ON COLLAPSIBLE BALL PAIRS ${ }^{1}$

BY
L. S. Husch

One of the essential parts of Zeeman's proof [20], [21] to show that ball pairs $B^{q}, B^{s}, q-s \geq 3$, were unknotted was to show that B^{q} collapses to B^{s}. For $q-s=2$, it is well known that there exist ball pairs B^{q}, B^{q-2}, such that B^{q}, B^{q-2} are knotted but B^{q} collapses to B^{q-2} for $q \geq 4$. For $q=1,2,3$, it is known that $B^{q}, \mathrm{~B}^{q-1}$ is unknotted and hence B^{q} collapses to B^{q-1} [5]. We say B^{q}, B^{s} is a collapsible ball pair if B^{q} collapses to B^{s}. In this paper we examine ball pairs B^{q}, B^{q-1} for $q \geq 4$ with regards to collapsibility. It is known that B^{4}, B^{3} is unknotted iff B^{4}, B^{3} is a collapsible ball pair; however, it is unknown whether there exist knotted B^{q}, B^{q-1} for $q \geq 4$. We show that for $q \geq 6$, every B^{q}, B^{q-1} is a collapsible ball pair and give some necessary and sufficient conditions that B^{q} collapses to B^{q-1} for $q=4,5$. We also characterize all ball pairs B^{5}, B^{4}.
Terminology and definitions will be as in [20] except as follow. By a manifold, we mean a locally Euclidean, separable metric space. When referring to combinatorial manifolds and piecewise linear maps we shall always use the adjectives combinatorial and piecewise linear. Let M be an orientable manifold; by bdry M we mean the boundary of M with the induced orientation; by int M, the interior of M; by M^{-}we mean M with its orientation reversed. By $\mathrm{Cl} X$, we mean the closure of X.
Theorem 1. Let B^{n}, B^{n-1} be a ball pair with $n \geq 6$; then B^{n} collapses to B^{n-1}.

1. Proof of Theorem 1 for $n \geq 7$

Let N be an admissible regular neighborhood of B^{n-1} in B^{n} [20; Chap. VII, p. 67]. Then $N \cap$ bdry B^{n} is a regular neighborhood of bdry B^{n-1} in bdry B^{n}. It was shown in [8] that

$$
\mathrm{Cl}\left(\text { bdry } B^{n}-\left(N \cap \text { bdry } B^{n}\right)\right)
$$

is the union of two disjoint combinatorial ($n-1$)-cells, say $S_{1} \cup S_{2}$. Similarly, Cl (bdry $N-\left(N \mathrm{n}\right.$ bdry $\left.B^{n}\right)$) is the union of two disjoint combinatorial $(n-1)$-cells, say $T_{1} \cup T_{2}$, indexed so that $S_{i} \cap T_{i} \neq \emptyset, i=1,2$. Then each $S_{i} \cup T_{i}$ is a combinatorial ($n-1$)-sphere. Hence by considering the double of B^{n}, it follows from [4], [15] that each $S_{i} \cup T_{i}$ bounds a topological

[^0]cell R_{i} in B^{n}. By Smale [17], [11], each R_{i} is a combinatorial n-cell. Hence each R_{i} collapses to T_{i} so that B^{n} collapses to N and hence B^{n} collapses to B^{n-1}.

2. Proof of Theorem 1 for $n=6$

Two orientable combinatorial manifolds M and N are said to be equivalent, $M \sim N$, if there exists an orientation preserving, onto, piecewise linear homeomorphism taking M onto $N . \sim$ is clearly an equivalence relation and so if one considers the set $S(T)$ of all combinatorial manifolds which triangulate some fixed orientable manifold, \sim induces a decomposition of $S(T)$ into equivalence classes each of which will be called a combinatorial structure on T. The set of combinatorial structures on T will be denoted by $C S(T)$. In general, we shall not distinguish between a combinatorial manifold and the combinatorial structure containing it, in fact, we often use the same symbol for both. The necessary details for making the transition from element to equivalence class and vice versa in the following are easily supplied.

