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1. introduction

Let "m-set" mean a set of m points in the d-dimensional space R. An
m-set is said to be (r, )-divisible if it can be partitioned into r pair-wise dis-
joint subsets in such a way that the intersection of the convex hulls of these r
subsets is at least It-dimensional. (We always assume 0

_
/

_
d. The

empty set is (-1)-dimensional, while 0-dimensional sets are non-empty.)
A classic theorem of J. Radon [5] asserts that each (d 2)-set is (2, 0)-

divisible. The first generalization for r > 2 was given by R. Rado
[4]. B. Birch [1] conjectured (and proved for d 2) that each
((d - 1)(r 1) W 1)-set is (r, 0)-divisible, while H. Tverberg [6] estab-
lished this coniecture for all values of d. It is clear that if/ > 0 then other
conditions on a given m-set S besides a lower bound on its cardinality are
necessary if S is to be (r, /)-divisible. For example, if all the points of S
were on a line in R, no subset would have a convex hull of dimension greater
than one. The purpose of this paper is to consider various types of independ-
ence that may be imposed upon an m-set to insure r, /c -divisibility (Section
3) and to prove the following theorem which extends the results mentioned
above.

THEOREM 1. Each [(d -t- 1)(r- 1) -- ] -t- 1J-set of strongly independent
points in R is r, ] )-divisible.

A set S in R is said to be strongly independent provided that each finite
family {S, S/ of pair-wise disjoint subsets of S has the following prop-
erty"

If d (card S) 1

_
d, then

(1) dim [= aft S) max 1, d _- (d d) ).

(Condition (1) may be thought of as follows" Since (d d) is iust the
deficiency of aft S when S is in general position, condition (1) implies the
general position of S and its subsets. Thus the right side of the equation is
essentially the dimension of the space reduced by the deficiencies of the
flats aft S. This keeps the flats aft S from forming "pencils of lines",
"books of planes", etc.)
We will let lin S, aft S, card S, and cony S denote respectively the linear
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span of S, the smallest flat containing S, the cardinality of S, and the convex
hull of S.

2. Proof of the theorem
The proof of Theorem 1 follows directly from the following stronger result

(which will be of independent interest in the next section).

THEOREM 2. If S S u S is any partition of the
[(d - 1)(r 1) k 1]-set S of strongly independent points of R, and if
card S _< d W 1 and -_ cony S , then dim f’l__ cony S) =/.

Theorem 1 follows easily from Theorem 2. Suppose S is any
[(d - 1)(r 1) W k -t- 1J-set of strongly independent points in R. The
result of Tverberg asserts that S is (r, 0)-divisible. Let S S u
be the corresponding partitioning of S. Choose x e = conv S. Then for
each i, (by Carath4odory’s theorem) x is in the convex hull of some d W 1
or fewer points of S. Thus we may assume card S _< d -{- 1 for all i.
Theorem 2 now implies that S is (r, k)-divisible.
To prove Theorem 2, let S be any [(d -t- 1)(r 1) W k W 1]-set of strongly

independent points in R with a partitioning S S u u S forwhich
cardS _< d nu 1 and _- cony S 0. The strong independence of S
implies that dim (=1 aft S) k. We want to show that

dim ([-1 cony Si) k,.

It clearly suffices to show that 1_-1 int cony Si 0, where int X denotes the
relative interior of X. If/ 0, the result is clear, so assume/ >_ 1 and
proceed inductively. Let us assume the denial, that is assume

(2) f’l=_ int cony S 0.

Note that strong independence implies that each set S is in general position
and therefore is the set of vertices of a (card S 1)-dimensional simplex.
Since 1_-1 cony S 0 there exists some Si, say $1, and some point of
say sl e $1, for which (letting T1 $1- {sl}) it is true that
cony T1 n ([’1=2 cony S) 0. If we apply the induction hypothesis to the

[(d -t- 1)(r 1) -[- (/ 1) -[- 1J-set T T1 u (kJ__2S)
it follows that

dim (cony T1 n (l__. cony Si)) / 1

while the strong independence implies that

dim (aft T1 n (1= aft Si)) k 1.

These equations imply that

(3) int cony T1 n (l__ int cony S) 0.



But (2) and (3) imply thut I"l:_. ff S c__ aft T. Thus

(4) aft S aft S a (I’1,_ aft S) a aft T
affTn (N.,_ aft S)

But the left side of (4) is a k-dimensional fiat while the fight side of (4)
is a (k 1)-dimensional fiat. This contradiction establishes the induction
and thus the theorem.

3. Strong independence and general position
The essential difference between Theorems 1 and 2 is that Theorem 1

asserts that for a particular set S there exists at least one partition with a
certain property, while Theorem 2 asserts thut every (suitably restricted)
partition of S has this property. The induction proof of Theorem 2 makes
use of this stronger statement and the strong independence in a way that
appears to be essential. It would be interesting to know what is the weakest
condition on the set S of Theorem 1 to assure (r, k)-divisibility. Tverberg
made strong use of sets S which are algebraically independent (i.e., the md real
coordinates of the points of the m-set S re algebraically independent over
the field Of rationals.) We will say that the set S c Ra is weakly independent
provided S is in general position and "no subspaces are parallel," that is, if
L is a line in aft S, S c S, and L and L are parallel, then there exists a
line L parallel to L und L in the space (uff S) n (aft S). Clearly algebraic
independence of a set implies strong independence, which implies weak in-
dependence, which implies general position, and no implication may be re-
versed. The following example shows the necessity of strong independence
in Theorem 2, and suggests that a weaker condition might suffice for
Theorem 1.

