B <~ B
1s universal with ends A, B.

Proof. First note that by the definition of ¥, 14 and ¢z are Hopf algebra
maps. We need only show that the map ¢ : A * B — C defined in the proof
of Theorem 1.2 is a map of DG-coalgebras when f and g are DG-Hopf algebra
maps; this is a straightforward verification.

2. HA+*B)and H(A ® B)

In the next two sections we shall examine the homology of 4 % B (the so
called zero-stage homology; cf. MacLane [8]). If A.and B are DGA-algebras,
then so are H(A *B), H(A ® B), H(A) and H(B) (all with trivial dif-
ferential). We shall study some of the relationships between them. First,
one might ask for DGA-algebras E and F if H(E % F') completely determines
H(E ® F),orvice versa. The answer to both questions is negative, as shown
by the following examples.

Example 2.2. Let K = Z and let A, B, C be differential graded algebras
which are zero in all dimensions except 0, 1, 2 and are given there by
A: Z(a) — Z(ay) «— Z(az); 9ay = 0, das = 4a;
B: A(by) «— Z(by) «— Z(by); by = 0, 0by = 2b;;
C: Z(co) «—Z(cr) —Z(c); 0c1 =0, 9c; = 3c.
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In each case the augmentation is the identity map Z(z) = Z (¢ = a, b, ¢);
the multiplicative structure is given by

Tox; = x; T = x; for all j;
zix; =0 fore,j > 0; (x = a,b,c).

Nowlet E = AxB,F =C,E = A, FF = Bx(C. By the agsociativity
of the free product E « F = E' «x F', hence H(E » F) = H(E' xF'). How-
ever direct computation shows that H.(E ® F) = Z, + 2., while
Hy(E'® F') =~ Z,. Thus H(E * F) does not determine H(E ® F).

Ezxample 2.3. Let K = Z and A, B, C be as in the previous example. Let
E=A®BF=C,EF =A,FF=B®C. Then E® F = F ® F' and
hence H(E ® F) = H(E' ® F'). By using the fact that

A®B=~A® B+ 4+ B,

and some properties of the homology of tensor products of elementary com-
plexes (cf. Lemma 3 of the Appendix of [5] and Lemma 3.2 of [6]) a straight-
forward calculation shows

HyE*F) = Hy,(A ® B) =~ 2,;
but ) _ ) _
Hz(El *F’) gHz(A ® B) + Hz(B ® A) = Zz + Zz.

Thus H(E «xF) ¢ H(E' «F’) and hence H(E ® F) does not determine

3. The multiplicative structure of H(4 * B)

The next question to be considered is whether or not H(A) and H(B)
completely determine H(A % B). The discussion will be restricted to the
case K = Z, with A and B torsion-free. Analogous questions were considered
in [5] with regard to H(A), H(B) and H(A ® B) and, not surprisingly,
many of these earlier results carry over to the present situation.

Recall that the homology spectrum of a torsion-free DGA-algebra A over
Z consists of the rings H(A,m) = H(A ® Z,) (for allm > 0, where Z, = Z),
together with the coefficient maps induced by the projections Z., — Zn
(mk > 0) and injections Z, — Zm (mk > 0), and the Bockstein map
w : H(A, m) - H(A) = H(A, 0) induced by the exact sequence

022, 2 2,—0.

The homology spectrum is denoted by {H(A, m)}; for more details consult
[5] and [6].

DerinirioN 3.1. Let A and B be torsion-free DGA-algebras
over Z. The free product of the homology spectra of A and B, denoted
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{H(A, m)} *+ {H(B, m)}, is the graded abelian group
Z + H(A) + H(B) + Z.x[T.((H(4, m)}, {H(B, m)})

+ T.({H(B, m)}, {H(4, m)})]
where T,({H(A, m)}, {H(B, n)}) denotes the n-fold tensor product of
homology spectra

{H(A,m)} ® (H(B,m)} ® {(H(4,m)} ® (HB,m)} ® ---,
as defined on page 261 of [6].

Treorem 3.2. If A and B are torsion-free augmented DGA-algebras over
Z then there is a natural isomorphism of graded groups:

{H(A, m)} « {H(B,m)} = H(A »B).
Proof. Since H is an additive functor, the definition of A * B implies that
H(A*B) = Z + H(A) + H(B) + X .5 H(T.(4, B)) + H(T.(B, 4)).

