TWO THEOREMS ON SPECTRAL SEQUENCES'

BY
YEL-CHIANG WU

In this note, we prove the following theorems.

Turorem 1. Let X and Y be two CW-complexes. Then the exact couple as-
soctated with the Postnikov decomposition of Y and the modified homotopy functor
m+(X, ) 4s isomorphic to the first derived couple assoctated with the skeleton de-
composition of X and the modified homotopy functor =+( ,Y).

TuroreEM 2. The spectral sequence assoctated with the skeleton decomposition
of X and the modified homotopy functor w+( , Y) 1s isomorphic to that associated
with a homology decomposition of X for all CW-complexes Y, if and only if the
space X has no torsion.

We recall some basic facts in Section 1 and present the proofs of the theorems
in Section 2 and 3.

1. We recall that the Postnikov decomposition of a CW-complex Y is
a sequence of maps’

(1) ] ]

where
(i) every map is a fibration, and

m(Yy) = m(Y) for »<p
(Y p)

Thus we see that the fiber of [, is the KEilenberg-Macliane space
K(mpa(Y), p + 1). 1f we apply the modified homotopy functor =+ (X, ) to
the sequences of maps

(ii)

Il

0 for r > p.

l
K(mpa(Y),p + 1) = Ypn — Y,

the resulting exact couple is called the exact couple associated with the Post-

Received August 9, 1967.

! This paper constitutes part of the author’s thesis presented to Cornell University.
The author would like to express his gratitude to Professors I. Berstein and P. J. Hilton
for their suggestions and discussions of the problems presented here.

2 We assume that all spaces have a based point * and all maps are based maps.
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nikov decomposition of Y and the modified homotopy funetor =+(X, ) with
D™ = 7r<1+1(X) hp) = TQ(X) Fp))

EP? = 7|"q+1(X, lp) = WQ(Xa K(ﬂ'p"”l(Y)’ p + 1))

A homology decomposition [4] of the CW-complex X is a sequence of maps

pt+1
e

3) . X, Xyt be

]

(2)

kp‘H.

such that
(i) every map ¢* is a cofibration, and

H.(X,) = H(X) for r<vp
H.(X,) =0 for r > p.

Since the cofiber of *" is the Moore space K'(Hp1(X), p + 1), we see [4
Theorem 7.1'] that there is a map

up * K'(Hpn(X), p) — X,
such that """ is equivalent to the canonical cofibration
Y, — X, Uy, CK'(Hpn(X), p).

We will henceforth consider X1 as so obtained. Again if we apply the modi-
fied homotopy functor 7«( , ¥') to the sequence (3), we have an exact couple
with

(4)

(ii)

)

Dt = mu(K°,Y) = mo(X/X,p, ¥),
EP = 1 (2", Y) = 7o(Xp/Xpa, V),

which we called the exact couple associated with the homology decomposition
of X and the functor m+( , Y).
We need the following facts.

1. Letf: Y, — Y, be a fibration. Then the exact sequence
— wg(X, Y1) = m(X, Vo) = (X, ) = 74a(X, Y1) —
is induced by the Eckmann-Hilton sequence
—QY; — QY, — E; — Yl—f—> Y,
where E; is the pull-back of the diagram

E f P Y2
Y, — Y,

in which PY, = {1: 1 — Y, |I(1) = %} and =(I) = L(0).
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2. Tetg: X,— Xibea cofibration. Then the exact sequence
— (X1, Y) = m(Xe, V) = (g, V) = mea(Xy, V) —

is induced by the Puppe sequence

z
Xg“"g’_’Xl“"‘)Xl UQCXz'—)EXz—'—g") ZX]_*—)

3. Let ki, hs be two cohomology theories satisfying the Eilenberg-Steenrod
axioms and the “wedge axiom”

RV ier ST) = TLie hE(SE), ji=12.

Let 71, 72 : by — hy be two functor-morphisms. If

(%) = 7ma(x) : h(x) — ha(x),
then
(X)) = 7(X) : h(X) — he(X),

provided that X is finite dimensional.

4. Cf. [4]. Let Y — X be a cofibration with cofiber . Assume that all
spaces are l-connected. If Y is (k — 1)-connected and F is (I — 1)-con-
nected, then the homomorphism &' : mn(¢) — m.(F) is an isomorphism for
m<k+1—1landanepicifm =k +1— 1.

