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Introduction
Let D be a domain (an open connected set) ia the complex plane and for

1 < p < , let H(D) be those analytic functions f on D for which If has
aharmonic majorant onD. Fix to inD and put IIf II [uCt0)]’" where u is the
least harmonic majorant of If on D. Then II ll is a norm on H’(D)
which depends upon the point to although the resulting topology on H’(D)
does not. Let H(D) be the algebraofbounded analytic functionsonD withthe
uniform norm.

These H spaces, which generalize the classical Hardy H spaces in the unit
disc U for 1 _< p < , were introduced by Parreau in 1951 [5] and independ-
ently by Rudin in 1955 [6]. In his paper Rudin showed that if D is bounded
by a finite number of disjoint circles then the rational functions with poles
off/ are dense in H(D), 1 _< p < , and hence H (D) is dense in H (D)
for 1 _< p < . Further, if D1 is conformally equivalent to D, then H’(DI)
and H(D) are isometrically isomorphic for 1 _< p _< hence/(D) is
dense in H(D) on all bounded domains with only finitely many complemen-
tary components. The aim of this paper is to show that H=(D) is dense in
H’(D) on two types of-infinitely-connected domains. These two types of
domain are very different and the techniques of the proof differ vastly from
one to the other. One type is treated in Section I and the other in Section 2.
The author would like to thank Profs. F. Forelli and M. Voichick for several
helpful conversations regarding the contents of this paper.

lo
If H (D) contains non-trivial functions, then the unit disc U is the universal

covering surface of D and hence there is an analytic function w from U onto D
which is locally one-to-one and may be used to lift paths uniquely from D to U.
If f e/(D), 1 <_ p <_ , then the analytic function g(z) f(w(z)) is in
H(U) and if w(0) to (which we may assume without loss of generaIity),
then g JJ f IJ, where

0<r<,
gre) I dO for 1 p <

and g [J sup,v g(z) is the usual H norm in the disc.
Let G be the group of linear fractional transformations T of U onto U such

that w(T(z)) w(z) for all z in U. If f e H(D) and ff g f. w, then is
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nvariant under the group G. For if TeG and zeU, then g(T(z))
f(w(T(z) f(w(z) g(z). Conversely, if g is in H(U) and g is invari-
ant under G, then there is an f H’(D) with g f w. Each function
h in H(U) has non-tangential limits h* almost everywhere with respect to
arc-length on the unit circle r and the mapping h -- h* is an isometry of
H(U) onto a closed subspace, H, of L( r, ) where is Lebesgue measure
on r. The elements of G are analytic homeomorphisms of F onto r; let
H’/G be those elements of H that are invariant under G; that is, f H’/G if
and only if f T / a.e. for all T e G and f e H. Hence, H (D) is isometri-
cally isomorphic to the (closed) subspace H’/G of L(F, a).
A character on the group G is a homomorphism of G into the group of

unimodular complex numbers. If x is a character on G, an analytic function
f on U is said to be automorphic with character x if f T x(T)f for each
T e G. There is an intimate relation between automorphic functions on U
and certain multiple-valued analytic functions on D. This relation is de-
scribed below.
The group G is isomorphic to the fundamental group of D. Let {ai} be a

set of generators for the fundamental group of D with base point t0. Each
at can be lifted uniquely by w to a path in U which begins at 0 and ends at
some point z. The isomorphism of rl(D, t0) onto G sends a to that linear
fractional transformation of U onto U which sends 0 to z. This implies that
if$ is analytic on U and automorphic with character x, thenf w-1 is a multiple
valued analytic function on D whose modulus is single-valued. If F is a
branch of f w-1 in a neighborhood of to, then continuatioD of F along a leads
to the value x(T)F at to. The converse of this is also true. If F is a multiple
valued analytic function on D whose modulus is single-valued and if continua-
tion of a branch, F, of f in a neighborhood of to along ai leads to the value
hi F at to, where k. 1, thenf w is a (single-valued) analytic function on
U which is automorphic with character x, where x(T) ki. (The number
hi is called the phase of f along ai.) Hence, an automorphic function on U is
equivalent to an analytic function on D whose modulus is single-valued.
(Voichick has examined this relation in more detail in [8; 3].) This duality
will be exploited later in this section to prove Theorem 1.

