THE FREE PRODUCT OF ALGEBRAS¹

BY

THOMAS W. HUNGERFORD

Introduction

Let A and B be differential graded augmented algebras over a commutative ring K. Their free product A * B is always defined; A * B is a differential graded augmented K-algebra which together with canonical injections

$$A \xrightarrow{\iota_A} A \ast B \xleftarrow{\iota_B} B$$

forms a universal diagram in this category. In connection with certain topological questions, Berstein [1] first studied the free product of algebras and its homology; he showed for example that the homology of the loop space of $X_1 \vee X_2$ (where X_i are spaces with "nice" base point) is the free product $H(\Omega X_1) * H(\Omega X_2)$. We shall study the free product and its homology from a somewhat different viewpoint.

The first section is devoted to the definition and basic properties of the free product, including a consideration of Hopf algebras. Some of this material appears in Berstein [1], but is stated here for convenience since our notation is different and our definitions are somewhat more general (Berstein considers only positively graded connected K-algebras).

Palermo [10] and the author [5], [6] have studied the relationship between the values homologies H(A), H(B), and $H(A \otimes B)$. The chief purpose of this paper is to extend these investigations to H(A * B). In particular since A * B is defined in terms of the tensor product it seems natural to ask whether or not $H(A \otimes B)$ completely determines H(A * B). Examples in Section 2 show that the answer is negative; furthermore neither does H(A * B) determine $H(A \otimes B)$. For K = Z and A, B torsion-free, it is known that the algebras H(A) and H(B) do not determine the algebra $H(A \otimes B)$; but $H(A \otimes B)$ is completely determined by the homology spectra of A and B(cf. Palermo [10], and [5]). The analogues of these facts are presented in Section 3: H(A) and H(B) are not sufficient to determine H(A * B) (Example 3.4), but the algebra H(A * B) is completely determined by the homology spectra of A and B (Theorem 3.3).

In the final sections, the work of Dold and Puppe [4] is used to develop a theory of derived functors for the nonadditive functor A * B. Not surprisingly these derived functors turn out to be closely related to the ordinary derived functors of the multiple tensor product (c.f [6]). Using these results we are able to state a "Künneth theorem" which relates the (additive) struc-

Received February 17, 1967.

¹ This research was supported by a National Science Foundation grant.

ture of H(A), H(B) and H(A * B) with the derived functors of A * B (Theorem 5.2).

1. Definitions and basic properties

Let K be a (fixed) commutative ring with identity $\mathbf{1}_{\mathbf{x}}$; \otimes means $\otimes_{\mathbf{x}}$ throughout. We shall use the terminology and definitions of chapter VI of MacLane [8], with one exception: we call an object graded if it is Z-graded in the sense of MacLane, "Differential graded augmented algebra" is abbreviated as DGA-algebra. Homomorphisms of DGA-algebras are called DGA-homomorphisms or DGA-maps. All algebras are assumed to be augmented, unless specifically stated otherwise. Direct sums are denoted by + and/or \sum .

Let A be an algebra over K, with identity $I = I_A : K \to A$ and augmentation $\varepsilon = \varepsilon_A : A \to K$. Let $\overline{A} = \ker \varepsilon$; then $A \cong K + \overline{A}$. This is an isomorphism of DG-K-modules if A is a DGA-algebra.

If C and D are (differential graded) K-modules, for each $n \ge 1$, let $T_n(C, D)$ be the (differential graded) K-module given by

$$T_n(C, D) = C \otimes D \otimes C \otimes D \cdots$$
 (*n* factors).

DEFINITION 1.1. Let A and B be (augmented) algebras over K. The free product of A and B is the algebra A * B given by

$$A * B = K + \sum_{n>1} T_n(\bar{A}, \bar{B}) + T_n(\bar{B}, \bar{A}).$$

The augmentation map is the projection onto the summand K; the identity map I is the injection of K into the sum A * B. The product is given as follows. Let $k, k' \in K$,

$$u = u_1 \otimes u_2 \otimes \cdots \otimes u_n \in T_n(\overline{A}, \overline{B}) \text{ or } T_n(\overline{B}, \overline{A}),$$

and

$$v = v_1 \otimes v_2 \otimes \cdots \otimes v_m \epsilon T_m(A, B)$$
 or $T_m(B, A)$;

then

 $k \cdot k'$ is given by multiplication in K;

$$\begin{aligned} k \cdot u &= (ku_1) \otimes u_2 \otimes \cdots \otimes u_n ; \\ u \cdot k &= u_1 \otimes u_2 \otimes \cdots \otimes (u_n k) ; \\ u \cdot v &= u_1 \otimes u_2 \otimes \cdots \otimes u_n \otimes v_1 \otimes v_2 \otimes \cdots \otimes v_m , \\ & \text{if } u_n \epsilon \bar{B} \text{ and } v_1 \epsilon \bar{A}, \text{ or } u_n \epsilon \bar{A} \text{ and } v_1 \epsilon \bar{B} ; \\ u \cdot v &= u_1 \otimes u_2 \otimes \cdots \otimes u_{n-1} \otimes (u_n v_1) \otimes v_2 \otimes \cdots \otimes v_m , \\ & \text{if } u_n \text{ and } v_1 \text{ are both in } \bar{A} \text{ or both in } \bar{B}. \end{aligned}$$

If A and B are DGA-algebras, then A * B as the direct sum of differential graded modules has an obvious grading and differential, and is a DGA-algebra.