But Theorem 3.1 of [6] states in slightly different notation that for each
n > 2, there is a natural isomorphism

(1) H(T.(4, B)) = T.({H(4, m)], {H(B, m)}) .

The theorem now follows immediately.

The next step is to define a product in {H(A, m)} » {H (B, m)} so that it
becomes not just a group but a graded ring in such a way that the isomorphism
of Theorem 3.2 becomes a ring isomorphism. The construction of such a
product is very similar mutatis mutandis, to the construction of the product
in the tensor product of homology spectra as given in Section 3 of [5]; con-
sequently the details are omitted here. We can summarize these facts as
follows.

Turorem 3.3. If A and B are torsion-free DGA-algebras over Z, then the
homology spectra of A and B completely determine H(A % B); in particular,
there is a natural isomorphism of graded rings:

{H(A,m)} » {H(B, m)} = H(A *B).

Palermo [10] has given an example to show that for K = Z, the ring
H(A ® B) need not be completely determined by the rings H(A4) and H(B).
The same example serves to show that H(A) and H (B) alone do not determine
H(A = B).

Example 3.4. Let four identical complexes of abelian groups, A', A%
A%, A* be given as follows (7 = 1,2, 3,4):

Ay = Z(e); ALy = Z(as) + Z(ci); ALy = Z(b:);
A; =0 fOl‘j # 0, "-'1, -—2; de; = 0; da; = 2bi; dc; = 0; ab; = 0.
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In each A’ the augmentation map is the identity map Z(e;) — Z. The
multiplicative structure is given as follows:
Fori=1,2: A’ | & ¢ a
€; e Ci O

fori=38,4: A' | e ¢ a; b
é; e C a; b;

bs
b
0
0

C; ¢ 0 b Ci ¢ 0 00
a; a; b; b; a; a; 0 0 0
b: | 5: 0 0 O b: |50 0 O

Tt is readily verified that each A° is in fact a DGA-algebra and that there
are algebra isomorphisms H(A') = H(A®) = H(A®) = H(A"). The situa-
tion is different when homology is taken mod 2. There are algebra iso-
morphisms H(A4', 2) =~ H(A? 2) and H(A? 2) =~ H(A* 2), but there is no
algebra isomorphism of H(A', 2) and H(A? 2), although all the additive
structures are the same; (cf. Palermo [10] in slightly different terminology).
We claim that there is no algebra isomorphism of H(A' * A*) and H(A® « A*).
Thus H(A) and H(B) do not determine H(A * B). ]

In low dimensions the additive structure of H(A" » A’) is given as follows
(where (4, 7) = (1, 2) or (8, 4) and 5 denotes homology class).

Ho(A* % A% = Z;

H_(A' % A7) = Zln(c)] + ZIn(ey));

H_y(A'x A7) = Zofn(b:)] + Zaln(b;)] + Zln(es ® ¢5)] + Zln(e; ® c)l;

H_s(A* % A7) = Zaln(bs ® ¢)] + Zaln(cs ® b;)] + Zsln(b: ® a; — a: ® b))
4+ ZyJn(b; ® ¢i)] + Zan(c; ® bi)] + Zo[n(b; ® a: — a; ® by)]
+ Zln(e: ® ¢; ® ¢i)] + Zln(e; ® ¢ ® ¢));

H_y(A' % A’) = Zyn(b: ® b;)] + Zeln(b; ® b;)] + other terms.

Suppose there were an isomorphism of graded algebras
f:H(A % A®) — H(A® x AY).
Then it is easy to see that f|Z is the identity. Since f preserves degrees
fI(e)] = xn(es) + y-n(es)
for some z, y e Z. Since ¢; = 0, fln(c)) = 0; but

fin(e) = zyn(cs ® co) + zyn(es ® c3).

