CRITERIA FOR POSITIVE GREEN'S FUNCTIONS

BY

KURT KREITH

If L is an elliptic operator defined by

(1)
$$Lv = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial v}{\partial x_i} \right) - 2 \sum_{i=1}^{n} b_i \frac{\partial v}{\partial x_i} + cv$$

and $c(x) \ge 0$ in a bounded domain $D \subset \mathbb{R}^n$, then the Green's function $G(x,\xi)$ associated with L on D is known to be positive in $D \times D$ whenever it exists. This fact follows readily from the characteristic properties of $G(x, \xi)$ and the Hopf maximum principle which applies to solutions of Lv = 0 when $c \ge 0$.

In this paper we shall use recently proved comparison theorems for elliptic equations to establish more general conditions under which fundamental solutions of (1) are non-negative in $D \times D$. Such conditions will be seen to involve *all* the coefficients of L and, in the case L is self-adjoint, will reduce to the assumption that the smallest eigenvalue of

$$Lu = \lambda u \quad \text{in } D$$

$$u = 0 \quad \text{on } \partial D$$

be positive.

Comparison theorems for elliptic equations deal with solutions v of Lv = 0and u of $\Lambda u = 0$ where L is given by (1) and

(3)
$$\Lambda u = -\sum \frac{\partial}{\partial x_j} \left(\alpha_{ij} \frac{\partial u}{\partial x_i} \right) - 2 \sum_i \beta_i \frac{\partial u}{\partial x_i} + \gamma u.$$

If there exists a non-trivial solution u of $\Lambda u = 0$ in a domain $D_0 \subset D$ which vanishes on ∂D_0 , and if the operator L is "smaller" than Λ in an appropriate sense to be made precise below, then such comparison theorems assert that every solution of Lv = 0 has a zero in \overline{D}_0 .

For non self-adjoint equations of the form Lv = 0 where, L is given by (1), we make use of a comparison theorem due to Swanson [1].

In order to make the matrix

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} - b_1 \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} - b_n \\ -b_1 & \cdots & -b_n \end{pmatrix}$$

positive semidefinite, Swanson formulates the condition

(4)
$$g \det(a_{ij}) \geq -\sum_{i=1}^{n} b_i B_i$$

Received March 20, 1967.

where B_i is the cofactor of $-b_i$. The following, then, is a special case of the principal result of [1].

THEOREM 1. Suppose g(x) satisfies (4) in D and that for some $D_0 \subset D$ there exists a non-trivial solution of Lu = 0 such that u = 0 on ∂D_0 . If $g_0 > g(x)$ in D_0 then every solution of $(L - g_0 I)v = 0$ has a zero in \overline{D}_0 .

In order to derive criteria for the non-negativeness of $G(x, \xi)$ from this theorem, we recall that $G(x, \xi)$ is zero for $x \in \partial D$ or $\xi \in \partial D$, and that for $x \neq \xi$, G is a solution of LG = 0 in the variable x and a solution of $L^*G = 0$ in the variable ξ , where

$$L^* v = -\sum \frac{\partial}{\partial \xi_i} \left(a_{ij} \frac{\partial v}{\partial \xi_j} \right) + 2 \sum b_i \frac{\partial v}{\partial \xi_i} + \left(c + 2 \sum \frac{\partial b_i}{\partial \xi_i} \right) v.$$

Furthermore, $\lim x \to \xi_0 G(x, \xi_0) = \lim \xi \to x_0 G(x_0, \xi) = + \infty$ for $(x_0, \xi_0) \in D \times D$.

THEOREM 2. Suppose g(x) satisfies (4) in D and that for some $g_0 > g$ either $Lv = g_0 v$ or $L^*v = g_0 v$ has a solution v which is non-zero in \overline{D} . If $G(x, \xi)$ exists, then $G(x, \xi)$ is non-negative in $D \times D$.

Proof. Suppose, to the contrary, that $G(x_0, \xi_0) < 0$ and, to be specific, that $Lv = g_0 v$ has a solution v which is non-zero in \overline{D} . Since

$$\lim_{x\to\xi_0}G(x,\,\xi_0)\,=\,+\,\infty\,,$$

there exists a proper sub-domain $D_0 \subset D$ (not containing ξ_0) such that $G(x, \xi_0) < 0$ for $x \in D_0$, $G(x, \xi_0) = 0$ for $x \in \partial D_0$, and (since $\xi_0 \in D - \overline{D}_0$) in which $G(x, \xi_0)$ is a regular solution of LG = 0. By Theorem 1 we obtain the contradiction that v(x) has a zero in \overline{D}_0 . A similar argument applies in case L^*v has a non-zero solution in \overline{D} .