It is readily verified that A * B is in fact a (DGA-) algebra with identity $\mathbf{1}_{\kappa} \epsilon K$. Henceforth we shall deal for the most part with DGA-algebras. We have

 $A * B = K + \bar{A} + \bar{B} + \sum_{n \ge 2} T_n(\bar{A}, \bar{B}) + T_n(\bar{B}, \bar{A}).$

Then the isomorphism $A \cong K + \overline{A}$ induces a map $\iota_A : A \to A * B$, which is readily seen to be a DGA-map; $\iota_B : B \to A * B$ is defined similarly.

THEOREM 1.2. If A, B, C are DGA-algebras and $f : A \to C, g : B \to C$ are DGA-homomorphisms, then there is a unique DGA-homomorphism $\varphi : A * B \to C$ such that the diagram

is commutative; i.e.,

$$A \xrightarrow{\iota_A} A * B \xleftarrow{\iota_B} B$$

is a universal diagram with ends A, B in the category of DGA-algebras and DGA-maps.

Since f and g are DGA-maps (hence $\varepsilon_c f = \varepsilon_A$, $\varepsilon_c g = \varepsilon_B$)

 $\bar{f} = f \mid \bar{A} : \bar{A} \to \bar{C} \text{ and } \bar{g} = g \mid \bar{B} : \bar{B} \to \bar{C}.$

The theorem now follows immediately by defining $\varphi \mid K = I_c$ and $\varphi \mid T_n(\bar{A}, \bar{B})$ as the composition

$$T_n(\bar{A}, \bar{B}) \xrightarrow{T_n(f, \bar{g})} T_n(\bar{C}, \bar{C}) \xrightarrow{\mu} C,$$

where μ is multiplication in C. We denote φ by $\langle f, g \rangle$.

A * B can be considered as a covariant functor of two variables as follows: If $f : A \to A'$ and $g : B \to B'$, define

$$f * g : A * B \rightarrow A' * B'$$
 by $f * g = \langle \iota_{A'} f, \iota_{B'} g \rangle$.

Note however that it is not an additive functor.

The above definition of free product is somewhat more general than that given in [1] where consideration was restricted to positively graded connected DGA-algebras. In fact this seems to be as general as possible since if A and Bare not augmented there may not be a universal diagram with ends A, Bin the category of DG-algebras (of course the direct sum A + B is universal in the category of DG-K-modules). For a trivial example of this let K = Zand let $A = Z_2$ in dimension zero and 0 elsewhere; similarly let $B = Z_3$.

314

Since DGA-maps preserve the identity element, if there were a diagram

$$A \xrightarrow{\iota_A} D \xleftarrow{\iota_B} B,$$

the identity element of D would have (additive) order dividing 2 and 3. Hence D = 0 and the diagram would not be universal.

Next we consider the situation when A and B are Hopf algebras (as defined in VI.9 of MacLane [8]).

PROPOSITION 1.3. If A and B are (differential graded) Hopf algebras, then A * B is a (differential graded) Hopf algebra.

Proof. Let $\Psi_A : A \to A \otimes A$ and $\Psi_B : B \to B \otimes B$ be the coproduct maps for A and B respectively. By the definition of a Hopf algebra Ψ_A and Ψ_B are DGA-maps. Therefore, by Theorem 1.2, the DGA-maps

 $(\iota_A \otimes \iota_A)\Psi_A : A \to (A * B) \otimes (A * B)$

and

 $(\iota_B \otimes \iota_B)\Psi_B : B \to (A * B) \otimes (A * B)$

induce a DGA-map

$$\Psi: A \ast B \to (A \ast B) \otimes (A \ast B).$$

PROPOSITION 1.4. In the category of DG-Hopf algebras and DG-Hopf algebra maps, the diagram

 $A \xrightarrow{\iota_A} A * B \xleftarrow{\iota_B} B$

is universal with ends A, B.

Proof. First note that by the definition of Ψ , ι_A and ι_B are Hopf algebra maps. We need only show that the map $\varphi : A * B \to C$ defined in the proof of Theorem 1.2 is a map of DG-coalgebras when f and g are DG-Hopf algebra maps; this is a straightforward verification.