2. Proof of Theorem 1. We break the proof of theorem 1 into the following
lemmas.
* , X" jp+l
(5) I

L

xPH e > X.
|

p+1
q

Applying the modified homotopy functor 7+«( , Y) to (5), we have an exact
couple with

Dlp,q

7rq+1(gp’ Y) = WP(X/Xp_ly Y);
B = w1 (5%, Y) = m(X7/X"7, V).

LemMA 1. There is a natural isomorphism
(T g (X/X Fy) — D7
where Fp is the fiber of byt Y — Y.

nat

1 e,
LEMMA 2. D= DP9
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Proof. We consider the diagram®
wqfl(X/X”"q,Yn — Iqﬂ(X/X”“"“,Yp)
rq(X/X"f,Fn — w (X)X, —— m (XY XN,
Tp*
T (X/XPY) o, T (X/XPNY)
T (X/X"Y,)

where 7, : F,,— Y and all the rows and columns are exact. Since all homotopy
groups of Y, higher than p are zero and F, is p-connected, we have

Ten(X/X77% ¥,) = m(X/X77% ¥,) = mo(X" /X" Fp) =0
Therefore we have
ipt

1(X/X" 7 F,) = Ima’ = D770

To show 7,4 is natural, we consider the diagram

P dvk
WQ(X/ XP’Q, F p+1) _(g__)___(f?_)_t__) Tq(X/ X”‘q’l’ FP)

(G| 1 w(X/X"F)

G 3

T (X/X7Y) X/ X7, Y)

where e, : Fppy — Fpand ¢'" % : X/X 97— X/X" % We see that triangle 1
is commutative because 7,1 = 7, €, ; triangle 2 commutes evidently; and
square 3 commutes because (7,)« is natural. Hence the outside square is com-
mutative. Next we note that the following diagram

o = (e *
() — g,
[Cadk (@*
- P=9)*(ep)* g
ro X)X ) — LDz xeip,)
is commutative. Hence we have the natural isomorphism

ip'(l{p-—q—l)-—l - D?? s D;p—q.q

3 To avoid too many symbols, we use the same notation for two homomorphisms if
they are induced by the same map.
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Lemma 3. There is a natural tsomorphism
j . E;p-(ﬁ'l.q — EP9,
Proof. We produce the isomorphism as follows. Let Z be the kernel of
By
’
Z C wg(XPYX7 YY) L oy (X/XTT V) o gy (XX YY)
We look at the diagram

00> m(X/X™, Ky (X, p+1) 2 w70 XP0, Ky, p+0) o0 my X/ X4, Ky V), p41)

I(kﬁﬂ)"
Wq(X/ip»qy Ypﬂ) —‘é,i—"” ""q(Xp—'q“/AXp-qy Ypu) ____'y_"_____) Wq—l(X/ p_”ly an)
I (hr+1)‘ I(hwl )"
’
Wq(Xr‘qﬂ/Xv—q’ Y) _____'Y_______) T,’](X/Xp_q"‘l, Y)

("f.p+l)"

Wq-l(X/Xp—qs Fp+1)-

1 p—, —] . . - .
From lemma 2, we know that ker 8/ = D;” @147 i3 jsomorphic to Im Tpv .
Hence

ker 8’y = ker (hp1)»y’ = ker v =Imp”
which is isomorphic to 7, (X/X" %, K(wpu(Y), p + 1)), ie.,
s = (bpy1) ™ 8" (hpyn)« t Z > mp( X/ X" K (mpa(Y),P + 1))

Now we let j' be the homomorphism

7 — m(X/ X" K(mpa(Y), p + 1))

T XX, K(rpa(D)p + 1)

(-ity*

mo(X, K(mpu(Y), p + 1)) = E™.
The homomorphism (¢’ ?)* is epic because of the exact sequence
mo(X/ X", K(mpna(Y), p + 1))
— m(X/ X", K(mpa(Y), p + 1))
— (XX, K(rpa(Y), p + 1)) =0

Consequently, j/ is an epic. Since each homomorphism constituting j’ is
natural, 7/ is a natural epie.

Let B be the image of 8’y". Then Ef™*™? = Z/B.

If we write out the appropriate diagram, we see that j/ induces an iso-
morphism

. ! p—aq+1 ,
J:Elﬂ q+.q__>qu-
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CoROLLARY 4. EP ™%~ H" "X, mpu(Y)).

Proof. The assertion follows from the fact that

o X, K(mpn(Y), p + 1)) 2 H™(X, mpu(y))

by obstruction theory.

We can, of course, prove Corollary 4 by direct computation and then deduce
the fact that

ro(X, K (mpa(V), p + 1)) 2= B (X, mpa(¥)).