Let T be a closed orientable m-manifold with $\operatorname{CS}(T) \neq \emptyset$. If $M, N \in C S(T)$, define the connected sum [9] of M and $N, M * N$, as follows. Choose piecewise linear embeddings.

$$
i_{1}: B^{m} \rightarrow M, \quad i_{2}: B^{m} \rightarrow N
$$

where B^{m} is the oriented combinatorial m-cell, i_{1} is orientation preserving and i_{2} is orientation reversing. $M * N$ is obtained from $\mathrm{Cl}\left(M-i_{1} B^{m}\right) \mathrm{u}$ $\mathrm{Cl}\left(N-i_{2} B^{m}\right)$ by identifying $i_{i}(t)$ with $i_{2}(t)$ for each $t \epsilon$ bdry B^{m}. That the connected sum is a well defined operation follows from [5] and [14]. It is then easily seen that $C S(T)$ is a semigroup.

Let T be a compact orientable m-manifold with a non-empty connected boundary and $C S(T) \neq \emptyset$. If $M, N \in C S(T)$, define the connected sum of M and $N, M * N$, as follow. Choose piecewise linear embeddings

$$
i_{1}: B^{m-1} \rightarrow \operatorname{bdry} M, \quad i_{2}: B^{m-1} \rightarrow \text { bdry } N
$$

where bdry M, bdry N have orientations induced from M, N respectively and i_{1} is orientation preserving, i_{2} is orientation reversing. $M * N$ is obtained from $M \cup N$ by identifying $i_{1}(t)$ with $i_{2}(t)$ for each $t \in B^{m-1}$. That this connected sum is well defined follows from [6] and the fact that combinatorial manifolds are combinatorially collared [16], [20]. Then it also follows easily that $C S(T)$ is a semigroup.

We shall be interested in the case when T is either the n-sphere S^{n} or the n cell C^{n}. For $n=1,2$, it is a classical result that $C S\left(C^{n}\right)$ and $C S\left(S^{n}\right)$ are trivial [5]. Moise [12] and Bing [3] have shown that these semigroups are trivial for $n=3$; Smale has shown this for $n \geq 6[17]$. It is also known that $C S\left(S^{5}\right)$ is trivial [11]. That $C S\left(C^{4}\right)$ is trivial is equivalent to an affirmative answer to the Schoenflies Conjecture [10].

Consider the following maps:

$$
\partial: C S\left(C^{n}\right) \rightarrow C S\left(S^{n-1}\right)
$$

defined by $\partial M=$ bdry M for each $M \in C S\left(C^{n}\right)$ and

$$
\lambda: C S\left(S^{n}\right) \rightarrow C S\left(C^{n}\right)
$$

defined by $\lambda M=\mathrm{Cl}(M-N)$ for each $M \in C S\left(S^{n}\right)$ where N is a combinatorial n-cell embedded piecewise linearly in M. By [6], [14], λ is a well defined map. It is easily seen that both ∂ and λ are homomorphisms for each n.

Let $U(M)$ be the subset of $C S(M)$ of those elements which have inverses under *.

Lemma 1. $U\left(C^{4}\right), U\left(C^{5}\right), U\left(S^{4}\right)$ are groups.
Lemma 2. $\partial: C S\left(C^{5}\right) \rightarrow C S\left(S^{4}\right)$ is an epimorphism.
Proof. Let $E \in C S\left(S^{4}\right)$; want to find $D \in C S\left(C^{5}\right)$ such that $\partial D=E$. By [13], E has a differentiable structure compatible with its combinatorial structure. From [9], \mathcal{O}_{4} is the trivial group, i.e., E is h-cobordant to S^{4}, the standard 4 -sphere. Hence by [9; Lemma 2.3], [11, p. 110], $E=\partial D$ where D is a contractible differentiable manifold. Consider the double, $2 D$, of D. It follows from the Mayer-Vietoris sequence and Van Kampen's theorem that $2 D$ is a homotopy 5 -sphere. Hence by Smale [17], $2 D$ is diffeomorphic to the 5 -sphere. By [4], [15], D is a topological 5 -cell. By [18], it follows that D has the required combinatorial structure.

Lemma 3. The kernel of $\partial: \operatorname{CS}\left(C^{5}\right) \rightarrow C S\left(S^{4}\right)$ contains only the trivial element of $\operatorname{CS}\left(C^{5}\right)$.

Proof. Let D be an element of the kernel of ∂ and give D a differentiable structure compatible with its combinatorial structure. By [11; p. 110], D is diffeomorphic to the standard 5-cell. The lemma then follows from the uniqueness of the compatible combinatorial structure [18].

The following two lemmas are easily proved.
Lemma 4. If G, H are semigroups and if $f: G \rightarrow H$ is anepimorphismsuch that the kernel of f contains only the trivial element, then an element a of G has an inverse if and only if $f(a)$ has an inverse.