2.
$$H(A * B)$$
 and $H(A \otimes B)$

In the next two sections we shall examine the homology of A * B (the so called zero-stage homology; cf. MacLane [8]). If A and B are DGA-algebras, then so are H(A * B), $H(A \otimes B)$, H(A) and H(B) (all with trivial differential). We shall study some of the relationships between them. First, one might ask for DGA-algebras E and F if H(E * F) completely determines $H(E \otimes F)$, or vice versa. The answer to both questions is negative, as shown by the following examples.

Example 2.2. Let K = Z and let A, B, C be differential graded algebras which are zero in all dimensions except 0, 1, 2 and are given there by

In each case the augmentation is the identity map $Z(x_0) = Z(x = a, b, c)$; the multiplicative structure is given by

$$x_0 x_j = x_j x_0 = x_j$$
 for all j ;
 $x_i x_j = 0$ for $i, j > 0$; $(x = a, b, c)$

Now let E = A * B, F = C, E' = A, F' = B * C. By the associativity of the free product $E * F \cong E' * F'$, hence $H(E * F) \cong H(E' * F')$. However direct computation shows that $H_2(E \otimes F) \cong Z_2 + Z_2$, while $H_2(E' \otimes F') \cong Z_2$. Thus H(E * F) does not determine $H(E \otimes F)$.

Example 2.3. Let K = Z and A, B, C be as in the previous example. Let $E = A \otimes B, F = C, E' = A, F' = B \otimes C$. Then $E \otimes F \cong E' \otimes F'$ and hence $H(E \otimes F) \cong H(E' \otimes F')$. By using the fact that

$$\overline{A \otimes B} \cong \overline{A} \otimes \overline{B} + \overline{A} + \overline{B},$$

and some properties of the homology of tensor products of elementary complexes (cf. Lemma 3 of the Appendix of [5] and Lemma 3.2 of [6]) a straightforward calculation shows

but

$$H_2(E * F) \cong H_2(A \otimes B) \cong Z_2;$$

$$H_2(E' * F') \cong H_2(\bar{A} \otimes \bar{B}) + H_2(\bar{B} \otimes \bar{A}) \cong Z_2 + Z_2.$$

Thus $H(E * F) \simeq H(E' * F')$ and hence $H(E \otimes F)$ does not determine H(E * F).

3. The multiplicative structure of H(A * B)

The next question to be considered is whether or not H(A) and H(B) completely determine H(A * B). The discussion will be restricted to the case K = Z, with A and B torsion-free. Analogous questions were considered in [5] with regard to H(A), H(B) and $H(A \otimes B)$ and, not surprisingly, many of these earlier results carry over to the present situation.

Recall that the homology spectrum of a torsion-free DGA-algebra A over Z consists of the rings $H(A, m) = H(A \otimes Z_m)$ (for all $m \ge 0$, where $Z_0 = Z$), together with the coefficient maps induced by the projections $Z_{mk} \to Z_m$ $(mk \ge 0)$ and injections $Z_m \to Z_{mk}$ (mk > 0), and the Bockstein map $\mu_0^m : H(A, m) \to H(A) = H(A, 0)$ induced by the exact sequence

$$0 \to Z \xrightarrow{m} Z \to Z_m \to 0.$$

The homology spectrum is denoted by $\{H(A, m)\}$; for more details consult [5] and [6].

DEFINITION 3.1. Let A and B be torsion-free DGA-algebras over Z. The free product of the homology spectra of A and B, denoted $\{H(A, m)\} * \{H(B, m)\}, \text{ is the graded abelian group}$ $Z + H(\bar{A}) + H(\bar{B}) + \sum_{n \ge 2} [\tilde{T}_n(\{H(\bar{A}, m)\}, \{H(\bar{B}, m)\}) + \tilde{T}_n(\{H(\bar{B}, m)\}, \{H(\bar{A}, m)\})]$

where $\tilde{T}_n(\{H(\bar{A}, m)\}, \{H(\bar{B}, n)\})$ denotes the *n*-fold tensor product of homology spectra

 ${H(\bar{A}, m)} \otimes {H(\bar{B}, m)} \otimes {H(\bar{A}, m)} \otimes {H(\bar{B}, m)} \otimes \cdots,$

as defined on page 261 of [6].

THEOREM 3.2. If A and B are torsion-free augmented DGA-algebras over Z then there is a natural isomorphism of graded groups:

$$\{H(A, m)\} \ast \{H(B, m)\} \cong H(A \ast B).$$

Proof. Since H is an additive functor, the definition of A * B implies that $H(A * B) \cong Z + H(\bar{A}) + H(\bar{B}) + \sum_{n \ge 2} H(T_n(\bar{A}, \bar{B})) + H(T_n(\bar{B}, \bar{A})).$ But Theorem 3.1 of [6] states in slightly different notation that for each $n \ge 2$, there is a natural isomorphism

(1) $H(T_n(\bar{A}, \bar{B})) \cong \tilde{T}_n(\{H(\bar{A}, m)\}, \{H(\bar{B}, m)\}).$

The theorem now follows immediately.

