ON THE NUMBER OF CO-MULTIPLICATIONS OF A SUSPENSION ${ }^{1}$

BY
C. M. Naylor

In [2], Arkowitz and Curjel established a criterion for determining when an associative H-space possesses only a finite number of multiplications. That their result can be dualized is the subject of the present note.

An H^{\prime}-structure, or co-multiplication, on a space Z is a based map

$$
\varphi: Z \rightarrow Z \vee Z
$$

which has the property that the compositions $\pi_{1} \circ \varphi$ and $\pi_{2} \circ \varphi$ are both homotopic to the identity map of Z, where π_{1} and π_{2} are the obvious projections.

Let X be a CW-complex of locally-finite type. Then, by the Hilton-Milnor Theorem, $\Omega \Sigma(X \vee X)$ is homotopy equivalent to $\prod_{k} \Omega \Sigma P_{k}$ where k runs through a set of basic products for the set $\{1,2\}$. To each basic product k there is associated a positive integer $\omega(k)$, the weight of k, and P_{k} has the homotopy type of

$$
\overbrace{X \wedge X \wedge \cdots \wedge X}^{\omega(k)}
$$

Moreover, the homotopy equivalence is given by a map of the form $\prod_{k} \Omega g_{k}$, where $g_{k}: \Sigma P_{k} \rightarrow \Sigma(X \vee X)$ is an iterated generalized Whitehead product which is associated with the basic product k. In particular $P_{1}=P_{2}=X$ and the maps $g_{i}: \Sigma X \rightarrow \Sigma(X \vee X)(i=1,2)$ are the inclusions. All g_{k} with $\omega(k) \geq 2$ are Whitehead products involving both the first and second factors of $\Sigma(X \vee X)$. For more details see [3] or [7].

If $f: X \rightarrow \Omega \Sigma(X \vee X)$ is any map, then there is a map $\bar{f}: X \rightarrow \prod_{k} \Omega \Sigma P_{k}$ with $\prod_{k} \Omega g_{k} \circ \bar{f} \sim f$. Let $p_{k}: \Pi \Omega \Sigma P_{k} \rightarrow \Omega \Sigma P_{k}$ denote the projection, and let $\pi_{i}: \Sigma(X \vee X) \rightarrow \Sigma X(i=1,2)$ denote the projections.

Theorem 1. $\Omega \pi_{i} \circ f \sim p_{i} \circ \bar{f}(i=1,2)$.
Proof. By the above, $\Omega \pi_{1} \circ f \sim \Omega \pi_{1} \circ \prod_{k} \Omega g_{k} \circ \bar{f}$. Since $\Omega \pi_{1}$ is a homomorphism, $\Omega \pi \circ \prod_{k} \Omega g_{k}=\prod \Omega\left(\pi_{1} \circ g_{k}\right)$. But every basic product k with $\omega(k) \geq 2$ involves both 1 and 2 , thus $\pi_{i} \circ g_{k} \sim *(i=1,2$ and $\omega(k) \geq 2)$. Since also $\pi_{1} \circ g_{2} \sim *$ and $\pi_{2} \circ g_{1} \sim *$, Theorem 1 is proved.

[^0]Corollatiy 2. H^{\prime}-structures on ΣX are in 1-1 correspondence with elements of the group $\oplus_{\omega(k) \geq 2}\left[\Sigma X, \Sigma P_{k}\right]^{2}{ }^{2}$

As an immediate consequence we have that if G is finitely generated and $n \geq 4$ then the Moore space $K^{\prime}(G, n)$ has a unique H^{\prime}-structure.

Let X be a finite-dimensional CW-complex and let $I=\left\{i_{1}, i_{2}, \cdots i_{R}\right\}$ be the set of integers for which $\widetilde{H}_{i_{j}}(X ; Q)$ is non-trivial $\left(i_{j}>0, j=1, \cdots K\right)$. Let N be the set

$$
\left\{\sum_{j=1} c_{j} i_{j} ; c_{j} \text { integers, } \quad c_{j} \geq 0, \quad \text { and } \quad \Sigma c_{j} \geq 2\right\}^{3}
$$

Theorem 3. The number of co-multiplications on ΣX is finite if and only if $N \cap I=\Phi$.

Proof. H^{\prime}-structures on ΣX are in 1-1 correspondence with the group $\oplus_{\omega(k) \geq 2}\left[X, \Omega \Sigma P_{k}\right]$. Since X is finite-dimensional, only finitely many [$X, \Omega \Sigma P_{k}$] are non-zero. By the results of Arkowitz and Curjel [1], $\oplus_{k}\left[X, \Omega \Sigma P_{k}\right]$ is finite if and only if $\rho\left(\oplus_{k}\left[X, \Omega \Sigma P_{k}\right]\right)=\Sigma_{k} \rho\left[X, \Omega \Sigma P_{k}\right]=0$, where ρ denotes the rank in the sense of [1]. By Corollary 3.4 of [1],

$$
\rho\left[X, \Omega \Sigma P_{i}\right]=\sum_{m} \beta_{m}(X) \cdot \rho\left(\pi_{m}\left(\Omega \Sigma P_{i}\right)\right)
$$

where $\beta_{m}(X)=\rho\left(H_{m}(X)\right)$. Theorem 3 is therefore equivalent to the following.