Then it is not difficult to verify that this isomorphism 7 is the same as the ob-
struction isomorphism ob by using Proposition 3 of §1 to show that ob-5 " is
the identity transformation of H* (|, 74(Y)). We need this fact later and
will give a proof later (lemma 7).

LemMa 5. The diagram )

’p—q, B1 I p—gt,
D1p q.9 Elpq+<1

[

Dp.q B EZDJI

18 commutative.

Proof. The assertion amounts to showing that the square 1 of the following
diagram is commutative.

P=q )*

7rg](‘;Y--/'/Xm—‘I) Y) '“_(L—» D}/P—q,q —-——Bl > Z/B

S L s

= (X/X"" F,) 0" 7, = (X/X""F,) B, m(X/2" K, ((Y), p+ 1)

Since square 2 is commutative and (¢"*%)* are epic, it suffices to show that
diagram 1 plus 2 is commutative. Recall that we have maps

hp: Y = Y,, k71X X/XP
and
kppr t K(mpa(Y), p + 1)) = Ypu.

Let us introduce the following notations:

foiFp— K(mpa(Y), p + 1))
and

qp—q : Xp-—q—l / XPr 1.5 X / X,
From the definition of 8y, we have

Bilg™ ™) (Ga)x = () (i) % -
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Hence ,
F1B1(g"" ) () = (§7N) * (opin) 78”7 (hps1) (0" ) * (4,) 4
= (¢""%) *(kwl)?(hwl) (%) x
where ("7 )*j, = j. In view of the homotopy commutative square

Fp—0=2 .Y

b b
K("rp+l(Y)s D + 1) "'k—m"-l—* Yp+l
71B1g" ) Gp)e = (07 (f)w
= (f2)+(g"" ")«

= B(g" ™.

we may write*

This completes the proof.

LemMA 6. The diagram

’
—g+1 ~g+1, ¢~1
El,r g+ "1 prete

] li
E™ _r Dt
commutes.
Proof. Letf:X — QK (wpnn(Y), p + 1)) represent an element in
7(X, K(mp(Y), p + 1)) = E™,

Since K (7p11(Y), p + 1) is p-connected we may assume that f| X" ? = 0.
In view of Proposition 1 of Section 1, v is identified with the homomorphism
induced by the map

Qq—lTp,H . QqK(ﬂ'p_H(Y). P -+ 1)) g QQ_IFP.H
as in the cartesisn diagram

K(mpa(Y),p + 1) == K(u(Y),p + 1)

- 1

Fpn PK(mpa(Y), p + 1)

l I

F, —*‘——f:——‘* K(mpa(Y), p + 1).

4 To avoid too many symbols, we use these rather ambiguous notations. There
should be no confusion if one writes out the corresponding commutative diagram.
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Then #y(f) is given by the element represented by f' in the commutative
diagram

q-—1.

q—1
x/x70 L QR (), p + 1) T2, getp e ey

s
X / Xp—q U C Xp—q+1 / XP-'I I

The map f’ can be described as follows:
Since F 4118 (p + 1)-connected, we have an isomorphism
w (X7 /X7 F) 2 (X7 X K (rpa(Y), p + 1))
Let f” represent the counterimage of [f | X*~*"/X*™9. Let

f X/ X" P CXPTY /X QU
be defined by

(@) = 9 rpnf(z) = (+,f(2)), zeX/X7?
Fla8) = (7 @)(0),(2)),  (2,8) e CX7* /X7

where f(z). is a path on Q'K (7,11(Y), p + 1) given by f(2):(r) = f(z)(7t).
We see that f/ is actually a map for f'(z, 1) = (f"(2)(1), f(zh) = (&, f(z))
since f” () is a loop on °'F, and

Fof" (@) (@) = fo(f) (2, 1) = (FI X"/ X7 ) (x, 8) = f(a):

for (z, t) e CX*~4H /X771,
If we assume that the natural isomorphism 5 coincides with the obstrue-
tion isomorphism ob, we see that’