The next step is to define a product in $\{H(A, m)\} * \{H(B, m)\}\$ so that it becomes not just a group but a graded ring in such a way that the isomorphism of Theorem 3.2 becomes a ring isomorphism. The construction of such a product is very similar *mutatis mutandis*, to the construction of the product in the tensor product of homology spectra as given in Section 3 of [5]; consequently the details are omitted here. We can summarize these facts as follows.

THEOREM 3.3. If A and B are torsion-free DGA-algebras over Z, then the homology spectra of A and B completely determine H(A * B); in particular, there is a natural isomorphism of graded rings:

$$\{H(A, m)\} \ast \{H(B, m)\} \cong H(A \ast B).$$

Palermo [10] has given an example to show that for K = Z, the ring $H(A \otimes B)$ need not be completely determined by the rings H(A) and H(B). The same example serves to show that H(A) and H(B) alone do not determine H(A * B).

Example 3.4. Let four identical complexes of abelian groups, A^1 , A^2 , A^3 , A^4 be given as follows (i = 1, 2, 3, 4):

 $A_0^i = Z(e_i);$ $A_{-1}^i = Z(a_i) + Z(c_i);$ $A_{-2}^i = Z(b_i);$

 $A_j^i = 0$ for $j \neq 0, -1, -2;$ $\partial e_i = 0;$ $\partial a_i = 2b_i;$ $\partial c_i = 0;$ $\partial b_i = 0.$

In each A^i the augmentation map is the identity map $Z(e_i) \to Z$. The multiplicative structure is given as follows:

It is readily verified that each A^i is in fact a DGA-algebra and that there are algebra isomorphisms $H(A^1) \cong H(A^2) \cong H(A^3) \cong H(A^4)$. The situation is different when homology is taken mod 2. There are algebra isomorphisms $H(A^1, 2) \cong H(A^2, 2)$ and $H(A^3, 2) \cong H(A^4, 2)$, but there is no algebra isomorphism of $H(A^1, 2)$ and $H(A^3, 2)$, although all the additive structures are the same; (cf. Palermo [10] in slightly different terminology). We claim that there is no algebra isomorphism of $H(A^1 * A^2)$ and $H(A^3 * A^4)$. Thus H(A) and H(B) do not determine H(A * B).

In low dimensions the additive structure of $H(A^i * A^j)$ is given as follows (where (i, j) = (1, 2) or (3, 4) and η denotes homology class).

$$\begin{split} H_0(A^i * A^j) &= Z; \\ H_{-1}(A^i * A^j) &= Z[\eta(c_i)] + Z[\eta(c_j)]; \\ H_{-2}(A^i * A^j) &= Z_2[\eta(b_i)] + Z_2[\eta(b_j)] + Z[\eta(c_i \otimes c_j)] + Z[\eta(c_j \otimes c_i)]; \\ H_{-3}(A^i * A^j) &= Z_2[\eta(b_i \otimes c_j)] + Z_2[\eta(c_i \otimes b_j)] + Z_2[\eta(b_i \otimes a_j - a_i \otimes b_j)] \\ &+ Z_2[\eta(b_j \otimes c_i)] + Z_2[\eta(c_j \otimes b_i)] + Z_2[\eta(b_j \otimes a_i - a_j \otimes b_i)] \\ &+ Z[\eta(c_i \otimes c_j \otimes c_i)] + Z[\eta(c_j \otimes c_i \otimes c_j)]; \\ H_{-4}(A^i * A^j) &= Z_2[\eta(b_i \otimes b_j)] + Z_2[\eta(b_j \otimes b_i)] + \text{ other terms.} \end{split}$$

Suppose there were an isomorphism of graded algebras

$$f: H(A^1 * A^2) \to H(A^3 * A^4).$$

Then it is easy to see that $f \mid Z$ is the identity. Since f preserves degrees

$$f[\eta(c_1)] = x\eta(c_3) + y \cdot \eta(c_4)$$

for some x, $y \in Z$. Since $c_1^2 = 0$, $f[\eta(c_1)]^2 = 0$; but

$$f[\eta(c_1)]^2 = xy\eta(c_3 \otimes c_4) + xy\eta(c_4 \otimes c_3).$$

This will be zero if and only if x = 0 or y = 0. It follows that $f[\eta(c_1)] = \pm \eta(c_3)$ or $\pm \eta(c_4)$; by changing indices if necessary we can assume $f[\eta(c_1)] = \pm \eta(c_3)$. Then the same argument shows that $f[\eta(c_2)] = \pm \eta(c_4)$.

A similar argument shows that $f[\eta(b_1)] = \eta(b_3)$ or $\eta(b_4)$. The facts that $f[\eta(c_1)] = \pm \eta(c_3)$ and $c_1 \cdot b_1 = 0$ imply that $f[\eta(b_1)] = \eta(b_3)$, since $\eta(c_3) \cdot \eta(b_4) = \eta(c_3 \otimes b_4) \neq 0$ in $H(A^3 * A^4)$. Likewise $f[\eta(b_2)] = \eta(b_4)$.