Lemma 5. $\quad \partial^{-1}\left(U\left(S^{4}\right)\right)=U\left(D^{5}\right)$.
By using Alexander [1], one can prove easily:
Lemma 6. $\lambda: C S\left(S^{4}\right) \rightarrow C S\left(D^{4}\right)$ is an epimorphism.
Lemma 7. The kernel of $\lambda: C S\left(S^{4}\right) \rightarrow C S\left(D^{4}\right)$ contains only the trivial element of $C S\left(S^{4}\right)$.

Lemma 8. $\quad \lambda^{-1}\left(U\left(D^{4}\right)\right)=U\left(S^{4}\right)$.
Finally, we have
Lemma 9. The restricted maps

$$
\partial: U\left(C^{5}\right) \rightarrow U\left(S^{4}\right), \quad \lambda: U\left(S^{4}\right) \rightarrow U\left(D^{4}\right)
$$

are isomorphisms.
Proof of Theorem 1. Let B^{6}, B^{5} be a ball pair and let $N, S_{1}, S_{2}, T_{1}, T_{2}$ be defined as in Section 1 with the additional stipulation that each of the sets be given the induced orientation. Our difficulty is that $S_{1}, S_{2}, T_{1}, T_{2}$ may not be combinatorial 5 -cells.

By [15; Lemma 10] and the uniqueness of regular neighborhoods, $N \cap$ bdry B^{6} is homeomorphic to $S^{4} \times[0,1]$. Hence, by [15], $S_{1}, S_{2}, T_{1}, T_{2}$ are topological 5 -cells and are therefore elements of $\operatorname{CS}\left(D^{5}\right)$. We wish to show that they are elements of $U\left(D^{5}\right)$.

Let K_{1} be a triangulation of bdry B^{6} such that K_{1} contains a subcomplex K_{2} which triangulates bdry B^{5}. Let v be a vertex of K_{2} such that $\left|\operatorname{st}\left(v, K_{1}\right)\right|$, \mid st $\left(v, K_{2}\right) \mid$ is an unknotted ball pair. (For example, one could pick v to be a point in the interior of some 4 -simplex in K_{2} and consider the new triangulation formed from K_{1} by coning from v.) Let K_{3} be the subcomplex of K_{1} which triangulates Cl (bdry $B^{6}-\mid$ st $\left(v, K_{1}\right) \mid$); Let $K_{4}=K_{3} \cap K_{2}$. Hence by [1], $\left|K_{3}\right|,\left|K_{4}\right|$ is a ball pair. Let N_{1} be a second derived neighborhood of K_{4} in K_{3}. By [19], N_{1} is a combinatorial 5-cell and bdry N_{1} is a combinatorial 4 -sphere. Then

$$
\mathrm{Cl}\left(\text { bdry } N_{1}-\text { bdry }\left|K_{3}\right|\right)=L_{1} \cup L_{2}
$$

where $L_{1}, L_{2} \in U\left(D^{4}\right)$.
However $\left|\operatorname{lk}\left(v, K_{1}\right)\right|,\left|\operatorname{lk}\left(v, K_{2}\right)\right|$ is an unknotted sphere pair and

$$
\text { bdry } N_{1} \cap\left|\operatorname{lk}\left(v, K_{1}\right)\right|
$$

is a regular neighborhood of $\left|\mathrm{lk}\left(v, K_{2}\right)\right| \operatorname{in}\left|\mathrm{lk}\left(v, K_{1}\right)\right|$. Hence

$$
\mathrm{Cl}\left(\left|\mathrm{lk}\left(v, K_{1}\right)\right|-\operatorname{bdry} N_{1}\right)=M_{1} \cup M_{2}
$$

which are disjoint combinatorial 4-cells. Note that $N_{1} \cup\left|s t\left(v, K_{1}\right)\right|$ is a regular neighborhood of bdry B^{5} in bdry B^{6} and

$$
\operatorname{bdry}\left(N_{1} \cup \mid \text { st }\left(v, K_{1}\right) \mid\right)=L_{1} \cup L_{2} \cup M_{1} \cup M_{2}
$$

which we may assume are so indexed that $L_{i} \cap M_{i} \neq \emptyset$.
Therefore $L_{i} \cup M_{i} \in U\left(S^{4}\right)$ for each i. Hence

$$
\mathrm{Cl}\left(\text { bdry } B^{6}-\left(N_{1} \cup \mid \text { st }\left(v, K_{1}\right) \mid\right)\right)=P_{1} \cup P_{2}
$$

where $\partial P_{i}=L_{i} \cup M_{i}$ and by Lemma $5, P_{i} \in U\left(D_{5}\right)$ for each i. By the uniqueness theorem of regular neighborhoods it follows that each S_{i} is piece-
wise linearly homeomorphic to some P_{j}. Similar arguments also that the T_{i} 's belong to $U\left(D_{5}\right)$. Since $\partial S_{i}=\partial T_{i}$, by Lemma $9, S_{i}=T_{i}$ for each i.