This will be zero if and only if x = 0 or y = 0. It follows that fln(c1)] =
+n(cs) or =n(cs); by changing indices if necessary we can assume
fn(er)] = =#n(cs). Then the same argument shows that fln(c2)] = =£n(cs).
A similar argument shows that fln(bi)] = 2(bs) or n(bs). The facts that
fin(er)] = =£n(es) and ¢°by = 0 imply that fln(bi)] = =n(bs), since
n(cs) n(bs) = n(cs ® bs) # 0in H(A*x A*). Likewise fln(bs)] = n(bs).
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Letu = (by ® az — oy ® by). In H(A'x A%),

n(c) -n(u) = n(by ® b)) # 0.
Hence

FlaCe)]-fin(w)] = n(cs) -fln(u)] = 9(bs ® ba).
Since each A’ is torsion-free, the homology product maps (which define the
product in H (A’ x A*))
a:H_ (A% ® H4(A' ® 4°) —» H_,(A* ® A' ® 4%,
and
o H (A @ H3(A'® A*® A*) - H,(A* ® A* ® A* ® AY)
are both monic (cf. MacLane [9]; this means that in this case the product of
nonzero elements is nonzero. Since fly(u)] must have additive order 2, the
only possibility, therefore, for fln(u)] is a linear combination of

n(bs ® cs), n(cs ® ba), 7(bs ® as — az ® bs).

But the product of n(c;) (on the left) with each of these terms is zero in
H(A*x AY). Hence fln(c1)]-fln(w)] = n(bs ® by), a contradiction. There-
fore there can be no algebra isomorphism between H (A" x A®) and H(A® x 4*).

4.Derived functors

In an abelian category (with sufficient proper projectives) the derived
functors of an additive functor T' are always defined (cf. [8]). Furthermore,
Dold and Puppe [4] have defined the derived functors of an arbitrary functor
T on an abelian category in such a way that they agree with the usual derived
functors if 7 is additive. Unfortunately, however, the cateogry of augmented
algebras (or augmented K-modules) is not abelian and the functor A « B is
not additive. On the other hand, the functor T(4, B) = A x B, considered
as a functor of the K-modules A and B, is a (nonadditive) functor of two
variables on the abelian category of K-modules. Also, it is clear that a DGA-
algebra A completely determines the K-module A. Since some analogue of
derived functors may prove useful for A * B, it seems reasonable to define the
derived functors of A % B to be the derived functors of T(4, B) and apply the
definitions and results of [4].

The reader should consult [4] or [8] for the definition of a semisimplicial
object; kX will denote the chain complex determined by the semisimplicial
(s.s.) K-module X. If X and Y are s.s. objects on an abelian category A with
face and degeneracy operators di , i, d; , si respectively and F is a covariant
functor of two variables from the category A to itself, then F (X, V) is the s.s.
object given by F.(X, Y) = F(X,, Y.), with face and degeneracy operators
d; = F(d¥,d}) and s; = F(s7, s;); similarly for functors of more than two
variables. If F is the tensor product of K-modules then the Eilenberg Zilber
Theorem states that there is a natural chain equivalence of complexes:

(1) kF(X, V) < kX ® kY.
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DeriniTioN 4.1.  Let A be a K-module and » > 0 an integer. A projecitve
semi-stmplicial resolution of (A, n) is an s.s. module X such that: X; is pro-
jective for all 7; X; = Ofor¢ < n; Hi(kX) = Ofor< > n; H,(kX) = A.

DEeriNITION 4.2. Let A be a graded K-module; for each m e Z, let X™ be
a projective s.s. resolution of (4, ,m). The direct sum X = 3™ X, is called
a projective s.s. resolution of A.

This is an extension of definition 4.8 of [4]. The work in [4] is all done in the
context of an abelian category; hence arbitrary direct sums may not exist.
The technique of taking X™ to be a projective s.s. resolution of (4., m)
rather than of (4., 0) insures that for positively graded objects A, the pro-
jective 8.8. resolution X of 4 is well defined, since for each ¢ > 0 X, is a finite
sum Y m<, Xy . However, since infinite direct sums do exist in the category
of K-modules, the definition can be extended in this case to arbitrarily graded
K-modules.

