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1. Introduction
A near algebra is an algebraic system with two binary operations satisfying

all of the axioms for a ring, except possibly one distributive law, and admitting
a field as a left operator domain. The purpose of this paper is to study the
structure of certain classes of near algebras.
In Section 2 of this paper the basic concepts are defined and some examples

of near algebras are given. The structure of the multiplicative semigroup of a
near algebra is investigated and necessary and sufficient conditions for the
admissibility of division are determined in Section 3. The concepts of a
distributor

[a, b, c] (a -t- b)c ac bc

and of a distributor chain are next introduced. These concepts are investi-
gated in Section 4. Semi-simple near algebras are considered in Section 5.
In Section 6 near algebras whose linear structures form Banach spaces (top-
ological near algebras) are investigated; and the main result--any semi-simple
topological near algebra such that right multiplication is differentiable at the
origin is a semi-simple algebra--is proved.

Similar algebraic systems, near rings, were first considered by Dickson [6].
Zassenhaus [11] and Kalscheuer [9] investigated division near rings (Fast-
kSrper). More recently near rings have been studied extensively by Beidle-
man [1], Blackett [3], Wielandt [10] and others. A comprehensive study of
the known results on near rings is contained in [1].
The investigation of near algebras is motivated in part by a possible applica-

tion to physics, for quantum mechanical models have been considered in which
the operators form only a .near algebra.

2. Basic concepts
A (left) near algebra over a field F is a linear space N over F on which a

multiplication is defined such that

(i)
(ii)
(iii)

N forms a semigroup under multiplication.
Multiplication is left distributive over addition.
a((b) (ab) for a, b e N and ti e F.

We will denote the additive identity of N by 0 and the vector space structure
of N by N+, and, if N has a multiplicative identity, we will denote it by 1.
A natural example of a near algebra over a field F which is not an algebra
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is the system of all the transformations of a non-zero linear space over F into
itself.

In analogy to the n structural constants of an n-dimensional algebra, the
multiplicative structure of an n-dimensional near algebra over a field F is
completely determined relative to a basis {wl, "", wn} by n structural
functions from F into F, say {ri i, j 1,... n}, which are defined as
follows:

where x denotes the column vector corresponding to x e N.
a,b eN,

Then, for aay

(2.1)

The associativity of multiplication implies that

(2.2)

If N is an algebra, r.(a) is the matrix of the left regular representation of a.
Conversely, if {rj} is any set of n functions from F into F satisfying (2.2),

an n-dimensional vector space over F becomes a near algebra if, relative to a
fixed basis, multiplication is defined by (2.1).

Let {w} and {vii’ be two bases for an n-dimensional near algebra N, {r.}
and {i.} the respective n structural functions, and T the change of basis
matrix relative to {w}. Since multiplication in N is independent of basis,

(ab) T-1 (Ta) Tb
for any a, b e N. Thus

r(x)II T-1 .(Tx)II T.

As an example of these concepts we will determine the 2-dimensional near
algebras N with identity satisfying ON 0 over a field F.

Let {1, w} be a basis for N. For x e N, sayx 11 2 w, the correspond-
ence x --. ri(x) is a faithful representation of the multiplicative semi-
group of N by 2 X 2 matrices. 1V[oreover, n(x) and r2(x) 2.

Since r is a representation,

(2.3) 7r2(xy) 2(y) +
and

(2.4)

By (2.4), r22(0) (r.2(0))2, i.e. 7r22(0) 0 or 1. If r,.(0) 0, we have
n2(0) 0, and ON 0. Thus r22(0) 1. Let r(0) k. By letting
y 0 in (2.3), and (2.4) we get

Hence the multiplication on N relative to the basis {1, w} is given by the func-
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tional matrix

(2.5)

Although as a direct consequence of the definition of a near algebra N we
have

(2.6) x0 0; (xy) x( --y)

for x, yeN, the above example shows thut we need not have 0x 0
or -(xy) (-x)y. We also note that in this example F1 does not lie in the
center of N.
A linear space V over F is called a right N-space if V admits N as a right

operator domain such that for v e V, x, y N and 6 e F

(i) v(x + y) vx + vy.
(ii) v(xy) (vx)y.
(iii) v(x) 6(vx).
(iv) vl v if N has an identity 1.