Each $S_{i} \cup T_{i}^{-}$is a combinatorial 5 -sphere and each bounds a combinatorial 6 -cell R_{i} in B^{6} [11], [20]. What we want to show now is that each R_{i} collapses to T_{i}^{-}. Consider $R_{i}^{\prime}=S_{i} \times[0,1] ; R_{i}^{\prime}$ is clearly a topological 6-cell and hence a combinatorial 6 -cell. Clearly R_{i}^{\prime} collapses to $S_{i} \times 1$ which is piecewise linearly homeomorphic to S_{i}^{-}. By using [20; Lemma 10], we have then that R_{i} collapses to T_{i}^{-}for each i.

3. Theorem 2 for $n=4,5$

Theorem 2. Every ball pair B^{5}, B^{4} is collapsible if and only if every ball pair B^{4}, B^{3} is collapsible.

Proof. The "if" part is well known [10]. Suppose there exists a ball pair B^{4}, B^{3} which is not collapsible. $B^{4}=B_{1}$ ч B_{2} where $B_{1} \cap B_{2}=B^{3}$ and each $B_{i} \in U\left(D^{4}\right)$. Let $N_{i} \in U\left(D^{5}\right)$ such that $B_{i}=\lambda \partial N_{i}$ for each i. By Lemma 9, each N_{i} is not a combinatorial 5 -cell. Let $N^{5}=N_{1} * N_{2}, N^{4}=N_{1} \cap N_{2}$. Claim that N^{5}, N^{4} is not a collapsible ball pair. If N^{5} collapses to N^{4}, then each N_{i} collapses to N^{4}. Hence by [19], each N_{i} is a combinatorial 5 -cell.

4. Theorem 3 for $n=5$

Let B^{5}, B^{4} be a ball pair. B^{4} separates B^{5} into two components, the closure of which will be designated as B_{+}^{5}, B_{-}^{5} where $B_{+}^{5}, B_{-}^{5}, B^{4}$ have their orientation induced from B^{5} and the orientation on B^{4} agrees with the orientation induced from B_{+}^{5}. The set of points $\left\{v_{i}\right\}_{i=1}^{n}$ of B^{4} at which B^{4} could fail to be locally unknotted [20] is clearly finite. Let K be a triangulation of B^{5} such that $\left\{v_{i}\right\} \subset K$ and $K \mid B^{4}=L$. Define the knot type ${ }_{i} K_{+}$at v_{i} with respect to B_{+}^{5} to be the element

$$
\left|\mathrm{lk}\left(v_{i}, K\right)\right| \cap B_{+}^{5} \in C S\left(C^{4}\right)
$$

where the orientation of ${ }_{i} K_{+}$is induced by the orientation of $\left|\overline{s t}\left(v_{i}, K\right)\right|$ which, in turn, is oriented coherently with B^{5}. Similarly define

$$
{ }_{i} K_{-}=\mid \operatorname{lk}\left(v_{i}, K \mid \cap B_{-}^{5} .\right.
$$

From [6], we have that $\left\{{ }_{i} K_{+},{ }_{i} K_{-}\right\}$is independent of the triangulation chosen. Let $S_{+}=B_{+}^{5} \cap$ bdry $B^{5}, S_{-}=B_{-}^{5} \mathrm{n}$ bdry B^{5} have the orientations induced by B_{+}^{5}, B_{-}^{5} respectively.

Theorem 3. $\quad B^{5}, B^{4}$ is a collapsible ball pair iff

$$
S_{+}={ }_{1} K_{+} *{ }_{2} K_{+} * \cdots *{ }_{n} K_{+} .
$$

If B^{5}, B^{4} is locally unknotted at each point of B^{4}, then B^{5}, B^{4} is a collapsible ball pair iff $S_{+}^{4}=0$, i.e. iff S_{+}^{4} is a combinatorial 4-cell.

Proof. The proof of the second statement is straightforward, so we only give a proof of the first statement. Suppose B^{5}, B^{4} is a collapsible ball pair.