J) = d(f, %)
which can be represented by the map
f'” s sxrat! / X1 oy
given by ,
(@ 1) = (hpyn)¥ (kpir) 2 () (8)
Y1 () (@, 0) = () (o) ¥ (ko) S (2) (8),
where " " is the map,
X / X"y C Xp—q+1 / X1 53 Xp—q+l / Xp—q,
in the Puppe sequence for the map X*~*"/X*™¢ — X/X”% Now
w(f)(®) = ipn(g, f(2)), weX/X7*

w(f) (@, 1) = ipon(f"(@)(0),f(2)0),  (2,8) e CXT*/X7

Thus

5 dra(f, *) is the difference cochain of f and the constant map *.
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Since 7p11 = 7y €, , We may write
iy (f)(xz) =+ forxeX/X"1
w(f) (2, t) = i, f'(2)(t) for (=, t) e CX"*"/X""

If we regard Y,i1 as obtained from Y by killing homotopy groupé higher than
p + 1, we see immediately that

17 () (@) = *, weX/X
is the collapsing map, and
Y17 () (@, ) = (hpin)xf(2) (1), (x, t) e CX*H/ X770
= kpirf(2) (1)

which is clearly equal to 7,f” (x)(¢) in view of the homotopy commutative
diagram

for s*79

K@, (Y), p+1)

F, — Y,

So now it remains to prove
LemMA 7. The isomorphism 7~ is just the obstruction isomorphism.

Proof. By the remark we made after Corollary 4, we need only show that
7" and the obstruction isomorphism ob coincide when X = 8’ In this

case j 1 wg(S’, K(mpa(Y), p 4 1)) = H™(S", mpa(Y)) forg = p + 1,
is the zero homomorphism and

7t (S, K(mpa(Y), p + 1)) — H'(S, mpa(Y))

is given by

F = ()% (@77 (Bpia) (g™ 1]
= (hp+1);1(70p+1)*[f]-

ob[f] = do(f, *) = (hw)?(km)*b‘].

Hence the proof is complete for Theorem 1.

But

CoroLLARY 8. When X s finite dimensional, there is a spectral sequence
with E** = n,(X?/X*7, Y) converging to the graded group associated with
wx(X, Y) filtered by the kernels of w+(X, Y) — m+(X", Y). In particular, we
show that if X s a finite dimensional polyhedron and Y = @ a topological group,
the Shih spectral sequence coincides with that of Atiyah-Hirzebruch for K-theory
[2].
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Remarks 1. The proof of Theorem 1 is quite conceptual until it breaks
down in Lemma 6. In proving Lemma 6, we actually assume Corollary 4 in
order to have Lemma 7. However, Corollary 4 holds without Theorem 1.
In the Shih spectral sequence, the Kan definition of homotopy groups is used.
As X is a finite-dimensional polyhedron, the two definitions coincide.

2. We actually proved Theorem 1 in the relative form, i.e., we use the
functors m+(f, ) and 7«( , ¢) instead of 7+«(X, ) and m4( , Y) since f
is a cofibration and ¢ a fibration, we can always replace them by its cofiber
and fiber.

3. Proof of Theorem 2. It is well known that homology decompositions of
a space are not homotopy invariants [1]. The following example® shows that
their associated spectral sequences are not homotopy invariants.

Let n > 7 be an integer. Let h represent the generator of the group
Tnis(S™) =2Zs. Let I’ be an extension of h to 8*™® u """ where integer 2
indicates the degree of the attaching map. Let & : 8" u »¢**® — 8§"*° be the
collapsing map.

!
Sn+6 u 26n+7 __ZL_) Sn
/
j /
/h
/
( 6) Sn+6

k

S" +s u 26n+6
Let
X =S"u hC(Sn+6 u 26n+7) \/ E(Sn+5 u 2e'n+6)’
Xonye = 8"V Z(8™ u ™),
Xors = S U C(S™° U oe™™).
Then the sequences
kn+7

x> 8- X — X

’ Ind7
*"'—>Sn'_)Xn+s kn—i
—_—

X

are two (non-homotopic) homology decompositions of X, where k™" is the
canonical embedding and %™ is defined as follows

() =2 for zeS”

K™ (@, 6) = (jkz, 1) for () e C(X™ uo™).

¢ This example is a special case of the Brown-Copeland example [1].
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We now show that the spectral sequences associated with these two decom-
positions are different. Let ¥ = 8", If we apply the modified homotopy
functor wx( , Y) to the first decomposition, we have a spectral sequence
which we may represent by diagram as follows:

(X, Y)

l (kn+7)*
al’ n B 1, = 0 n+5 n+6
1r9+l(Xn+6) Y) (-_—‘:){ 1rq+l(X ) Y) I Wq(zs S 2e ) Y) > Tq(Xn-f-s: Y).