If V is also a subspace of N, V is called a right module.
Let V and V’ be two right N-spaces. A mapping of V into V’ is called

an N-homomorphism if v is a right N-operator linear transformation on V.
If r is also one-to-one, is called an N-isomorphism.
The right ideals of N are defined as the kernels of N-homomorphisms on N,

and the left ideals are defined as the subspaces of N closed under left multiplica-
tion by N.
Let N and N be near algebras over F. A mapping from N into N is

called a near algebra homomorphism if r is a multiplication-preserving linear
transformation on N. If is also one-to-one, r is called a near algebra iso-
morphism. For example, the linear transformation given by

is a near algebra isomorphism which carries the 2-dimensional near algebra
with functional matrix (2.5) onto the near algebra with functional matrix

cq 0
(2.7)

a2 1
relative to a basis/1, w}.
The ideals of N are defined as the kernels of near algebra homomorphisms

on N.
As for near rings (see e.g. Blackett [3]) we have:

(2.8) R is a right ideal of a near algebra N iff R is a subspace of N+ and



218 HAROLD BROWN

(x q- r)y xy e R forx, yeN and r

(2.9) I is an ideal of a near algebra N iff I is both a right ideal and a left
ideal of N.

We note that in general a right ideal is not a right module. For example,
in the 2-dimensional near algebra with functional matrix (2.7), the subspace
{(1 q-- w) e F} is a right ideal which is not a right module. If however
ON 0, then (0 -- r)x Ox rx, and any right ideal is also a right module.
Also, in general a right module is not a right ideal. For example, in the near
algebra of all mappings of a non-zero linear space into itself, the constant
mappings form a right module which is not a right ideal.

It is immediate that the intersection or the sum of two right ideals or ideals
is agan a right ideal or ideal.
For a near algebra N over F, let

A {ON} and B {xN’0x 0}.

A direct computation gives that A is a left ideal and a right module and that
B is a sub near algebra of N. Moreover, N A @ B as a linear space.

In the remainder of this paper we will consider only near algebras of the
type of B, i.e. we will assume the following axiom"

(2.10) AXIOM. ON 0.

We note that with this axiom all of the standard isomorphism theorems for
rings, the Zassenhaus lemma, and, where applicable, the Jordan, HSlder,
Schreier theorem all hold for near algebras. The proofs carry over almost
verbatim from ordinary ring theory.

For a non-empty subset S of a near algebra N, we denote by A (S) the set
{x e N Sx 0}. Using (2.8) and (2.9), a direct computation gives"

(2.11) A(S) is a right ideal, and, if S is a right module, A(S) is an ideal.

3. The multiplicative semigroup
A. Clifford [4], [5] and others have studied extensively the theory of semi-

groups. Here we apply some of these notions to the multiplicative semi-
group of a near algebra N over a field F.

In this section we will assume N has a multiplicative identity 1.
A non-empty subset I of N is called a right (left) s-ideal if IN I (NI

_
I).

(3.1) THEOREM. If N is finite-dimensional over F, N contains minimal
(non-zero) right s-ideals. Every minimal right s-ideal is a minimal right module,
and conversely. Moreover any minimal right s-ideal I is of the form aN for any
a I such that aN O.

Proof. Choose a e N such that dim(aN) is minimal and non-zero, aN is
clearly a minimal right s-ideal. If I is a minimal right s-ideal, then for any
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a e I such that aN O, aN I. By the definition of a near algebra, aN is a
right module. Since a right module is also a right s-ideal, I must be minimal
as a right module. The converse is now clear.

Since the map x -- ax is an N-homomorphism of N for a e N, we have"

(3.2) THEOREM. Let N have a minimal right module R. For any a N
such that aR O, aR is also a minimal right module; and any minimal right
module R’ such that R’R 0 is of the form aR for some a R’.

From (3.2) and (2.11) it follows that"

(3.3) COROLLARY. If N has a minimal right module R and no proper ideals,
all minimal right modules are of the form aR and are N-isomorphic.

(3.4) THEOREM. A minimal right module R such that aR 0 for any
0 a R when considered as a near algebra has no proper right s-ideals. More-
over, if R has a right identity, R is a division near algebra.

Proof. Let I be a non-zero right s-ideal of R. Then,
O.IR_I_R, and 0 (IR)N_R.

Since R is minimal, IR I R. If R has a right identity, aR R for any
OaeR.

(3.5) COROLLARY. A non-zero near algebra N with a right identity is a
division near algebra iff N has no proper right s-ideals.

(3.6) THEOREM. If N ha a minimal right s-ideal I and no proper ideals,
then NI [J nI (n N) is the unique minimal two sided s-ideal ofN.