Let the v_{i} 's be ordered such that $v_{1}, v_{2}, \cdots, v_{q} \in \operatorname{bdry} B^{4}, v_{q+1}, \cdots, v_{n} \epsilon$ $\operatorname{int} B^{4}$: let A_{1} be a polygonal arc in bdry B^{4} such that bdry $A_{1}=\left\{v_{i}, v_{q}\right\}$ and $\left\{v_{i}\right\}_{i=1}^{q} \subseteq A_{1}$ and let A_{2} be a polygonal arc in B^{4} such that $A_{2} \cap$ bdry $B^{4}=\left\{v_{q}\right\}$, bdry $A_{2}=\left\{v_{q}, v_{n}\right\}$, and $\left\{v_{i}\right\}_{i=q+1}^{n} \subseteq A_{2}$. Let $A=A_{1} \cup A_{2}$ and let the usual ordering $<$ be given on A and suppose that the v_{i} 's are so indexed that $v_{i}<v_{i+1}$ for each i. Claim $B^{4} \searrow A$.

Let N_{1} be a regular neighborhood of $A_{1} \bmod \left(\operatorname{bdry} A_{1}\right)$ u A_{2} in B^{4} meeting bdry B^{4} regularly [7]. Hence $\mathrm{Cl}\left(B^{4}-N_{1}\right)$ is a combinatorial 4-cell [1]. Let N_{2} be an admissible regular neighborhood of A_{2} in $\mathrm{Cl}\left(B^{4}-N_{1}\right)$ and again $\mathrm{Cl}\left(\mathrm{Cl}\left(B^{4}-N_{1}\right)-N_{2}\right)$ is a combinatorial 4-cell so that

$$
\mathrm{Cl}\left(\mathrm{Cl}\left(B^{4}-N_{1}\right)-N_{2}\right) \searrow \mathrm{Cl}\left(\mathrm{Cl}\left(B^{4}-N_{1}\right)-N_{2}\right) \cap N_{2} .
$$

Hence $\mathrm{Cl}\left(B^{4}-N_{1}\right) \searrow N_{2} \searrow A_{2}$, so that $B^{4} \searrow N_{1} \cup N_{2} \searrow A_{1} \cup A_{2}=A$.
Let K^{*} be a subdivision of K such that $L^{*} \searrow^{8} L^{*} \mid A$, [19] [20]. By Whitehead [19], the second-derived neighborhood $N\left(B^{4}, K^{* \prime \prime}\right)$, it follows that there exists an orientation preserving piecewise linear homeomorphism between $N\left(B^{4}, K^{* \prime \prime}\right)$ and $N\left(A, K^{* \prime \prime}\right)$. It follows then from the properties of dual complexes [2] that

$$
N\left(A, K^{* \prime \prime}\right) \cap B_{+}^{5}=N\left(B^{4}, K^{* \prime \prime}\right) \cap B_{+}^{5}={ }_{1} K_{+} *{ }_{2} K_{+} * \cdots *{ }_{n} K_{+}
$$

where the orientation of $N\left(B^{4}, K^{* \prime \prime}\right)$ is the one induced from B^{5}. Since B^{5} is also a regular neighborhood of B^{4} in B^{5}, the conclusion follows from [7].

Conversely if we let $M_{+}=\mathrm{Cl}\left(B_{+}^{5}-N\left(B^{4}, K^{* \prime \prime}\right)\right)$, then

$$
\text { bdry } M_{+}=S_{+} \cup\left(M_{+} \cap N\left(B^{4}, K^{* \prime \prime}\right)\right)^{-}
$$

where M_{+}has the orientation induced from M_{+}. Hence

$$
\text { bdry } M_{+}=\left({ }_{1} K_{+} * \cdots *{ }_{n} K_{+}\right) \cup\left({ }_{1} K_{+} * \cdots *{ }_{n} K_{+}\right)^{-},
$$

mplying $M_{+}=\left({ }_{1} K_{+} * \cdots *{ }_{n} K_{+}\right) \times I$ as in proof of Theorem $1, n=6$; so as in that proof $M_{+} \searrow_{1} K_{+} * \cdots *{ }_{n} K_{+}$. Define

$$
M_{-}=\mathrm{Cl}\left(B_{-}^{5}-N\left(B^{4}, K^{* \prime \prime}\right)\right)
$$