Let $u = (b_1 \otimes a_2 - a_1 \otimes b_2)$. In $H(A^1 * A^2)$,

$$\eta(c_1)\cdot\eta(u) = \eta(b_1\otimes b_2) \neq 0.$$

Hence

$$f[\eta(c_1)] \cdot f[\eta(u)] = \eta(c_3) \cdot f[\eta(u)] = \eta(b_3 \otimes b_4).$$

Since each A^{i} is torsion-free, the homology product maps (which define the product in $H(A^{3} * A^{4})$)

$$\alpha: H_{-1}(\bar{A}^3) \otimes H_{-3}(\bar{A}^4 \otimes \bar{A}^3) \to H_{-4}(\bar{A}^3 \otimes \bar{A}^4 \otimes \bar{A}^3),$$

$$\alpha: H_{-1}(A^{\circ}) \otimes H_{-3}(A^{*} \otimes A^{\circ} \otimes A^{*}) \to H_{-4}(A^{\circ} \otimes A^{*} \otimes A^{\circ} \otimes A^{*})$$

are both monic (cf. MacLane [9]; this means that in this case the product of nonzero elements is nonzero. Since $f[\eta(u)]$ must have additive order 2, the only possibility, therefore, for $f[\eta(u)]$ is a linear combination of

$$\eta(b_3\otimes c_4), \ \eta(c_3\otimes b_4), \ \eta(b_3\otimes a_4-a_3\otimes b_4).$$

But the product of $\eta(c_3)$ (on the left) with each of these terms is zero in $H(A^3 * A^4)$. Hence $f[\eta(c_1)] \cdot f[\eta(u)] \neq \eta(b_3 \otimes b_4)$, a contradiction. Therefore there can be no algebra isomorphism between $H(A^1 * A^2)$ and $H(A^3 * A^4)$.

4. Derived functors

In an abelian category (with sufficient proper projectives) the derived functors of an additive functor T are always defined (cf. [8]). Furthermore, Dold and Puppe [4] have defined the derived functors of an arbitrary functor T on an abelian category in such a way that they agree with the usual derived functors if T is additive. Unfortunately, however, the category of augmented algebras (or augmented K-modules) is not abelian and the functor A * B is not additive. On the other hand, the functor $T(\bar{A}, \bar{B}) = A * B$, considered as a functor of the K-modules \bar{A} and \bar{B} , is a (nonadditive) functor of two variables on the abelian category of K-modules. Also, it is clear that a DGAalgebra A completely determines the K-module \bar{A} . Since some analogue of derived functors may prove useful for A * B, it seems reasonable to define the derived functors of A * B to be the derived functors of $T(\bar{A}, \bar{B})$ and apply the definitions and results of [4].

The reader should consult [4] or [8] for the definition of a semisimplicial object; **k**X will denote the chain complex determined by the semisimplicial (s.s.) K-module X. If X and Y are s.s. objects on an abelian category A with face and degeneracy operators d_i^X , s_i^X , d_i^Y , s_i^Y respectively and F is a covariant functor of two variables from the category A to itself, then F(X, Y) is the s.s. object given by $F_n(X, Y) = F(X_n, Y_n)$, with face and degeneracy operators $d_i^x = F(d_i^X, d_i^Y)$ and $s_i = F(s_i^X, s_i^Y)$; similarly for functors of more than two variables. If F is the tensor product of K-modules then the Eilenberg Zilber Theorem states that there is a natural chain equivalence of complexes:

(1)
$$\mathbf{k}F(X, Y) \leftrightarrow \mathbf{k}X \otimes \mathbf{k}Y.$$

DEFINITION 4.1. Let A be a K-module and $n \ge 0$ an integer. A projective semi-simplicial resolution of (A, n) is an s.s. module X such that: X_i is projective for all $i; X_i = 0$ for $i < n; H_i(\mathbf{k}X) = 0$ for $i > n; H_n(\mathbf{k}X) \cong A$.

DEFINITION 4.2. Let A be a graded K-module; for each $m \in Z$, let X^m be a projective s.s. resolution of (A_m, m) . The direct sum $X = \sum^m X_m$ is called a projective s.s. resolution of A.

This is an extension of definition 4.8 of [4]. The work in [4] is all done in the context of an abelian category; hence arbitrary direct sums may not exist. The technique of taking X^m to be a projective s.s. resolution of (A_m, m) rather than of $(A_m, 0)$ insures that for positively graded objects A, the projective s.s. resolution X of A is well defined, since for each $q \ge 0 X_q$ is a finite sum $\sum_{m \le q} X_q^m$. However, since infinite direct sums do exist in the category of K-modules, the definition can be extended in this case to arbitrarily graded K-modules.