In case L is self-adjoint (i.e., $b_i \equiv 0$ for $i = 1, \dots, n$) we can choose $g(x) \equiv 0$. If the first eigenvalue of (2) satisfies $\lambda_1 > 0$, then there exists a slightly larger domain $D' \supset \overline{D}$ for which the first eigenvalue of

$$Lu = \lambda' u \quad \text{in } D'$$
$$u = 0 \quad \text{on } \partial D'$$

also satisfies $\lambda'_1 > 0$ and the corresponding eigenfunction v'_1 is positive in \overline{D} . Setting $g_0 = \lambda'_1$ we obtain

COROLLARY 1. If L is self-adjoint and the first eigenvalue of (2) is positive, then $G(x, \xi)$ is non-negative in $D \times D$.

It is of interest to note that for self-adjoint operators the hypotheses of Corollary 1 are satisfied whenever $c(x) \ge 0$ in D and that these hypotheses also imply the existence of $G(x, \xi)$. In case L is self-adjoint one can also derive similar conclusions about the Robin's function $R_{\sigma}(x, \xi)$ associated with L and the mixed boundary conditions

(5)
$$\frac{\partial v}{\partial \nu} + \sigma v = 0$$
 on $\partial D; -\infty < \sigma(x) \le +\infty$

(where $\sigma(x) = +\infty$ denotes the boundary condition v(x) = 0). This fact follows from the characteristic properties of $R\sigma(x, \xi)$ and the following special case of a comparison theorem proved by the author [2].

THEOREM 3. Suppose u(x) and v(x) are, respectively, non-trivial solutions of

$$-\sum \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial u}{\partial x_i} \right) + cu = 0; \qquad \frac{\partial u}{\partial \nu} + \sigma(x)u = 0 \quad on \quad \partial D_0,$$

$$-\sum \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial v}{\partial x_i} \right) + cv = \lambda v; \qquad \frac{\partial v}{\partial \nu} + \tau(x)v = 0 \quad on \quad \partial D_0.$$

If $\lambda \geq 0$ and $-\infty < \tau(x) \leq \sigma(x) \leq +\infty$ on ∂D_0 , then either v(x) has a zero in the interior of D_0 or else $\lambda = 0$ and v is a constant multiple of u.

THEOREM 4. Let $R_{\sigma}(x, \xi)$ be the Robin's function associated with the selfadjoint operator L and the boundary conditions $\partial v/\partial v + \sigma v = 0$ on ∂D . If the first eigenvalue λ_1 of

$$Lv = \lambda v \text{ in } D$$

 $\frac{\partial v}{\partial v} + \sigma v = 0 \text{ on } \partial D; \quad -\infty < \sigma(x) \le \infty$

is positive, then $R_{\sigma}(x, \xi)$ is non-negative in $D \times D$.

Proof. Suppose to the contrary that $R_{\sigma}(x_0, \xi_0) < 0$ for some

$$(x_0, \xi_0) \in D \times D.$$

Then there exists a proper sub-domain $D_0 \subset D$ in which $R_{\sigma}(x, \xi_0)$ is negative, R_{σ} satisfies $LR\sigma = 0$, and such that

$$R_{\sigma}(x, \xi_0) = 0 \quad \text{for } x \in \partial D_0 \cap D,$$

$$\partial R_{\sigma}/\partial \nu + \sigma R = 0 \quad \text{for } x \in \partial D_0 \cap \partial D.$$

Setting $u(x) = R_{\sigma}(x, \xi_0)$ in Theorem 3, it follows that every solution of $(L - \lambda_1 I)v = 0$ which satisfies $\frac{\partial v}{\partial v} + \sigma v = 0$ on $\frac{\partial D_0}{\partial D} = \frac{\partial D}{\partial D}$ has a zero in D_0 and we obtain the contradiction that the first eigenfunction of (6) has a zero in D.

The fact that the non-negative Green's and Robin's functions considered above are actually positive in $D \times D$ follows from an application of the Hopf maximum principle. If $\lim_{x\to x_0} G(x, \xi_0) = 0$ for some interior point $x_0 \in D$ and if $c(x_0) > 0$, then the Hopf maximum principle implies that $G(x, \xi_0)$ changes sign at x_0 . However even if $c(x_0) \leq 0$ the Hopf maximum principle can be applied *locally* to yield the same conclusions, as is shown in [3]. Thus the fact that $G(x, \xi)$ or $R_{\sigma}(x, \xi)$ is non-negative in $D \times D$ is actually equivalent to the positivity of the fundamental solution.

BIBLIOGRAPHY

- 1. C. A. SWANSON, A comparison theorem for elliptic differential equations, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 611–616.
- 2. K. KREITH, A strong comparison theorem for self-adjoint elliptic equations, Proc. Amer. Math. Soc., vol. 19 (1968), to appear.
- 3. ——, A remark on a comparison theorem of Swanson, Proc. Amer. Math. Soc., to appear.
- 4. R. COURANT AND D. HILBERT, Methods of mathematical physics, Vol. II, Interscience, New York, 1962.

UNIVERSITY OF CALIFORNIA DAVIS, CALIFORNIA