It is convenient at this point to give two simple lemmas which will be used
to prove the first theorem.

LEMM/ 1. Let D be a bounded open set in C whose complement has a finite
number of components Co, CI C,, where Co is the unbounded component and
no C is trivial. Then there are bounded harmonic functions gl, g, and
h h, on D such that (a) g >_ 0 and h <_ O for i 1, n and (b)
the period of g and the period ofh about Ci is for 1 <_ i, j <_ n where u* is
the harmonic conjugate of u.

Proof. It clearly suffices to prove the lemma in the case n 1 and there
is no loss ia assuming that D is bounded by disjoint circles.

Let C(OD) be the continuous real-valued functions on OD. Let L be the
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linear functional on C(OD) given by L(u) period of the harmonic conjugate
of about C, where is the harmonic extension of u to D. Then L is con-
tinuous and is orthogonal to the continuous analytic functions. Hence,
L(u) fo ufds where f is real, by the F. and M. Riesz Theorem. Since
0 L(1) fif ds, if can not be of constant sign. It is now clear that
the desired functions exist.

LEMMA 2. Suppose f f are elements of H’( U) with I! f, i[., <- 1 and
f,(z) -- 1 for each z in U. Then some subsequence of the f,,’s converges a.e. to

Proof. On I’ we have I! f !1 -< I! f !1 -<: 1 and hence some subsequence,
again denoted by {f.}, converges weakly in L to an element f of H. Since
f.(z) --* 1 for all z in U, we must have f 1. Hence

1 if I1 -< lim inf II f I] - lira sup Ii f !! -< 1.

Thus lim I] f I1 1 f !1 so that f converges strongly to 1 in L. A
further subsequence converges to 1 a.e.

THEOREM 1. Let S S be disjoint closed discs in U with centers on the
real axis whose radii decreased to zero and whose centers increase to 1. Suppose
there is a point p e S for each i such that [1- PI] < . Let
D U (J.- S. Then H"(D) is dense in H(D).

Proof. Let
p -z- 1 ihz

Then b is bounded by 1 on U and converges uniformly on compact subsets in
U, and hence in D, to 1 as N -- . If f e H(D), then fb H(D) also. i
claim that some subsequence of {fb} converges in H(D) to f. To see ts
let w be the uniforzer of D and put F f. w and B b. w. Then
Re H(U), and S e H(U), ]] B ][ 1. Furthermore, B(z) 1 for
each z in U. Finally, the H(D) norm of (f fb) is equal to
[fr F FBda]. By Lemma 2, some subsequence of the B’s con-
verges a.e. a to 1. Hence, by the dominated convergence theorem, FB con-
verges in L to F. Equivalently, fb converges in H(D) to L as desired.
Consequently, to prove Theorem 1 it suffices to prove that for each N, fb lies
in the H (D) -closure of H (D).

Consider F f.w. Since F e H(U), F has an inner-outer factorization,
F I exp (V iV*) where V* is the harmonic conjugate of V. I is not
necessarily invariant under the group G but it is automorphic with a certain
character x, because the inner-outer factorization is uque up to constants of
modulus one. Silarly, exp IV W iV*] is automorphic th the character .

Let
V,=V if IVSn

n otherwise
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and let F, I exp (Vn -t- ,V.). Since V is invariant under G,
exp (Vn d- ,Vn) is automorphic with character . and because V. converges
in L to V, b(T) -- ;(T) for each T e G. Hence, F. is in H"(U), F, is
automorphic with character xbn, and (x,)(T) --. 1 for each T e G.

Let fn F.o w-1. Then f. is a bounded analytic function on D which is
not necessarily single-valued but its modulus is.