and by noting that $S_{-}=S_{+}^{-}$,

$$
\left(\text { bdry } N\left(B^{4}, K^{* \prime \prime}\right)\right) \cap B_{-}^{5}=\left[\left(\operatorname{bdry} N\left(B^{4}, K^{* \prime \prime}\right)\right) \cap B_{+}^{5}\right]^{-}
$$

by arguments of Theorem $1, n=6$, we get similarly

$$
M_{-} \searrow\left[{ }_{1} K_{+} * \cdots *{ }_{n} K_{+}\right]^{-} .
$$

Therefore $B^{5} \searrow N\left(B^{4}, K^{* \prime \prime}\right) \searrow B^{4}$.
Corollary. There exists a 1-1 correspondence between ball pairs B^{5}, B^{4} and ordered triples $\left(\left\{K_{+}\right\},\left\{L_{+}\right\}, M_{+}\right)$where $\left\{K_{+}\right\},\left\{L_{+}\right\}$are two finite unordered collections of knot types, K_{+}'s occurring at vertices of bdry B^{4} and L_{+}'s occurring at vertices in int B^{4}, and where $M_{+} \epsilon U\left(C^{4}\right)$.

The author expresses his gratitude to C. H. Edwards, Jr. for several useful conversations regarding this paper.

Bibliography

1. J. W. Alexander, The combinatorial theory of complexes, Ann. of Math., vol. 31 (1930), pp. 292-320.
2. P. S. Aleksandrov, Combinatorial topology, Volume 1, Graylock Press, Rochester, N. Y., 1956.
3. R. H. Bing, An alternative proof that 3 -manifolds can be triangulated, Ann. of Math., vol. 69 (1959), pp. 37-65.
4. M. Brown, Locally flat embeddngs of topological manifolds, Ann. of Math., vol. 75 (1962), pp. 331-341.
5. W. Graeub, Die semilinearen Abbildungen, Sitzungsberichte der Heidelberger Akademic der Wissenschaften, Heidelberg, 1950, pp. 205-272.
6. V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres I., Proc. London Math. Soc. (3), vol. 3 (1953), pp. 29-53.
7. J. F. P. Hudson and E. C. Zeeman, On regular neighborhoods, Proc. London Math. Soc. (3), vol. 14 (1964), pp. 719-745.
8. L. S. Husch, On regular neighborhoods of spheres, Bull. Amer. Math. Soc., vol. 72 (1966), pp. 879-881.
9. M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres: I, Ann. of Math., vol. 77 (1963), pp. 504-537.
10. E. Luft, On the combinatorial Schoenflies conjecture, Proc. Amer. Math. Soc., vol. 16 (1965), pp. 1008-1011.
11. J. Milnor, Lectures on the h-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton Mathematics Notes, 1965.
12. E. E. Moise, Affine structures in 3-manifolds, V, Ann. of Math, vol. 56 (1952), pp. 96-114.
13. J. Munkres, Obstructions to imposing differentiable structures, Illinois J. Math., vol. 8 (1964), pp. 361-376.
14. M. H. A. Newman, On the superposition of n-dimensional manifolds, J. London Math. Soc., vol. 29 (1927), pp. 56-64.
15. -_, On the division of Euclidean n-space by topological $n-1$ spheres, Proc. Royal Soc. London, vol. 257 (1960), pp. 1-12.
16. R. Penrose, J. H. C. Whitehead and E. C. Zeeman, Imbedding of manifolds in euclidean space, Ann. of Math., vol. 73 (1961), pp. 613-623.
17. S. Smale, Differentiable and combinatorial structures on manifolds, Ann. of Math., vol. 74 (1961), pp. 498-502.
18. J. H. C. Whitehead, On C^{1}-complexes, Ann. of Math., vol. 41 (1940), pp. 809-824.
19. -, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., vol. 45 (1939), pp. 243-327.
20. E. C. Zeeman, Seminar on combinatorial topology (mimeographed notes), Inst. Hautes Etudes Sci. Publ. Math., 1963.
21. -_, Unknotting combinatorial balls, Ann. of Math., vol. 78 (1963), pp. 501-526.

Florida State University
Tallahassee, Florida
University of Georgia Athens, Georgia

[^0]: Received December 4, 1966.
 ${ }^{1}$ Some of the contents of this paper form a part of the author's dissertation submitted as partial requirement for the Ph.D. degree at Florida State University under the direction of Professor James J. Andrews. Research was supported by a National Science Foundation Cooperative Graduate Fellowship and a National Science Foundation grant.