The following facts are proved in [4]. For every K-module A and every $n \ge 0$ there is a projective s.s. resolution of (A, n). Hence every graded K-module has a projective s.s. resolution. If X and Y are projective s.s resolutions of A and B respectively, then every K-module map $f: A \to B$ can be lifted to an s.s. map $\overline{f}: X \to Y; \overline{f}$ is unique up to chain homotopy. If F is a (not necessarily additive) covariant functor of two variables on the category of K-modules, then $H(\mathbf{k}F(X, Y))$ is determined up to natural isomorphism and depends only on F, A and B, and not on X or Y. The same facts hold if A and B are graded K-modules.

DEFINITION 4.3. Let F(A, B) be a covariant functor from the category of graded K-modules to itself. The *q*-th left derived functor of F is

$$L_q F(A, B) = H_q(\mathbf{k} F(X, Y)),$$

where X and Y are projective s.s. resolutions of A and B respectively.

The preceding remarks show that $L_q F(A, B)$ is well defined. Note that since negative gradings are allowed for A and B, the derived functors $L_q F(A, B)$ are defined for negative as well as positive q.

Before applying Definition 4.3 to the functor $T(\bar{A}, \bar{B}) = A * B$, we first consider the *n*-fold tensor product of K-modules, $A^1 \otimes A^2 \otimes \cdots \otimes A^n$. It is a covariant, additive, right exact functor of *n* variables on the category of K-modules, whose *i*-th left derived functor is generally denoted by $\operatorname{Mult}_{i}^{K,n}(A^1, \cdots, A^n)$. For n = 2, $\operatorname{Mult}_{i}^{K,2}$ is just $\operatorname{Tor}_{i}^{K}$ and for every *n*,

$$\operatorname{Mult}_{0}^{\kappa,n}\left(A^{1},\cdots,A^{n}\right)=A^{1}\otimes A^{2}\otimes\cdots\otimes A^{n}.$$

If K is a hereditary ring, then $\operatorname{Mult}_{i}^{K,n}(A^{1}, \cdots, A^{n}) = 0$ for $i \geq n$.

We shall use the following notation. Let A and B be graded K-modules;

 $p, n, i \text{ integers } (i \geq 0).$ Then

$$Mult_{i}^{K,n}[A, B]_{p} = \sum Mult_{i}^{K,n}(A_{p_{1}}, B_{p_{2}}, A_{p_{3}}, B_{p_{4}}, \cdots) \quad (n \text{ factors}),$$

where the sum is taken over all (p_1, \dots, p_n) such that $\sum_{r=1}^n p_r = p$. We also adopt the conventions that

$$\begin{aligned} \operatorname{Mult}_{i}^{K,1}[A, B]_{p} &= A_{i} \quad \text{for} \quad p = 0; \quad 0 \quad \text{for} \quad p \neq 0; \\ \operatorname{Mult}_{i}^{K,0}[A, B]_{p} &= K \quad \text{for} \quad i = p = 0; \quad 0 \quad \text{otherwise} \end{aligned}$$

We can consider $\sum_{i\geq 0} \operatorname{Mult}_{i}^{K,n}[A, B] = \sum_{i\geq 0} \sum_{p} \operatorname{Mult}_{i}^{K,n}[A, B]_{p}$ as a (bi)graded K-module, with an element of $\operatorname{Mult}_{i}^{K,n}[A, B]_{p}$ having bidegree (i, p) and total degree i + p. Now let $T_{n}(A, B)$ be the *n*-fold tensor product of alternate copies of A and B as above.

THEOREM 4.4. If A and B are graded K-modules, then there is a natural isomorphism of graded K-modules:

$$\sum_{q} L_{q} T_{n}(A, B) \cong \sum_{i \ge 0} \operatorname{Mult}_{i}^{\kappa, n} [A, B];$$

in particular,

$$L_q T_n(A, B) = \sum_{j \ge 0} \operatorname{Mult}_j^{K, n} [A, B]_{q-j}.$$

Proof. We shall use the following notation:

$$\sum_{(p_j)=k} M_{p_1} \otimes M_{p_2} \otimes \cdots \otimes M_{p_n}$$

is the sum over all (p_1, \dots, p_n) such that $\sum_{j=1}^n p_j = k$. Let X and Y be s.s. projective resolutions of A and B respectively; then, by the Eilenberg-Zilber Theorem and the appropriate definitions,

$$L_{q} T_{n}(A, B) = H_{q}(\mathbf{k}T_{n}(X, Y))$$

$$\cong H_{q}(T_{n}(\mathbf{k}X, \mathbf{k}Y))$$

$$\cong H_{q}(T_{n}(\mathbf{k}X, \mathbf{k}Y))$$

$$\cong H_{*}(\sum_{(q_{j})=q} \mathbf{k}X_{q_{1}} \otimes \mathbf{k}Y_{q_{2}} \otimes \mathbf{k}X_{q_{3}} \otimes \mathbf{k}Y_{q_{4}} \otimes \cdots)$$

