ON THE EXTENSIONS OF THE INFINITE CYCLIC GROUP BY A 2-MANIFOLD GROUP

BY
Peter Orlik

In this note we shall study certain group extensions

$$
E: 0 \rightarrow F \xrightarrow{i} M \xrightarrow{\pi} B \rightarrow 1
$$

where F is Abelian (written additively), M and B are non-Abelian (written multiplicatively) and all groups are assumed to have finite presentations. Following [2] we denote by $\varphi: B \rightarrow \operatorname{Aut} F$ "conjugation by elements of B " determining the B-module structure of F. A morphism $\Gamma: E \rightarrow E^{\prime}$ is a triple $\Gamma=(f, g, h)$ of commuting homomorphisms:

$$
E: 0 \rightarrow F \xrightarrow{i} M \xrightarrow{\pi} B \rightarrow 1
$$

$$
\begin{gather*}
f \downarrow \quad g \downarrow \quad h \downarrow \tag{*}\\
E^{\prime}: 0 \rightarrow F^{\prime} \xrightarrow{i^{\prime}} M^{\prime} \xrightarrow{\pi^{\prime}} B^{\prime} \rightarrow 1
\end{gather*}
$$

The classical theory defines a congruence ($E \equiv E^{\prime}$) as a morphism $\Gamma: E \rightarrow E^{\prime}$ such that $F=F^{\prime}, B=B^{\prime}$ and $\Gamma=\left(1_{F}, g, 1_{B}\right)$. It follows that g is an isomorphism and $\varphi=\varphi^{\prime}$. The main result is that for given φ the congruence classes are in one-to-one correspondence with $H_{\varphi}^{2}(B ; F)$.

Definition. An equivalence of extensions $\left(E \sim E^{\prime}\right)$ is a morphism $\Gamma: E \rightarrow E^{\prime}$ where f and h are isomorphisms.

For convenience we shall assume $F=F^{\prime}, B=B^{\prime}$ and supress i and π. The non-commutative 5 -lemma implies that g is an isomorphism. The following are standard or easily verified:

Proposition 1.
(i) "~" is an equivalence relation
(ii) $E \equiv E^{\prime} \Rightarrow E \sim E^{\prime}$.
(iii) $E \sim E^{\prime}$ gives rise to a commutative diagram
(**)

$$
\begin{gathered}
B \xrightarrow{\varphi} \operatorname{Aut} F \\
h \downarrow \approx \quad \downarrow \approx f^{*} \\
B \xrightarrow{\varphi^{\prime}} \text { Aut } F
\end{gathered}
$$

where f^{*} is conjugation by f.
Received March 21, 1967.
(iv) A morphism $\Gamma=(f, g, h)$ factors through $\Gamma^{\prime}=\left(1_{F}, g^{\prime}, h\right)$ and also through $\Gamma^{\prime \prime}=\left(f, g^{\prime \prime}, 1_{B}\right)$.

Thus in an equivalence we can always assume either f or h to be the identity automorphism.

Proposition 2. Given isomorphisms f and h, a commutative diagram (**) and a φ-extension E there exists a φ^{\prime}-extension E^{\prime} and a commutative diagram (*) inducing ($* *$) such that $E \sim E^{\prime}$.

The proof is immediate.
Corollary. Given a commutative diagram (**) the cohomology groups $H_{\varphi}^{2}(B ; F)$ and $H_{\varphi^{\prime}}^{2}(B ; F)$ are isomorphic.

Remark. In particular if $\varphi=\varphi^{\prime}$ in ($* *$) then using (iv) and the functorial property of H^{*} we conclude that f_{*} (or h_{*}) induces a non-trivial automorphism of $H_{\varphi}^{2}(B ; F)$ when non-congruent extensions are equivalent.

Let $F=(s)$ be the infinite cyclic group and let

$$
B=\left(u_{1}, \cdots, u_{n} \mid r\right)
$$

with either $r=\left[u_{1}, u_{2}\right] \cdots\left[u_{n-1}, u_{n}\right]$ (n even), or $r=u_{1}^{2} \cdots u_{n}^{2}$ be the fundamental group of a closed 2 -manifold. For $n>1$ the homotopy exact sequence of a circle bundle over a closed 2 -manifold reduces to our extension E and the equivariant classification of such bundles with group $O(2)$ coincides with the equivalence classes of extensions, because all isomorphisms involved are induced by homeomorphisms. The geometric construction is due to Seifert [4].

Clearly Aut $F \approx C_{2}=\{1,-1\}$. A homomorphism $\varphi: B \rightarrow C_{2}$ is determined by its values on the u_{i}; on the other hand any assignment of ± 1 to the generators lifts to a homomorphism since the exponent sum of r is even. Due to Lyndon [1] we can compute the cohmology groups for each φ.
B orientable. (1) $H_{\varphi}^{2}(B ; F)=F \approx Z$ if $\varphi\left(u_{i}\right)=1$ for all i,
(2) $H_{\varphi}^{2}(B ; F)=F / 2 F \approx Z_{2}$ all other φ.