Let a. be a circle in D such that S is interior to a and S, is exterior to
a- for k j. If we choose a branch, ]., of fn in a neighborhood of a(0) and
continue this branch along the circle a., we end up with the value ),,] at
the point a.(1) a.(0), where X. 1. (See the comments at the begin-
ning of this section.) Because F, converges uniformly on compact subsets of
U to F f w, we must have X -- 1 as n -- for each fixed j. Let s, be
the unique number in (- 1/2, 1/2] such that exp [2ris.j] ,. for each n and
each j. Hence, s,i - 0 as n --* for each fixed j.

Let gl, g and hi, h be the harmonic functions given by Lemma
l for the open set U- So...oS. Let u. 2rs.H where

H g. if s, < 0

h if s.>_O.

Then u. is negative and harmonic on D and the period of u*, about S is
2rs.., 1 _< j <_ N, n 1, 2, ....

Finally, let

yn- [sn-{- 1]log z-- p
-+i 1 iSz

Then y is a negative harmonic function on D and the period of y* about
S is

2r(s, -t- 1) 2rs. (mod 2r) for Nd-l_<j< and n= 1,2,....

Furthermore, as n , u. converges uniformly to 0 on D and y. converges
uniformly on compact subsets of D to

y= log z- p
+l 1 15 z

Let g, f exp [u, d- y,, d- i(u* d- y*)]. Then g is a bounded, single-
valued analytic function on D and g converges to fb in H’(D) as n
To see the latter fact, let G g. w, where w is the uniformizer of D. Then

G Fo exp [U,, w d- y,, w d- i(u, w)* d- i(y, w)*].
Now u. w coaverges uniformly to 0 on I’ and y. w converges hi L to
y w by the dominated convergence theorem. Hence, at least some sub-
sequence of (y, w)* converges a.e. a to (y w)*. Thus the dominated
convergence theorem implies that (some subsequence of)
L(r, ) to (F)(bo w) ($b). w. Hence, g. converges in H’(D) to
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fb as desired. This implies that fb is in the H(D)-closure of H"(D) and
by the remarks at the start of the proof, this in turn implies that H’(D)
is dense in H (D).

This theorem actually holds in a much more general class of regions. The
proof given here did not depend in any way on the assumption that the de-
leted sets {S} were discs; the only important fact was that the sum

log z-. p(..

converged. The more general case can be stated as follows.

THEOR 2. Let t be a domain bounded by a finite number o disjoint
circles and let g(., p) be the Green’s function for l with singularity at p. Let
D be the subdomain of t" D tt [J S where the S are a sequence of dis-
joint, compact, connected subsets of R all of whose accumulation points lie on
t and such that for each i there is a point p S satisfying 1 g(z, p)
Then H"(D is dense in H D 1

_
p <

Note that if I U the condition g(z, p) < is equivalent to
E (1 Ip, I) <
Proof. The proof follows along exactly the same lines as the proof of

Theorem 1, with a few added complications. Note that if some S is a
point, then it is a removable singularity for H; hence it may be assumed
that each S is non-trivial.

The (multiple-valued) Blaschke product

b(z) exp -"-n g(z, pl) + i(; g(z, pl) )*]

replaces the Blaschke product used in the proof of Theorem 1. Since R
is not simply-connected the automorphic functions on U correspond to
functions on D which may have non-trivial phases around the bounded
components in the complement of R. These phases and the multiple-valued-
hess of bn may be corrected by using the bounded harmonic functions on R
given by Lemma 1.

Finally, in a paper dealing with another aspect of H on such an infinitely-
connected domain Voichick [7; Lemma 1] showed that there are simple
closed curves a, a, in D such that S is interior to a. and S is exterior
to a when j k; also that there are simple closed curves , ,/, in D
which are an homology basis for R (where n is one less than the
number of boundary components of R) and the totality of these curves
{t, t., a, a, ...} form an homology basis for D. These facts and
the technique.of the proof of Theorem 1 provide a proof of Theorem 2.