Lemma 4. (i) If $\pi_{j}\left(\Omega \Sigma P_{k}\right)$ has an infinite cyclic direct summand $(\omega(k) \geq 2)$ then $j \in N$.
(ii) If $j \in N$ then there exists $a k(\omega(k) \geq 2)$ for which $\pi_{j}\left(\Omega \Sigma P_{k}\right)$ has an infinite cyclic direct summand.

The proof of 4 requires the following special case of a result due to Berstein [4]. F denotes the class of finite groups in the sense of Serre.

Lemma 5. Let Z be a finite CW-complex and let $\left\{u_{\alpha}^{i}\right\}_{i=1}^{N}$ be the generators of $H_{+}(Z ; Q)$. Then there exists a map $f: \vee_{i, \alpha} S_{\alpha}^{i+1} \rightarrow \Sigma Z$ with the property that $f_{*}: H_{i}\left(\bigvee_{i, \alpha} S_{\alpha}^{i+1}\right) \rightarrow H_{i}(\Sigma Z)$ (and thus $f_{*}: \pi_{i}\left(\bigvee_{i, \alpha} S_{\alpha}^{i+1}\right) \rightarrow \pi_{i}(\Sigma Z)$) is an F-isomorphism for all i.

Proof of 4. (i)

$$
P_{k}=\overbrace{X \wedge X \wedge \cdots \wedge X}^{r}
$$

for some r, consequently $H_{i+1}\left(\Sigma P_{k} ; Q\right)$ is non-trivial only if $i \epsilon N$. By 5

[^1]there is a map
$$
\vee_{\alpha, i} S_{\alpha}^{i_{n}+1} \xrightarrow{f} \Sigma P_{k}
$$
such that f_{*} is an F-isomorphism; by the above remark the i_{n} which appear are all elements of N. It follows that $\pi_{j}\left(\Omega \Sigma P_{k}\right)$ has an infinite cyclic component if and only if $\pi_{k}\left(\Omega\left(\bigvee_{\alpha, i_{n}} S^{i_{n}+1}\right)\right)$ does. From Hilton's result [6] we have that
$$
\pi_{j}\left(\Omega\left(\bigvee_{\alpha, i_{n}} S_{\alpha}^{i_{n}+1}\right)\right) \cong \oplus_{m} \pi_{j}\left(\Omega S^{l_{m}+1}\right)
$$
moreover, the definition of the basic products and the fact that $i_{n} \epsilon N$ for all n implies that $l_{m} \in N$ for all m. . Since $\pi_{j}\left(\Omega S^{l_{m}+1}\right)$ has an infinite cyclic component only if $k=l_{m}$ or $k=2 \cdot l_{m}$, part (i) is proved. To prove part (ii) let $n=\sum_{j=1}^{K} c_{j} i_{j}$ and let $m=\sum_{j=1}^{K} c_{j}$. There is a basic product P_{k} such that
$$
P_{k}=\overbrace{X \wedge X \wedge \cdots \wedge X}^{m}
$$
$(\omega(k) \geq 2$ because $m \geq 2)$. Since the element $u_{i_{1}}^{c_{1}} \otimes u_{i_{2}}^{c_{2}} \otimes \cdots \otimes u_{i_{K}}^{c_{K}}$ in $H_{n}\left(P_{k} ; Q\right)$ is non-trivial, Lemma 5 shows that $\pi_{n}\left(\Omega \Sigma P_{k}\right)$ has an infinite cyclic direct summand. This completes the proof.

Bibliography

1. M. Arkowitz and C. R. Curjel, Groups of homotopy classes, Lecture Notes in Mathematics, Springer, 1964.
2. -, On the number of multiplications of an H-space, Topology, vol. 2 (1963), pp. 205-209.
3. M. G. Barratt, Spaces of finite characteristic, Quart. J. Math. Oxford Ser., vol. 19 (1960), pp. 124-136.
4. I. Berstein, Homotopy mod. C of spaces of category 2, Comment. Math. Helv., vol. 35 (1961), pp. 9-14.
5. I. Berstein and P. J. Hilton, On suspensions and co-multiplications, Topology, vol. 2 (1963), pp. 73-82.
6. P. J. Hiluton, On the homotopy groups of the union of spheres, J. London Math. Soc., vol. 30 (1955), pp. 154-172.
7. B. Steer, Extensions of mappings into H-spaces, Proc. London Math. Soc., vol. 13 (1963), pp. 219-272.

University of California

Irvine, Calffornia

[^0]: Received April 14, 1967.
 ${ }^{1}$ This research was supported in part by a National Science Foundation Grant and forms part of the author's Stanford doctoral dissertation. The author thanks Professor Hans Samelson for his advice and many suggestions.

[^1]: ${ }^{2}$ It can be shown that $\prod_{\omega(k) \geq 2} \Omega P_{k}$ is homotopy-equivalent to ($\left.\Omega \Sigma X\right) b(\Omega \Sigma X)$, the "flat" product of [5].
 ${ }^{3}$ The elements of N are dual to the cup numbers of [3].