Any two maps of (2) are connected by (**). Suppose for $i, j \varphi\left(u_{i}\right)=-1$, $\varphi\left(u_{j}\right)=1$. We can assume $i=1$. Let j be the first generator (of the given presentation) such that $\varphi\left(u_{j}\right)=1$. Let $f=1_{F}$ and if
(i) j is even: let $h\left(u_{j-1}\right)=u_{j-1} u_{j} ; h\left(u_{j}\right)=u_{j-1}^{-1} ; h\left(u_{k}\right)=u_{k}, k \neq j-1, j$.
(ii) j is odd $(j \geq 3)$:
(a) $\varphi\left(u_{j+1}\right)=1$; let

$$
\begin{gathered}
h\left(u_{j-1}\right)=u_{j}^{-1} u_{j-1} ; \quad h\left(u_{j}\right)=u_{j}^{-1} u_{j-1} u_{j-2} u_{j-1}^{-1} u_{j} u_{j+1}^{-1} ; \quad h\left(u_{j+1}\right)=u_{j+1} u_{j} u_{j+1}^{-1} ; \\
h\left(u_{k}\right)=u_{k}, \quad k \neq j-1, j, j+1 .
\end{gathered}
$$

(b) $\varphi\left(u_{j+1}\right)=-1$; let $h\left(u_{j}\right)=u_{i} u_{j+1} ; h\left(u_{k}\right)=u_{k}, k \neq j$.

Repeated application of these maps connect φ with $\bar{\varphi}$, where $\bar{\varphi}\left(u_{i}\right)=-1$ for all i. By Proposition 2, $\bar{\varphi}$ represents all φ of (2). The two non-congruent extensions of $H_{\bar{\varphi}}^{2}(B ; F)$ are not equivalent by the remark, however there are equivalent ones among the central extensions (1). The connecting morphism $\Gamma=\left(f, g, 1_{B}\right)$ has $f(s)=-s$, the non-trivial automorphism of F inducing the non-trivial automorphism of $H_{\varphi}^{2}(B ; F)$. Thus we have the

Theorem 1. For orientable B the equivalence classes are as follows
(1) one for each non-negative integer for the central extensions;
(2) two for non-central extensions (e.g. the congruence classes of $\bar{\varphi}$).
B non-orientable. (3) $H_{\varphi}^{2}(B ; F)=F \approx Z$ if $\varphi\left(u_{i}\right)=-1$ for all i
(4) $\quad H_{\varphi}^{2}(B ; F)=F / 2 F \approx Z_{2}$ all other φ.

Clearly (3) is analogous to (1) and has one equivalence class for each nonnegative integer. On the other hand (4) is more complicated than (2). We shall show that any φ in (4) is connected by ($* *$) to one of the following:
(4.2) $\varphi\left(u_{i}\right)=-1$ for $i=1, \cdots, n-1, \varphi\left(u_{n}\right)=1, n \geq 2$
(4.3) $\varphi\left(u_{i}\right)=-1$ for $i=1, \cdots, n-2, \varphi\left(u_{n-1}\right)=\varphi\left(u_{n}\right)=1, n \geq 3$.

Assume that we have $\varphi\left(u_{i_{1}}\right)=-1$ and $\varphi\left(u_{i_{2}}\right)=\varphi\left(u_{i_{3}}\right)=\varphi\left(u_{i_{4}}\right)=1$. Without loss of generality we may assume $i_{1}, i_{2}, i_{3}, i_{4}$ to be $1,2,3,4$. Consider $f=1_{f}$ and

$$
\begin{gathered}
h\left(u_{1}\right)=u_{1} u_{2} u_{3} ; \\
h\left(u_{2}\right)=u_{3}^{-1} u_{2}^{-1} u_{1}^{-1} u_{3}^{-1} u_{2}^{-1} u_{3} u_{4}^{-1} u_{3}^{-2} u_{2}^{-1} u_{3} ; \\
h\left(u_{3}\right)=u_{3}^{-1} u_{2} u_{3}^{2} u_{4} ; \\
h\left(u_{4}\right)=u_{4}^{-1} u_{3}^{-1} u_{1} u_{2}^{2} u_{3}^{2} u_{4}^{2} ;
\end{gathered}
$$

$$
h\left(u_{i}\right)=u_{i}, \quad i>4
$$

This map reduces the number of generators mapped into +1 by two, hence φ is eventually connected with (4.2) or (4.3). Clearly (4.1) is different from (4.2) and (4.3) since its image in C_{2} is trivial. To show that (4.2) and (4.3) are not connected by ($* *$) abelianize $B ; B /[B, B] \approx C_{\infty}^{n-1} \times C_{2}$ where $u=u_{1} \cdots u_{n}$ is the only element of finite order. Now observe that s commutes with u (in M) only in (4.2) for odd n and only in (4.3) for even n. This property is preserved by an isomorphism, hence extensions of (4.2) and (4.3) cannot be equivalent.

Theorem 2. For non-orientable B the equivalence classes are as follows:
(3) one for each non-negative integer when $\varphi\left(u_{i}\right)=-1$ for all i;
(4.1) two central extensions;
(4.2) two for the map $\varphi\left(u_{i}\right)=-1$ for $i=1, \cdots, n-1, \varphi\left(u_{n}\right)=1$, $n \geq 2$;
(4.3) two for the map $\varphi\left(u_{i}\right)=-1$ for $i=1, \cdots, n-2, \varphi\left(u_{n-1}\right)=$ $\varphi\left(u_{n}\right)=1, n \geq 3$.

In [3] it is shown that in most cases inequivalent extensions yield nonisomorphic groups, i.e. $M \approx M^{\prime}$ if and only if $E \sim E^{\prime}$.

If B is the fundamental group of a 2 -manifold with boundary, then all cohomology groups vanish and there is one extension, the semidirect product, in each class above.

References

1. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math., vol. 52 (1950), pp. 650-665.
2. S. MacLane, Homology, Springer Verlag, Berlin, 1963.
3. P. Orlik, E. Vogt, and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology, vol. 6 (1967), pp. 49-64.
4. H. Selfert, Topologie dreidimensionaler gefaserter Räume, Acta Math., vol. 60 (1933), pp. 147-238.

University of Wisconsin
Madison, Wisconsin