If the deleted sets S satisfy the further conditions that the interior of
each S has only a finite number of components and is dense in S, and the
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set of accumulation points of the S on OR has arc-length zero, then a modi-
fication of the proof of Theorem 2 combined with some results in [4; 3] shows
that the rational functions with poles off/) are dense in H(D), 1 <_ p < .

2.
There is another type of infinitely connected domain on which H is dense

in H. This domain is obtained by deleting from U a sequence of disjoint
closed discs $1, S, centered on the positive real axis which converge
to the origin and whose centers and radii satisfy certain restrictions. These
numerical conditions will be discussed later when they are relevant. Actually,
we will show that R, the set of rational functions with poles off , is dense m
Hp

In this section will always denote harmonic measure on OD for the par-
ticular point t0 ia D for which the H(D)-norm is defined, and ds will denote
arc-length on OD.

LEMMA 3. Let D be obtain by deleting from U the origin and a sequence
S, S,... of disjoint closed discs centered on the positive real axis whose
centers and radii decrease to O. Let f eH(D), 1 p . Then f has
boundary-values f* a.e. ds on OD and

(i) f* L (OD, )
(ii) f 11, [fo f* [ d]/,
(iii) f(z) fof*,du for all z in D, where is harmic measure on OD

fOP g.

Proof. Let d be a small disc centered at 0 th boundary , such that
Su..-o S is exterior to and S+o... is interior o ,. Le
D D d. Then D is a finite circle domain and f H*(D,). Hence
f*e L(OD, ,), the norm of f D is equal to [f0o. If* d]’/, and
f(z) fo,. f* du for all z e D, where is harmonic measure on OD, for z.
Sce increases to on OD n ODn as k for each n and each z e D
and since U:= [OD n OD,] OD {0}, assertion (i) follows immediately;

addition, this also gives

0
d Ilfll,

Since z(7) 0 as n , we have f dz. 0 as n for each f
H(D) when 1 < p by H51der’s inequality; hence, (iii) holds for

f H(D), 1 < p . This in turn implies hat

If(z) f If* [ d for all z in D

f[ ff d. Thus (ii) and (iii) are established forand hence that f <-
fHwhenl < p <_ .
When f e HI(D), conclusions (ii) and (iii) are more subtle. As above,

once assertion (iii) is established we will also have (ii), so we concentrate
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Hon (iii) To establish (iii) for f e (D), it is sufficient (and necessary) to
show that f fi d --* 0 as n --* .
To do this, we consider the space S consisting of all functions u harmonic

on D with the property that f0 u d is bounded independent of A for
all subdomains A of D which contain the point to and which have a finite
number of disjoint circles for boundary, where # is harmonic measure on 0h
for to. Note that if u e S, then f uld, -- 0 as n --, .
By using the uniformizer, w, from the unit disc U onto D it is not difficult

to show that S is isometrically isomorphic to L/G, the (closed) subspace of
L(r, ) consisting of functions invariant under the group G associated with
w and D (see Section 1 for more details on w and G). It is also the case
that L/G is dense in LI/G (which is the corresponding subspace of L( r, a);
see Forelli, Bounded analytic functions and projections, this iournal, vol. 10
(1966), pp. 367-380).
Now F f w is in H( U)/G and F* e L/G. Hence, given > 0 there

is an element H of L/G such that fr H F*ld < . If h denotes the
harmonic function on D such that (ho w)(z) fr HP d(r for z in U, then
h e S and f0 h f d, < for all subdomains A of D bounded by a finite
number of disjoint circles. Hence, f h f d# < for each n. However,
fnlhld-- 0 asn-- since h eS. Thus lim supfnlfld <
for each e > 0. Therefore, lim f fid# O, as desired.