The following facts are proved in [4]. For every K-module 4 and every
n > 0 there is a projective s.s. resolution of (4, n). Hence every graded
K-module has a projective s.s. resolution. If X and Y are projective s.s
resolutions of A and B respectively, then every K-module map f : A — B can
be lifted to an s.s. map f: X — Y; f is unique up to chain homotopy. If F
is a (not necessarily additive) covariant functor of two variables on the cate-
gory of K-modules, then H(kF(X, Y)) is determined up to natural iso-
morphism and depends only on F, 4 and B, and not on X or Y. The same
gacts hold if A and B are graded K-modules.

DeriniTiON 4.3. Let F(A, B) be a covariant functor from the category
of graded K-modules to itself. The g-th left derived functor of F is

L,F(A, B) = H(kF (X, Y)),
where X and Y are projective s.s. resolutions of A and B respectively.

The preceding remarks show that L, F(A, B) is well defined. Note that
since negative gradings are allowed for A and B, the derived functors
L,F(A, B) are defined for negative as well as positive g.

Before applying Definition 4.3 to the functor T7(A, B) = A % B, we first
consider the n-fold tensor product of K-modules, A’ ® A’ ® .-+ ® A™. Itis
a covariant, additive, right exact functor of n variables on the category of
K-modules, whose ¢-th left derived functor is generally denoted by
Multf ™ (4%, .-+, A"). For n = 2, Mult?” is just Torf and for every n,

Multfy™ (4Y, -+, A" =A'®A’® --- ® A"

If K is a hereditary ring, then Multy™ (4%, -+, A™) = 0fori > n.
We shall use the following notation. Let A and B be graded K-modules;
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p, n, ¢ integers (¢ > 0). Then
Muu’irm [A; B]p = Z Mult?'n (Am ’ Bm ’ Am ’ Bm y 7 ) (n fa,ctors),

where the sum is taken over all (py, -~ - , p») such that > ryp, = p. We
also adopt the conventions that

Multf"[4, B], = A; for p=0; 0 for p = 0;
Mult{°[A, Bl, = K for ¢ =p =0; 0 otherwise.

We can consider X ;s Mult; ™[4, Bl = Yi» >, Multi™[4, B], as a
(bi)graded K-module, with an element of Multy ™[4, B], having bidegree
(%, p) and total degree 7 + p. Now let T,(A, B) be the n-fold tensor product
of alternate copies of A and B as above.

Tueorem 4.4. If A and B are graded K-modules, then there is a natural iso-
morphism of graded K-modules:

> LeTa(A, B) =2 350 Mult®™ [4, BJ;

wn particular,

LyTw(A, B) = 2 ;50 Mult; ™" [4, Blo;.
Proof. We shall use the following notation:

Dok My, ® Mp, ® -+ ® My,

\"n

is the sum over all (py, -+, p») such that >_j1p; = k. Let X and Y be s.s.
projective resolutions of A and B respectively; then, by the Eilenberg-Zilber
Theorem and the appropriate definitions,

LyTW(A, B) = Hy(kT.(X, Y))
=~ H(T.(kX, kY))
(2) >~ Ha( % (0p=akXq ® kY, ® kX, ® kY, ® ---)
= Ha[X gpme (m EX3 @ L, KYG! ® 2o KXY
® )]
= Dom ot Lmy Ha( Lap=o kX5 @ KV ® --+)
= D i< 2mp=i Hx( D= kX3! ® kY52 ® --);

the first sum is actually over all 7€ Z, but for each (my, +- -, m,) such that
S riom.=1>qandeach (g, -, ¢) such that >, g, = g, some m; > g¢;
and thus X7/ (or Yg/) is O since each X™ is a s.s. projective resolution of
(An,m). Now by using this last fact, (2) becomes

Z'i.<_‘1 Z(mj)=i Multffi (AM1 ) Bm2 ) Ama ) Bm4 )y ° " ') = :‘iSQ MUItf-'-': [A7 B]i’
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Now a change of indices (j = ¢ — ) gives

2_is0 Multy ™" [4, Blo;
as desired.