Proof. By (3.1) and (3.3), NI is the union of all the minimal right s-ideals
of N. Let S be a non-zero two sided s-ideal of N. By (2.11), A(nI) 0
if nI O. Thus (hi) S is a non-zero right s-ideal for any minimal right s-ideal
nI, and nI (nI)S S. HenceNI S.

(3.7) COROLLARY. If N has a minimal right module R and no proper ideals,
then N has no proper two sided s-ideals iff each principal right s-ideal (or equiva-
lently, by (3.1), principal r(qht module) nN 0 is minimal.

Proof. If every non-zero principal right s-ideal is minimal, by (3.6) N
[J nN (n N) is the only non-zero two sided s-ideal in N. Conversely, if N
has no proper two sided s-ideals, N [J nR (n N). Thus for any 0 a e N,
a is in some minimal right s-ideal, say A; and 0 aN A. Hence aN A
is a minimal right s-ideal.

Since for a near algebra N the subset {a" dim(aN) < k} is a two sided
s-ideal for any integer k > 0, it follows that"

(3.8) THEOREM. A finite-dimensional near algebra N is a division near
algebra iI N has no proper two sided s-ideals.
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(3.9) COROLLARY. Let N be a finite-dimensional near algebra with no proper
ideals. N is a divizion near algebra iff each principal right module is minimal.

Proof. By (3.1), N contains a minimal right module. Hence N satisfies
the hypothesis of (3.7) and has no proper two sided s-ideals.

4. Distributors

Let V be a right N-space. For a, b V and n N, we call the element
(a - b)n an bn of V the distributor of a and b with respect to n and
denote it, by [a, b, hi. For a non-void subset A of V and a sub near algebra
B of N, we denote by D(A) the subspace of V generated by

{[a, b, n]:a, bA, nB}.

We say that A is right distributive if DN(A) 0. For a sub near algebra A
of N, we will denote DA(A more simply by D(A ).

FrShlich [8] has investigated similar concepts for distributively generated
near rings.

(4.1) THEOREM. For a near algebra N, D(N) is an ideal of N.

Proof. For a, b, c e N and i e F, i[a, b, c] [a, b, c]. Hence

D(N) [a bi ci] ai bi vie N}.

Also, a direct computation gives that for x, y e N

(4.2) x( [ai, b, ci]) [xa, xb, c],

(x + [a, b, c])y xy [x, [a, b, c], y] [ac + bc, [a, b, c], y]
(4.3)

+ [a, b, cy] [ac, bc, y],

and, if d --1 [ai, b, c] (] > 1) and d’ - [a, b, c],

(x + d)y xy {((x + d’) + [ak, bk, c])y (x + d’)y}
(4.4)

-t- {(x + d’)y xy}.

Using (4.3), (4.4) and induction on ], we get that

(x + d)y xyeD(N)

for d e D(N), x, y e N. By (2.8), D(N) is a right ideal. (4.2) shows that
D(N) is also a left ideal, and, by (2.9), D(N) is an ideal of N.

(4.5) THEOREM. Let N be a finite-dimensional near algebra with an identity
and no proper ideals. If DN(aN) is either a minimal right module or zero for
each a e N, then N is a full matrix ring over a division ring or N is a division
near algebra.

Proof. By (4.1), D(N) 0 or D(N) N. In the first case N is a simple
finite-dimensional ring which, by the Wedderburn theorem, must be of the
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first type. In the latter case we have 1 [a, b, ci], ai, b, c e N. From
(4.2) it follows that DN(aN) aN. Since aN is a right module, DN(aN)

_
aN. Thus D(aN) aN, and; by (3.9), N is of the second type.

If A is an ideal (right ideal) of N, we denote by N/A the near algebra (right
N-space) of cosets with the operations induced by those in N. (Using (2.8)
and (2.9) one can easily verify that these induced operations are well defined.)

(4.6) THEOREM. For a near algebra N, N/D(N) is right distributive. If
N/A is right distributive for an ideal (right ideal) A, then A D(N).

Proof. The first statement is clear since we have factored out exactly the
right distributivity relation. The second statement follows from the observa-
tion that if is the natural near algebra homomorphism (N-homomorphism)
from N onto N/A, D(N) ker .
We define repeated distributors as follows" D(N) N, DI(N) D(N),

D(N) D(D-I(N)). By (4.6) each D-I(N)/D(N) is right distributive.
A sub near algebra A of N is called d-solvable if for some ], D (A) 0.