LEMMA 4. Let D be a domain satisfying the hypotheses of Lemma 3 and
let g e L(OD, ds), 1 <_ p <_ , and suppose that )g(z)(z) dz 0 for all

e R(D). Let /be a circle in D about 0 and let E {z e D z is exterior o ,}.
Then

1 fo g(w)
dwG(z)

o-z

is in H(E) and G* g a.e. ds on OE OD.

Proof. Note that OE , t JOE OD]. Define a function h on OE by

h g on OEOD

G on ,/

where G is given above. Since G is bounded on , h e L’(OE, ds). It is
easy to verify that fo h(z)(z)dz 0 for all rational functions with
poles off /. Hence, there is an H e H’(E) such that H* h a.e. ds and

1 f h(w) dwH(z) - w z
[6; Theorem 3.2].

But it follows immediately by integration that

1 f h(w)
dw=

1 f g(w) dw=G(z).H(z) - w z , w z
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The next lemma seems to be known by a number of people but apparently
has not appeared in print; it was communicated to me by Lawrence Zalcman.

LEMMA 5. Let S S be a sequence of disjoint closed discs in U where
S is centered at c, and has radius r, Suppose that c,, > 0 for all n and that
c and r, decrease to O. Let D U {0} u [J:- S. Suppose further that
there is a > 0 such that r,,/c, >_ for all n. Then there is an element of
the uniform closure R such that (0) 1 and I1 <: 1 on {0}.
THEOREM 3. Let S, S,... be a sequence of disjoint closed discs in U

where S, is centered at c,, and has radius r,. Suppose that c,, > 0 for all n
and that c, and r, decrease to zero as n . Further, suppose that

(a) there is a > 0 such that r,/c, >_ for all n;
(b) there is an integer N and a constant C such that

(c, r,)
(c, r,) (c,+ + r+) <- C for all n.

Let D U {0} t [J:- S, Then H" D is dense in H’ D 1 <_ p <
Proof. We will, in fact, show that R is dense in H’(D), where R is the

set of rational functions with poles off

Let p be fixed, 1 _< p < and let q be the conjugate exponent of p. To
show that R is dense in H(D) it is sufficient by Lemma 3 to show that if
g L(OD, ) and fgd 0 for all e R, then f gfd 0 for all f e H.
On OD it is easy to see that the finite measure dz and d are mutually ab-

solutely continuous; let d F dz. Then gF e L(OD, ds) and fo. gF dz 0
for all e R. Let be the circle in D centered at 0 of radius

1/2[(c+ + r+) + (c r)]

and let D consist of those points of D that are exterior to
is bounded by the n -t- 2 disjoint circles F0, F, r., /. where Fo is
the unit circle and r OS for j 1, n. By Lemma 4, the analytic
function

1 g(w)F(W)dw l g(w) d,(w)G z i . vo z 5- . z

is in H(D.) for each n. Let h (z) zG(z) for z e D. Then it is easy to
check that

1 f wg()h(z) - . o- z
d(w).

Let # be harmonic measure on OD for to e D., where to is the point used for
determining the norm in H(D,). Then the H(D)-norm of h equals
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where X F0 u ..-u r. In order to estimate these and other terms, it
will be useful at this point to derive some inequalities involving the various
harmonic measures that have appeared.
On Fo u... u r, elementary arguments show that u(E) _> u(E) >_ 0

for all Borel sets E in r0 u u I’. It is also true that for a fixed set E
in F0 u I’, lim-. #(E) #(E) and hence (I’0 u u I’) increases
to (0D) 1 as n -- . Thus u(/.) decreases to 0 as n -. . 0n r
is dominated by the Poisson kernel for the domain exterior to ri for j >_ 1
or by the Poisson kernel for the unit disc if j 0. This kernel, for j >_ 1
and for the point to, is equal to

to-- c12- r
e(to c) r

where I’ is centered at ci and of radius r.. Hence, the kernel is less than or
equal to

Ito- c[- r"
Since d EIds we have on F.,

IFIN . to_cl_r
C1

where C depends on to but not on j. Now r/c > > 0 so that c/r <_ 1/
and this implies that on ri,

izllFi < (c + r;) Cl< C
ri g

where C is independent of j. Thus z IIF! is bounded on OD. This
implies that the first term in (,) is bounded by

1C/lgld,,< Cfx Cfo C.