Example. Let S be the 9 points as shown in R. These points are in
general position since each 3 determine a non-degenerate simplex (they are
also weakly independent), but they are not strongly independent since 6 of
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them determine a pencil of 3 lines meeting at a single point. If d 2,
r 3, k 2, then [(d - 1)(r 1) -t- k W 1] 9. Yet these 9 points have
been partitioned to form 3 intersecting triangles (as shown) for which
1_1 cony S is 0-dimensional. This shows that Theorem 2 fails if strong
independence is replaced by weak independence or general position. However
the 9 points are still (3,2)-divisible as Theorem 5 below shows. That is,
there exists a different way to partition these into 3 sets S, each with 3

A_ cony S) 2.points, and have dim

The proofs of Theorems 1 and 2 do not actually use the full power of strong
independence. It would be sufficient to require that if {$1, ..., S} is a
family of disjoint subsets of S and j _< r, then the family satisfies (1). It
may be shown that if S c R is weakly independent then each family {$1, $2}
of disjoint subsets of S satisfies the property (1). Hence if r 2, the strong
independence of Theorem 2 may be reduced to weak independence. However,
even a stronger result is possible when r 2, as the next theorem shows.
We first state an obvious lemma.

IEMMA 3. If SI t S. is a set of exactly d - k - 2 points which are in general
position in R, if cardS _< d W 1 and S and S. are disjoint, and if
aft S n aft S , then dim (aft

Proof. Since the two flats aft S and aft S intersect, and the sum of their
codimensions is d k, it is clear that the dimension of their intersection must
be at least k. If dim (aft S aft S) > it is clear that the flat spanned by
S u S. has dimension less than d, and therefore is contained in a hyperplane.
But then the general position of S u S would imply that card (S S) _< d.
Thus dim (aft S aft S) k.

THEOREM 4. Each (d k - 2)-set S in general position in R is (2, k)-
divisible. Furthermore, if S
d - 1 and conv S n conv S , Shen dim (cony S conv S) k.

Proof. S is (2, 0)-divisible by Radon’s theorem, and 0 _< k

_
d, so there

exist partitions S S
The lemma implies that dim (aft S n aft S) =/, and with this fact the proof
now proceeds in a way similar to the proof of Theorem 2. The details are
omitted.

Note that the example given above shows that Lemma 3 and Theorem 4
cannot be extended to values of r >_ 2. It is also interesting to note that a
direct proof of Theorem 4 may be given using the machinery of Gale trans-
formations as recently developed by M. Perles [3]. If is the transformation
taking the d W k -t- 2 points of S c R onto the image set in the associated
(k - 1)-dimensional Gale space, then it may be shown that the condition of
general independence of S is equivalent to the condition that at most k points
of lie on any hyperplane through the origin in the Gale space R+. This



fact allows us to directly choose 1 + 1 affinely independent points in Re which
are in common to cony S and cony S, where S and S are the appropriate
subsets of S from Theorem 4.
We now consider the special case d 2 where ] assumes only the values

0, 1, and 2. The conditions placed on S in this case are much weaker than
general position.

THEOREM 5. Let S be a set of 3(r 1) + k + 1 points in the plane R.
Then S is (r ,k)-divisible provided

(a) if k O, no additional requirement is made;
(b) if k 1, S is not contained in the union of two lines in R;
c if k 2, there does not exist any line in R which contains more than one

third of the points of S.

Proof. Define the center of S (denoted C(S)) to be the set of all points x
of R: such that each closed half plane which contains x also contains at least
one third of the points of S. Equivalently, C(S) may be defined as the inter-
section of all closed half planes in R which contain more than two thirds of the
points of S, It is well known that C(S) is non-empty. (See Theorem 2.8 of
Dnzer-Grunbaum-Klee [2] for more general statement nd historical bck-
ground.) Birch [1] proved that ech vertex v of the convex polygon C(S) is
a point of divisibility, that is, S may be partitioned into r subsets S, ..-, S,
such that v e 1= conv S. With reasoning similar to that used by Birch it
is easy to show that if k 1, then each boundary point of C(S) is a point of
divisibility, and if k 2 (so that card S 3r) then each interior point of
C(S) is a point of divisibility. It follows that if k 1, then S is (r,1)-
divisible provided that C(S) is not just a point, and if/ 2, then S is (r,2)-
divisible provided C(S) has interior points. But it may be shown that if
/ 1 and S does not lie on the union of two lines then C(S) has more thun one
point, and if k 2 and no line contains more than one third of the points of
S then C(S) has non-empty interior. This completes the proof of the theorem.

COROLLARY 6. Let S be a set of 3(r 1) +/c + 1 points in general position
in R. Then S is (r,k)-divisible.

(The author is grateful to H. Tverberg for suggesting a significant simplifi-
cation to the original proof of Theorem 2.)
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