(4.7) THEOREM. Every sub near algebra of a d-solvable near algebra is d-solv-
able. Every homomorphic image of a d-solvable near algebra N is d-solvable.
If a near algebra N contains a d-solvable idea A such that N/A is d-solvable,
then N is d-solvable.

Proof. The proof of the first statement is clear, and from

D(N/A) (D(N) - A)/A

the second statement follows. If N/A is d-solvable, D(N)
___
A for some k,

and if A is also d-solvable, Ds+(N)
_
D (A) 0 for sufficiently large s.

(4.8) COROLLARY. The sum of a d-solvable sub near algebra A of N and of a
d-solvable ideal B ofN is d-solvable.

Proof. By one of the standard isomorphism theorems, (A - B)/B is
isomorphic to A/(A B). Since A/(A f B) is the homomorphic image of
a d-solvable near algebra, it is also d-solvable. Thus (A - B)/B is d-solvable,
and, since B is d-solvable, A B is d-solvable.

For the remainder of this section, we will assume N satisfies the a.c.c, on
ideals.
By (4.8), N contains a unique maximal d-solvable ideal which we will call

the d-radical of N and denote by dR(N). We say that N is d-semi-simple if
dR(N) O.

(4.9) THEOREM. N/dR(N) is d-semi-simple for any near algebra N.

Proof. If A/dR(N) is a d-solvable ideal in N/dR(N), by (4.7), A is
d-solvable. Hence A

_
dR(N).
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For two sub near algebras A, B of N, we define their product AB as the sub
near algebra generated by the set {ab a e A, b e B} aad a power A by A
A (A’-I). We note that in general, because of the missing distributive law,
the multiplication of sub near algebras is non-associative. A sub near algebr
A of N is said to be nilpotent if Ak 0 for some/ > 0.

Since for a sub near algebra A we have Dk(A A+1, it follows that"

(4.10) A nilpotent sub near algebra is d-solvable.

Thus,

(4.11) A d-semi-simple near algebra is semi-simple in the ring theoretic
sense.

The converse of (4.11) is false, e.g. any semi-simple, non-zero algebra.
A chain starting at N and terminating at 0,

N=N0NI... N=0,
is called a distributive series for N if each N+I is an ideal of N and each factor
Ni/Ni+ is right distributive with respect to Ni. Such a chain is called a
d-composition series if each term N+ is maximal in Ni with respect to the
property that N/N+ is right distributive and non-zero.

(4.12) THEOREM. Let N be a finite-dimensional near algebra. Any distribu-
tive series for N can be refined into a d-composition series.

(4.13) THEOREM. The factors of a given d-composition series for a near
algebra N are near algebra isomorphic to the factors in any d-composition series

for N in some sequential order.

The proofs of (4.12) and (4.13) are completely analogous to the proofs of
the corresponding statement for composition series in group theory. (Note
that with Axiom (2.10) the Zassenhaus lemma holds for near algebras.)

(4.14) THEOREM. A near algebra N is d-solvable iff N possesses a distributive
series.

Proof. If N is d-solvable, the series

N D(N)
_
D(N)

_ _
D(N) 0

is a distributive series for N. Conversely, if

N N0 N N 0

is a distributive series for N, by (4.6), 0 N

_
D (N).

As an example of these concepts we will construct, for a given integer n > 0,
a near algebra with d-composition series length n.

Let V be an n-dimensional vector space over (R in a coordinate representa-
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tion relative to a fixed basis. We define a multiplication on V as follows:

(4.15) (1, ,) (, ,,) (f(a),... f,(a),),

where a (al, an) andfl(a) ,f(a) 0if a_l 0 andre(a) a
otherwise 1 < i _< n). A direct computation gives that V with the multipli-
cation defined by (4.15) is a near algebra satisfying 0V 0. Fioreover,
Dk(V) is the (n -/c)-dimensional subspace of V consisting of all vectors with
first ] components zero, and

V D(V) D*(V)
_

D’(V) " 0

is a d-composition series for V of length n.

5. Semi-simple near algebras
A near algebra N is said to be semi-simple if N satisfies the d.c.e, on fight

modules and has no non-zero nilpotent right modules. N is said to be simple
if N is a semi-simple, non-zero near algebra with no proper ideals.
We note that the concept of semi-simplicity can also be defined in terms of

a radical. Namely, the J-radical of a near algebra N, denoted by J(N), is
defined as the intersection of all right annihilator ideals A(R) (see (2.11))
where R ranges over the minimal right modules of N. Betsch [2] has shown
that if N satisfies the d.c.c, on right modules, N is semi-simple iff J(N) 0
and that N/J(N) is semi-simple.