Furthermore, if z e , and w e OD, then

Z
r

N (c r,) (distance of ’n to OD)-X N 2C
w-z

by hypothesis (b) and the fact that the radius of . is

1/2[(rn Cn) r- (rn+l -- Vn+l)].

Hence, we may estimate the second term in (.) by

w g(w) d.(w) d,(z)
D W Z,

f 1 zr fo g(w) d,(w) d,,(z)n- DW--Z



522 STEPHEN D. FISHER

if If z

< 1

Thus the H(D)-norm of h is bounded independent of n and hence h H(D).
Actually, since h zFg on OD where g e Lq(OD, #) and zF is bounded on
OD, we have h Ha(D).
We need only one other estimate now. Let #, be harmonic measure on

OD for z e ,.. Then we know that du, H, ds on OD and

,(t) <_ (.) (z c,
c, r) forte F

by our previous estimates. Thus

zH(t) 4C on F.
r1

Note that if f eH(D), then fh e H(D) and, in fact, since h zFg,
(fh * L OD, ds This gives

f z’ f tf(t)h(t)dm(t)d[z[

"I, [ ]-0 . (4C) length (=) dst

(fr ,:(t),,h(t),dst)(C. length(,,))--O as n---
0

where C is constant. We hve used here the feI th t=/r] is bounded
for F independent of j. Since h H(D=) we hve

0 z==f(z)h(z) dz for II n.
D

si=o.,’(0. =) , =ino. w.’,. just shown h= ,. ,= = 0
wehe

D d0D, zaf(z)g(z) d(z) for all f H(D).

This is almost what we want; all that remains to be done is to elinate
the factor z.
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Hypothesis (a) implies by Lemma 5 that 0 is a peak point for the con-
tinuous analytic functions. Let peak at 0; i.e. (0) 1 and i1 < 1
elsewhere on/). Fix n and consider the continuous analytic function 1
1 c vanishes at 0 and hence by a theorem of Arens [2] there are continuous
analytic functions a on/) such that a z converges to 1 C uniformly on
OD. Now 0 fo z afgdg for all k since afH(D). Let k
we get 0 fo)za-(1 6)fg dp. Since this holds for all n, letting n --we get 0 fo, z-fg dg for all f e HV(D). Continue this process; at the
3Nth step we find that 0 fo, fg dg, as desired.

It is worthwhile pointing out that the hypotheses of Theorem 3 are ful-
filled, for example, when r, 1/2c. and c+ < (-)c for all n, with N 1.

REFERENCES

1. L. AHLFORS, Complex analysis, McGraw-Hill, New York, 1953.
2. R. ARENS, The maximal ideals of certain function algebras, Pacific J. Math., vol. 8

(1958), pp. 641-648.
3. E. BmHoe, A minimal boundary for function algebras, Pacific J. Math., vol. 9 (1959),

pp. 629-642.
4. S. FISHER, Bounded approximation by rational functions, Pacific J. Math, to appear.
5. M. PARREAU, Sur les moyennes des fonctions harmoniques et analytiques et la classifica-

tion des surfaces de Riemann, Ann. Inst. Fourier, vol. 3 (1951), pp. 103-197.
6. W. RUDIN, Analytic functions of class Hv, Trans. Amer. Math. Soc., vol. 78 (1955),

pp. 46-66.
7. M. VOCHCK, Extreme points of bounded analytic functions on infinitely connected

regions, Proc. Amer. Math. Soc., vol. 17, (1966), up. J366-1369.
8.,Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc.,

vol. 111 (1964), pp. 493-512.

UNIVERSITY OF WISCONSIN
MADISON WISCONSIN