The horizontal sequence is induced by the Puppe sequence
Sn___) n+6"“>2(sn+5U26n+6)'—)"'

Now it is evident that from the way v1 is induced, 1 maps 7,(Z8™* u ™", )
isomorphically onto the direct factor mo(ZS™** u 26™**) of 7(Xnss, ¥) and
that 7,(Z8™" U 2¢"™) in 7g(Zmss, Y) is in the image of (K**")*. Since 8 is
trivial, we see immediately that

B2 = 417 Im (5*)#) /Ba(ker (g1 (8™, ¥) — wgia(x, )
= (28" U™, )

which we will soon show is isomorphic to Z,.
Similarly, we apply the functor m4«( , Y) to the second decomposition to
obtain the spectral sequence represented by the diagram
14 ’ !
rat(Xoss, ¥) -2 1,0(S, 7) P2 (3874 006", V) 25 1y(Xosa, ).
AN 2
L /
5N T*
N
7r<1+1( Sn +67 Y)

We want to show that &*A* is nontrivial and then to calculate the r1Ew. term
of the spectral sequence. Sincen + ¢ + 1 < 2(n + ¢ 4+ 1) — 1, we have,
by the suspension theorem,

Tet1 ( Sn+6’ Y) = Ten ( S”+6, Sn+q+1) ~7Z,.
From the sequence
n+6 Xz n+6 k* n+5 n+6
Tg1 (8", V) — 11 (87, V) ——— my (28" u 2", Y)
- Wq(S”-Hiy Y)— ""q(Sn+6> Y)
we see that

*
1r.,(28”+5 u 2e”+6, Y) = 1I'q+1(S"+6, Y) = Z,
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since mnys(S™) = 0 for m > 7. By our choice, »* sends the fundamental class
in mg411(S", Y) to the generator [A] of 7,11(S™, ¥). Hence h* is epic. In
view of all these data, we have

’—1

aBZ = (4 7(Im BT /Im B:) S men (S8 U ™, V) /Im KR
o~ Zz/Zz = 0.

Therefore we conclude that the two sequences are not the same. As a con-
sequence, we see that the two homology decompositions are not homotopie.
This example also kills the hope that the spectral sequence associated with a
homology decomposition is isomorphic to that associated with the skeleton
decomposition since we saw that the latter is homotopy invariant. However,
in [1], some sufficient conditions on the space X are given to insure that all
homology decompositions of X are homotopic. Then one may ask again
whether, in this case, the spectral sequence associated with the homology
decomposition is isomorphic to that associated with the skeleton decomposi-
tion. The answer to this question is again negative as we see from the fol-
lowing example.

Let X = 8" u”™, p > 1. Clearly, X admits only the trivial homology
decomposition. The infinite term E%*"? of the corresponding spectral se-
quence is clearly trivial since E*™? = 7(Xp11/X,p, Y) = 7(X/X,Y) = 0.
On the other hand, the spectral sequence associated with the skeleton decom-
position

+—> 8’ =X

can be represented by the diagram

7 ’
ren (8% V) —Lms m (874, ¥) = m (XX, ¥) —L my(X, V).
If welet Y = 87", ' is simply multiplication by k. Hence the term

B2 = v Y1y (X, Y)/Im B =Z; = 0.

We saw in the above example that the non-triviality of the attaching map
is really the reason why the two spectral sequences do not coincide. Thus we
are led to think that when there is torsion in the space X, the two spectral
sequences are different. This turns out to be true.

We now begin our proof of Theorem 2. Let jp1: X, — X? be the in-
clusion map. To prove the theorem, we need only show that if X has torsion,
the spectral sequences will be different. So let us suppose there is a least
integer p such that H,(X) has torsion, i.e.,

K'(Hy(X),p—1) = V8 v Vef
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with f | S;, — 8, essential for some %, jo. The relation between the spectral
sequences in consideration can be expressed by the commutative diagram

r X5 Y) = o (XX Y) > =,

(":pﬂ)* (kpﬂ)*
Tl X Y) — 71X, /X, Y) — n(X,,,Y)

where kpy : X*7'/X? — X,41/X, is the induced map between the cofibers of
X? € X" and X, € X,u. We try to show that there is an element in
-4 4 of the spectral sequence associated with the skeleton decomposition which
is not in the image of the induced map of spectral sequences. For this purpose,
we make explicit the following spaces:

Xpi = X u C(V S uy Vef) u, CK'(Hpu(X), p),
X" = X, 1 uC(V 82 ur Vel) up Vet
g =gl (p+ 1) cells of K'(Hpa(X), p).
XP+1/XP — \/ S}H-l \/ SD+1
where S7* comes from the cells e?, ete.
Xp+1/Xp — \/ Sp‘l‘l
Xpa = X"