(5.1) TEOgEM. Let N be a near algebra such that N satisfies the d:c.c, on
right modules and N/J(N) is right distributive. N is right distributive iff D(N)
contains no non-zero nilpotent right modules.

Proof. By (4.1), D(N) is an ideal and therefore contains a minimal right
module, say R. By (4.6), J(N) D(N). Thus D(N)

_
A(R), and we

hve R 0. By hypothesis we must have R D(N) O. The converse
is clear.

Blackett [3] has proved that a semi-simple near ring can be decomposed into
a ring theoretic direct sum of simple near rings. Blackett’s proof carries over
directly to near algebras, and we have.

(5.2) TEOnEM. A semi-simple near algebra can be decomposed into a ring
theoretic direct sum of simple near algebras.

6. Topological near algebras
In this section we will assume that N is a near algebra over the real or

complex number field such that N+ is a Banach space with respect to some
norm. We will call such a near algebra a topological near algebra.
We say that multiplication in a topological near,algebra N is continuous in

the first (second) factor if the map x -- xa (x -- ax) of N into N is continuous
in x for ech a N.
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As an example of a topological near algebra we give the "twisted quater-
nions" of Kalscheuer [9].

Let N+ be the vector space of quaternions over (R with the usual norm
topology. For a, b e N+, we define their product a b as follows"

where

a.b b,a 0,

a b a.(a).b. ((a))-l,

(a) cos(1/y(log Na) + i sin(1/y(log Na)

for 0 y e 6t. Here denotes the usual quaternion multiplication, and Na
denotes the norm of a.
KMscheuer proved that the members of this one parameter family of near

algebras are the only finite-dimensional topological division near algebras over
6t with continuous multiplication which are not algebras.

(6.1) THEOREM. Let N be a topological near algebra over 6t such that multipli-
cation is continuous in the second factor. Then, the near algebra axiom (ab
a(b follows from the other axioms.

Proof. For a, b e N,
a((1/2)b) a(b (1/2)b) ab a((1/2)b),

and by an induction argument,

a( (1/2)’b) (1/2’) (ab),
For 1 > t > 0, let (/2) be the dyadic expansion of .

a((1 t/2)b) ,-1 /2) (ab),

and letting n --. , we have a(b) (ab). Since a(2b) 2(ab) and
a( ( 1) b) (ab) the conclusion follows.

Let N be a finite-dimensional near algebra, and {wl, w.} be a basis for
N. For a e N, we will denote by L(a) the matrix relative to {w} correspond-
ing to the linear transformation x ---. ax of N into N. We note that the corre-
spondence x ---, L(x) is a homomorphism of the multiplicative structure of N.

(6.2) TttEOIEM. Let N be an n-dimensional topological near algebra with
identity 1 such that multiplication is continuous in the first factor. Then, the
unit group G of N contains a neighborhood of 1 and thus generates N additively.
Moreover, the map x -- x-1 is a continuous map on G.

Proof. Choose a basis {w} for N, and let

L(N) {L(a) "aN}

have the topology induced by norm a. max a. I. For a e N and
e > 0, let S(e) be the e-sphere about 0. Since multiplication is continuous in
the first factor, we can find neighborhoods S. of a, j 1, n, such that
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x e S- implies that xw {S(v) + aw}. Let S l S, a neighborhood of a.
For x e S, since aw and xw re thejth columns of L(a) and L(x) respectively,
norm(L(a) L(x) is less than e. Thus a -- L(a) is a continuous function
of a. Since the mp L(a) ---. det L(a) is continuous on L(N), a det L(a)
is a continuous map on N. In prticular, there is a neighborhood U of 1 such
that x e U implies that det L(x) det L(1) < 1. Thus x e U implies that
L(x) is invertible. For x e U and yeN, xy 0 implies that L(y)
L-I(x)L(O) L(O). But 1 e N implies that L(y) L(O) iff.y 0. Since
N is finite-dimensionM, xN N for x e U, i.e. x e G. 5/ioreover, L-(x)
L(x-). Since L-(x) is continuous function of the entries of L(x) nd
L(x) is continuous function of x, L(x-) is continuous function of x. Thus
L(x-) 1 x- is continuous function of x.
We note that by (6.2) the unit group of near algebra N satisfying the

hypothesis of (6.2) is a Lie group containing bsis for N. Therefore, one
could study the structure of such near Mgebms by employing Lie theory.
This approach, however, has difficulties as is demonstrated in the following two
examples of topologicM near Mgebras.