$$= H_{*}[\sum_{(q_{j})=q} (\sum_{m_{1}} \mathbf{k}X_{q_{1}}^{m_{1}} \otimes \sum_{m_{2}} \mathbf{k}Y_{q_{2}}^{m_{2}} \otimes \sum_{m_{3}} \mathbf{k}X_{q_{3}}^{m_{3}}$$

$$\otimes \cdots)]$$

$$= \sum_{m_{1}} \cdots \sum_{m_{n}} H_{*}(\sum_{(q_{j})=q} \mathbf{k}X_{q_{1}}^{m_{1}} \otimes \mathbf{k}Y_{q_{2}}^{m_{2}} \otimes \cdots)$$

$$= \sum_{i \leq q} \sum_{(m_{j})=i} H_{*}(\sum_{(q_{j})=q} \mathbf{k}X_{q_{1}}^{m_{1}} \otimes \mathbf{k}Y_{q_{2}}^{m_{2}} \otimes \cdots);$$

the first sum is actually over all $i \in Z$, but for each (m_1, \dots, m_n) such that $\sum_{r=1}^{n} m_r = i > q$ and each (q_1, \dots, q_n) such that $\sum_r q_r = q$, some $m_j > q_j$ and thus $X_{q_j}^{m_j}$ (or $Y_{q_j}^{m_j}$) is 0 since each X^m is a s.s. projective resolution of (A_m, m) . Now by using this last fact, (2) becomes

$$\sum_{i \leq q} \sum_{(m_j)=i} \operatorname{Mult}_{q-i}^{K,n} (A_{m_1}, B_{m_2}, A_{m_3}, B_{m_4}, \cdots) = \sum_{i \leq q} \operatorname{Mult}_{q-i}^{K,n} [A, B]_i.$$

Now a change of indices (j = q - i) gives

$$\sum_{j\geq 0} \operatorname{Mult}_{j}^{\kappa,n} [A, B]_{q-j}$$

as desired.

We are now in a position to compute the left derived functors of $A * B = T(\overline{A}, \overline{B})$, which we denote by $L_q(A * B)$. From the appropriate definitions and Theorem 4.4 we immediately obtain:

THEOREM 4.5. If A and B are DGA-algebras, then the left derived functors of A * B are given by

$$L_q(A * B) = \sum_{n \ge 1} \sum_{i \ge 0} \left(\operatorname{Mult}_i^{\kappa, n} [\bar{A}, \bar{B}]_{q-i} + \operatorname{Mult}_i^{\kappa, n} [\bar{B}, \bar{A}]_{q-i} \right)$$

5. Künneth theorems

If A and B are DGA-algebras over K, then so are H(A), H(B), and H(A * B). Furthermore $\overline{H(A)} = H(\overline{A})$ and $\overline{H(B)} = H(\overline{B})$. Define a map

$$\alpha_*: H(A) * H(B) \to H(A * B)$$

as follows. $\alpha_* | K, \alpha | \overline{H(A)}, \alpha | \overline{H(B)}$ are the respective identity maps on K, $\overline{H(A)} = H(\overline{A}), \overline{H(B)} = H(\overline{B}). \alpha | T_n[\overline{H(A)}, \overline{H(B)}]$ is the usual homology product map

 $\alpha: T_n[H(\bar{A}), H(\bar{B})] \to H[T_n(\bar{A}, \bar{B})];$

similarly for $\alpha_* | T_n[\overline{H(B)}, \overline{H(A)}]$. It can verified be that α_* is a DGA-map. In general, of course, it is not an isomorphism; however, we do have:

THEOREM 5.1. If A and B are DGA-algebras over K such that the modules of cycles and the homology modules $Z_n(A)$, $H_n(A)$, $Z_n(B)$, $H_n(B)$ are projective K-modules for every n, then

$$\alpha: H(A) * H(B) \to H(A * B)$$

is a DGA-isomorphism.

Proof. We need only show that α_* is an isomorphism of graded K-modules. Under the hypothesis that just one of A or B have projective cycles and homology in every dimension, the ordinary Künneth theorem (see, for example, Theorem V.10.1 of MacLane [6]) states that the homology product map $\alpha: H(\bar{A}) \otimes H(\bar{B}) \to H(\bar{A} \otimes \bar{B})$ is an isomorphism of graded K-modules. An inductive procedure then shows that the map

$$\alpha: T_n[H(\bar{A}), H(\bar{B})] \to H[T_n(\bar{A}, \bar{B})]$$

ia a graded K-module isomorphism for all $n \ge 2$. Therefore from the definition of α_* we see that α_* is an isomorphism.

322

If K is a hereditary ring we can also state a Künneth theorem of sorts for the free product, corresponding to similar theorems for the tensor product, as given in [3], [6], and elsewhere.