We are now in a position to compute the left derived functors of
A xB = T(A, B), which we denote by L, A4 xB). From the appropriate
definitions and Theorem 4.4 we immediately obtain:

TureoREM 4.5. If A and B are DGA-algebras, then the left derived functors of
A % B are given by

Li(A%B) = K 4+ Yus Sizo (Mult?"[4, Bl_; + Mult?" (B, 4]_.),
and for q # 0,
Lo(A%B) = D s Diso (Multy™ [A, Blos + Mult] " [B, A],).
5. Kunneth theorems

If A and B are DGA_-ilg_e_pras over K, thﬂl_ S0 are _H(A), H(B), and

H(A xB). Furthermore H(A) = H(A) and H(B) = H(B). Define a map
ax: H(A) »H(B) —» H(A *B)

as follows. ax| K, a|H(A), « | H(B) are the respective identity maps on K,

H(A) = H(A), H(B) = H(B). o] T.JH(A), H(B)] is the usual homology
product map

a: TJH(A), H(B)] — H[T.(4, B)];

similarly for ax | T.[H(B), H(A)]. It can verified be that ax is a DGA-map.
In general, of course, it is not an isomorphism; however, we do have:

TuroreMm 5.1. If A and B are DGA-algebras over K such that the modules
of cycles and the homology modules Z,(A), H.(A), Z.(B), H.(B) are projective
K-modules for every n, then

a:H(A)+H(B) — H(A *B)
18 a DGA-isomorphism.

Proof. We need only show that ax is an isomorphism of graded K-modules.
Under the hypothesis that just one of A or B have projective cycles and
homology in every dimension, the ordinary Kiinneth theorem (see, for ex-
ample, Theorem V.10.1 of MacLane [6]) states that the homology product map
a:H(A) ® H(B) —» H(A ® B) is an isomorphism of graded K-modules.
An inductive procedure then shows that the map

a: TJH(A), H(B)] — H[T.(4, B)]

ia a graded K-module isomorphism for all n > 2. Therefore from the defi-

nition of ax we see that ax is an isomorphism.
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If K is a hereditary ring we can also state a Kiinneth theorem of sorts for
the free product, corresponding to similar theorems for the tensor product, as
given in [3], [6], and elsewhere.

Tuaeorem 5.2. If A and B are flat DGA-algebras over a hereditary ring K,
then there is a (nonnatural) isomorphism of graded K-modules:

H(A*B) = > ,L(H(A) *H(B)).

Proof. The multiple Kiinneth theorem of [6] states that for K = Z and
A, B torsion-free (i.e. Z-flat) there is for each ¢ and each n > 2 a (nonnatural)
isomorphism of graded groups:

(1) H(T. (A, B) = > 1= Multf " [H(A), H(B)]¢:-

Since for hereditary rings, Multf™™ (—) is 0 for s > n, (for ¢ % 0) Theorem 4.5
gives

Hy(A*B) = Y H(Tu(4, B)) + Hy(Tuw(B, 4))

“ n—1

= Dast L% Mult? ™ [H(A)H(B)]e—s
+ Mults " [H(B), H(A)]e—:
= L(H(A) +H(B)).

The proof for ¢ = 0 is similar. Essentially the same multiple Kiinneth
theorem as above is given for an arbitrary hereditary ring K in Dold [3].
Although the theorem is stated there only for the case n = 2, the proof given
applies equally well, mutatis mutandss, to the case n > 2. Hence the theorem
follows as above.

CoroLLARY 5.3. If A and B are flat DGA-algebras over a hereditary ring K,
then there is an exact sequence of graded K-modules:
0— H(A) *H(B) =% H(A xB)
— D onst 25 (Multt" [H(A), H(B)]es
+ Mult{" [H(B), H(A)]s-:) — 0.
where ax 18 the DGA-map defined above.

Proof. It is shown in [6] that the isomorphism (1) in the proof of the
theorem is given for each ¢ by the identity map on the summands Ho(4),
H,(B) (and Z, if ¢ = 0) and for each n by the homology product a on the
summand

Mults ™" [H(A), H(B)l, = (T.(H(A), H(B))q.
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Hence the isomorphism H(A * B) = 3 ,L(H(A) » H(B)) is given on
H(A)*H(B) = K + H(A) + H(B) + X s To(H(A), H(B))
+ T.(H(B), H(A))
=K + Yo Xum Mults " {H(4), H(B)l,
+ Mults " [H(B), H(4)l,
C 2. L(H(A)xH(B))
by the map a4 and the corollary follows immediately.
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