Let N be the near algebra over 6t generated by the mappings xfl x nd
xf. Ix] from into . N is 2-dimensionM near algebra over 6t, and,
since fi is non-linear, N is not, n Mgebm. The component of the identity of
the unit group of N is the set

{.f, + > > 1 {1.
Let N’ be the 2-dimensional (commutative) algebra of 2 2 matrices gen-
erated by

gl g
0 1 1 0

The component of the identity of the unit group of N is

The components of the identity of N and N’ are near lgebm isomorphic,
even on their boundaries, but their globM structures are quite different. Thus
to apply Lie theory to the study of these near algebras one would face the
difficult task of determining all distinct global extensions of the operations in
the component of the identity.

(6.3) THEOREM. Let N be a finite-dimensional topological near algebra with
identity such that multiplication is continuous in both factors. Then N is a
division near algebra iff for each a 0 in N and each sequence {n} in N such
that an} converges to O, {n} converges.

Proof. Let a- exist for each a # 0 in N, and {an} converge to O. For
any open neighborhood S of O, since x -- a-x is continuous at O,

S’ x a-x e S}
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is also a neighborhood of 0. Thus for sufficiently large i, an S’, i.e. ni e S;
and {hi} converges to 0. Conversely, assume that {an} converges to 0 implies
n} converges, a 0. Since N is finite-dimensional, if for some 0 a e N,
a does not exist, we must have ax 0 for some x 0. Define the sequence
{nl by n. x if i -: 0 (2) and n 2x if i =- 1 (2). Now an} is identically
0, but {n} does not converge.

Let N be a topological near algebra and M a non-zero right module of N.
If v is any zero-preserving map from N into N, we will denote byD the
derivative, if it exists, of ohM at 0; i.e.D v, if it exists, is the unique linear
transformation on M satisfying

lim

(See e.g. Dieudonn [7].)

norm (xr xDM’)
norm x

=-0; xeM,x 0.

(6.4) THEOREM. Let N be a topological near algebra such that for some fixed
non-zero right module M the map x ----> xa (i.e. right multiplication) is differ-
entiable on M at 0 for each a e N. Then, there is a well defined near algebra
homomorphism from N onto a right distributive near algebra N’. Moreover, N’
is non-zero if at least one of the above derivatives is non-zero.

Proof. For a e N, let R(a) denote the map x xa of N into N. A direct
computation gives that the correspondence a ----> R(a) is a near algebra homo-
morphism of N onto R(N) where the operations in R(N) are defined in the
usual manner. By hypothesisD R(a) exists for each a e N, and by the usual
rules for the derivative of a linear combination of functions, the correspondence
R(a) ----> DM R(a) is a well defined linear transformation from R(N) onto the
vector space N’ {DM R(a) a e N}. Moreover, since OR(a) 0 for each
a e N, by the chain rule

D(R(a)R(b)) (DR(a))(DMR(b)).

Thus the correspondence
a ----> R(a) ----> DM R(a)

is a well defined near algebra homomorphism from N onto N’. Since the
DM R(a) are linear transformations, N’ is a right distributive near algebra.

(6.5) THEOREM. Let N be a semi-simple topological near algebra with identity
such that the map x ---. xa is differentiable on N at 0 for each a e N. Then N is a
semi-simple algebra.

@1 N where each N is a simple near algebra.Proof. By (5.2) N

Since the multiplication in N can be carried out component-wise, each R(e)
is the i projection map. Thus DR(e) R(e) O. By (6.4) the map
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a --. DN R(a) restricted to N is a near algebra homomorphism of N onto a
non-zero right distributive near algebra N, i 1, k. Since each N is
simple, these maps must be near algebra isomorphisms. Thus each N is a
right distributive near algebra, and by a argument symmetric to that in (6.1),
(a b) (a)b for a, b e N and scalar . Therefore N is the ring theoretic
direct sum of simple algebras and hence is a semi-simple algebra.
We note that the continuity of multiplication is not sufficient to assure that

even a simple topological near algebra is an algebra; e.g. Kalscheuer’s "twisted
quaternions."
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