Now let Y be obtained from 8”1 by killing all homotopy groups of St
higher than p + ¢ + 1. Our idea of proof is to pick an element in
m( X" /X", Y) in such a way that it cannot be pulled back by (p11)*. To
do this, we first show that the homomorphism

11 (X7, ¥) — m(X7/X7, ¥)

does not cover the factor m,(\/ 8™, V) in = (X*"/X?, Y). We consider
the following Puppe sequence

\/S}’——f—>X,,_1u Vel =X —X,— V8t —...
which induces the exact sequence

Te1(X?, V) = mga(V /sz')) = mg(V SJFH) =7 (Xp, Y)—vee.
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Let
xr -, X?/X pa
be the canonical projection. We have the commutive diagram

Te1(Xp1, V) = 7u(X"7,Y) = 0

!

7|'q+1(Xp; Y) — 7r11+1(\/ S.;p) Y)

A
%
T

£ 3

woV S Y) = wa(X7/ Xy, V) —L s (877, 7).
Since 7* is onto and f* is not, it is clear that the homomorphism
7rq+1(Xp7 Y)— 7rq+1(\/ S}H—l’ Y)

is not epic. Next, we observe that the image of =, (\/ S8?*, Y) in
Ter(XPT?/ X" Y) is trivial. To prove this, it suffices to show that the
attaching map ¢” in

Xppo/Xpa = (V8P us Vel ™) Uy CK' (Hpia(X), p)) U CK' (Hpio(X), p + 1
induces trivial attaching map from the (p + 1)-cells of K'(H,2(X), p + 1)

. . ” .
to e?™, i.e., the induced map g1 in

(VSIPN K (Hpn(X), p + 1)) upr \V &

(we will justify this later) is trivial when composed with the embedding when
restricted to \/ S?™. For if this were not trivial, we would have a nontrivial
homomorphism:

Hypu(V 8™ — Hpu(V S7T).

This is not the case because this homomorphism factors thru a trivial homo-
morphism as in the diagram

Hpa(\V 87 Hyp1(SPur V ey, CK' (Hpa(X),p)
) I
/I=0
Hppo(EK (Hpo(X)p + 1) — L Hy (K (Hpa(X)p + 1))
| projection

Hpn(V S:f:‘ V K (Hpa(X)p + 1))

Hy(V s:-’i‘) ® Hyp (X)

Hpa(V 8P,
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To complete the proof, let h:\/ 87" — Y represent an element that is
not in Im o’. By the remark above, [h] comes from m,(X?*?, Y); hence from
wo(X, Y). Thus h represents a nontrivial element in ,E%'?. Let d represent
the class [d] such that (i,11)*[d] = +'[h]. We argue that [d] is not in
Im (7 (Xp11/Xp,Y)). Supposeit were. Then [d] goes to zero in 7,(X,, Y)
and hence y[k] comes from 7 (X**/X,, ¥V) = m(\V 87", V) (see diagram
below). This is impossible.

=X"/X,,Y) = = (8 Y)
l
X Y) — (X" Y)
(i,,ﬂ)*] w ](i,,)*
(X, Y) — (X, )

We now justify the fact that after identifying \/ S7 to a point, the space
X peo/ X p1 will become

VST K (Hpa(X) uyg V &),
Lemma. Let
X = K'(@, p) u, CK'(G', p) = (V87 u Vef™) u, CK'(@, p),
where g ts homologically trivial. Then
X/VS8F =VS8PVK(@,p+1) forp>2
Proof. Consider the sequence
1p12(K'(G, p), V 8") = 1pa(V 87) = mpa(K'(G, p))

2 (K16, p), V 87) = mp(V 8) — G.
Since \/ 87 is (p — 1)-connected and \/ 87+ is p-connected, by Proposition 4,
1o (K'(G, p), V 8) = mpa(V SF™)

since p + 1 < 2p. Thus the homomorphism ¢ is trivial since (71 \/SZ™)
is just the kernel of 7,(\/ 8”) — G. Now the assertion follows from the
following diagram

0 — Bxt (&, mpua(K'(G, p)) — mp(6¢", K'(G, p)) —— Hom (&, G) — 0
lés=0 l |
0 — Ext (G, mpa(V 8FH)) = mp(@, V $7*) —= Hom (¢, ®Z;) — 0

because the element [g] lies in the kernel of .
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