THEOREM 5.2. If A and B are flat DGA-algebras over a hereditary ring K, then there is a (nonnatural) isomorphism of graded K-modules:

$$H(A * B) \cong \sum_{q} L_{q}(H(A) * H(B)).$$

Proof. The multiple Künneth theorem of [6] states that for K = Z and A, B torsion-free (i.e. Z-flat) there is for each q and each $n \ge 2$ a (nonnatural) isomorphism of graded groups:

(1)
$$H_q(T_n(\bar{A},\bar{B})) \cong \sum_{i=0}^{n-1} \operatorname{Mult}_i^{K,n}[H(\bar{A}),H(\bar{B})]_{q-i}.$$

Since for hereditary rings, $\operatorname{Mult}_{i}^{K,n}(-)$ is 0 for $i \ge n$, (for $q \ne 0$) Theorem 4.5 gives

$$H_{q}(A * B) = \sum_{n \ge 1} H_{q}(T_{n}(A, B)) + H_{q}(T_{n}(B, A))$$

= $\sum_{n \ge 1} \sum_{i=0}^{n-1} \operatorname{Mult}_{i}^{K,n} [H(\tilde{A})H(\tilde{B})]_{q-i}$
+ $\operatorname{Mult}_{i}^{K,n} [H(\tilde{B}), H(\tilde{A})]_{q-i}$
= $L_{q}(H(A) * H(B)).$

The proof for q = 0 is similar. Essentially the same multiple Künneth theorem as above is given for an arbitrary hereditary ring K in Dold [3]. Although the theorem is stated there only for the case n = 2, the proof given applies equally well, *mutatis mutandis*, to the case n > 2. Hence the theorem follows as above.

COROLLARY 5.3. If A and B are flat DGA-algebras over a hereditary ring K, then there is an exact sequence of graded K-modules:

$$\begin{aligned} \mathbf{0} &\to H(A) * H(B) \xrightarrow{\alpha_{*}} H(A * B) \\ &\to \sum_{q} \sum_{n \geq 1} \sum_{i=1}^{n-1} \left(\operatorname{Mult}_{i}^{\kappa, n} [H(\bar{A}), H(\bar{B})]_{q-i} \right. \\ &+ \operatorname{Mult}_{i}^{\kappa, n} [H(\bar{B}), H(\bar{A})]_{q-i}) \to \mathbf{0}. \end{aligned}$$

where α_* is the DGA-map defined above.

Proof. It is shown in [6] that the isomorphism (1) in the proof of the theorem is given for each q by the identity map on the summands $H_q(\bar{A})$, $H_q(\bar{B})$ (and Z, if q = 0) and for each n by the homology product α on the summand

$$\operatorname{Mult}_{0}^{K,n}[H(A), H(B)]_{q} = (T_{n}(H(A), H(B))_{q})$$

Hence the isomorphism $H(A * B) \cong \sum_{q} L_{q}(H(A) * H(B))$ is given on

$$H(A) * H(B) = K + H(\bar{A}) + H(\bar{B}) + \sum_{n \ge 2} T_n(H(\bar{A}), H(\bar{B})) + T_n(H(\bar{B}), H(\bar{A}))$$

$$= K + \sum_q \sum_{n \ge 1} \operatorname{Mult}_0^{\kappa, n} [H(\bar{A}), H(\bar{B})]_q + \operatorname{Mult}_0^{\kappa, n} [H(\bar{B}), H(\bar{A})]_q$$

$$\subseteq \sum_q L_q(H(A) * H(B))$$

by the map α_* and the corollary follows immediately.

BIBLIOGRAPHY

- 1. I. BERSTEIN, On co-groups in the category of graded algebras, Trans. Amer. Math-Soc., vol. 115 (1965), pp. 257-269.
- 2. H. CARTAN AND E. EILENBERG, Homological algebra, Princeton Univ. Press, Princeton, 1956.
- A. DOLD, Homotopietheorie der Kettenkomplexe, Math. Ann., vol. 140 (1960), pp. 278– 298.
- 4. A DOLD AND D. PUPPE, Homologie nicht-additiver Functoren Anwendung, Ann. Inst. Fourier (Grenoble), vol. 11 (1961), pp. 201-312.
- 5. T. HUNGERFORD, Bockstein spectra, Trans. Amer. Math. Soc., vol. 115 (1965), pp. 225-241.
- 6. ——, Multiple Künneth formulas for abelian groups, Trans. Amer. Math. Soc., vol. 118 (1965), pp. 257-276.
- 7. ——, Hyperhomology spectra and a multiplicative Künneth theorem, Illinois J. Math., vol. 10 (1966), pp. 249–254.
- 8. S. MAGLANE, Homology, Springer, Berlin, Gottingen and Heidelberg, 1963.
- 9. ——, Triple torsion products and multiple Künneth formulas, Math. Ann., vol. 140 (1960), pp. 51–64.
- F. P. PALERMO, The cohomology ring of product complexes, Trans. Amer. Math. Soc., vol. 86 (1957), pp. 174–196.

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON