
TWO THEOREMS ON SPECTRAL SEQUENCES

BY

YEL-CHIANG Wu

In this note, we prove the following theorems.

THEOREM 1. Let X and Y be two CW-complexes. Then the exact couple as-
sociated with the Postnikov decomposition of Y and the modified homotopy functor
r,(X, is isomorphic to the first derived couple associated with the skeleton de-
composition of X and the modified homotopy functor r, Y).

THEOREM 2. The spectral sequence associated with the skeleton decomposition
ofX and the modified homotopy functor -, Y) is isomorphic to that associated
with a homology deconposition of X for all CW-complexes Y, if and only if the
space X has no torsion.

We recall some basic facts in Section 1 and present the proofs of the theorems
in Section 2 and 3.

l. We recall that the Postnikov decomposition of a CW-complex Y is
sequence of maps

(1)

where
(i)

hp

every map is a fibration, and

rr(Y) rr(Y) for r

_
p

(ii)
wr(Yp) 0 for r > p.

Thus we see that the fiber of l is the Eilenberg-MacLane space
K(r+I(Y), p + 1). If we apply the modified homotopy functor r, (X, to
the sequences of maps

K(’+I(Y) p -+. 1) -- Y+ lp

the resulting exact couple is called the exact couple associated with the Post-
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nikov decomposition of Y and the modified homotopy functor rr,(X, with
D"q= rq+(X, h,,) rq(X, F,),

(2)
Ep’q "a’q+(X, l,) rq(X, K(rr,,+(Y), p 4- 1) ).

A homology decomposition [4] of the CW-complex X is a sequence of maps

ip+l

(3) * ::; X Xp+l X

/p+l
such that

(i) every map ip+I is a cofibration, and

Hr(X,) H,.(X) for r _< p
(ii)

H,.(X,) 0 for r > p.

Since the cofiber of ip+I is the Moore space K’(H,+(X), p + 1), we see [4,
Theorem 7.1’] that there is a map

u,," K’(H,+I(X), p) -+ X,
such that ip+l is equivalent to the canonical cofibration

Y, -- X, ,,,, CK’ H,+, Z p ).
We will henceforth consider X+I as so obtained. Again if we apply the modi-
fied homotopy functor rr,( Y) to the sequence (3), we have an exact couple
with

D"q -+(k’, Y) rq(X/X,,, Y),
(4)

E’ +(i, Y) ,(X,/X,,_, Y),
which we called the exact couple associated with the homology decomposition
o X and the functor r,( Y).
We need the following facts.

1. Let f" Y -+ Y= be a fibration. Then the exact sequence

-+ (x, y,) -+ (x, Y=) -+ (x, f) -+ o_(x, Y,) -+

is induced by the Eckmann-I-Iilton sequence

-+ aY, UY,. -+ E, o Y, f y.
where Es is the pull-back of the diagram

Es PY2

Y Y2

in which PY,. l" I --+ Y= 1(1) ,} and rr(1) l(0).
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2. Let g X2 - X1 be cofibration. Then the exact sequence

-(X, Y) - (X, Y) - (e, Y) _(X, Y)

is induced by the Puppe sequence

X X X CX ZX
Zg
X

3. Let h, h be two cohomology theories stisfying the Eilenberg-Steenrod
axioms and the "wedge axiom"

h( h(S ), j 1,2.

Let r, r h h be two functor-morphisms. If

then
(,) (,) h(,) - h(,),

(X) (X) h(X) - h(X),

provided that X is finite dimensional.
4. Cf. [4]. Let Y -- X be a cofibration with cofiber F. Assume that all

spaces are 1-connected. If Y is ( 1)-connected and F is (1 1)-con-
nected, then the homomorphism d: m(i) - m(F) is an isomorphism for
m<]l- l and an epic if m ]+1- 1.

2. Proof of Theorem 1.
lemmas.

We break the proof of theorem I into the following

* Xp jp+l
Xp+I Xo

gp+l

Applying the modified homotopy functor ,(
couple with

LEMMA. 1.

Y) to (5), we have an exact

D,p.q rq+(gP, Y) r,(X/X"-1, Y),

E’p’q= ’q+l(ff, Y) rq(XP/Xp-, Y).

There is a natural isomorphism

(KP-q-I)* 71-q(X/XP-q-I, Fp) np’q

where F, is the fiber of hp Y Y.

LEMMA 2. D’q -- Dtlp-q’q
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Proof. We consider the diagram

q+I(X/XP-q,yv) ., rq+(X/X’-q-,y)

"(X/XP_q,F)
a..., -q(X/X’-q-,F) q(X-q/X-q-,F)

where i F Y and all the rows and columns are exact. Since all homotopy
groups of Y higher than p are zero and F is p-connected, we have

+(X/X-, Y,) (X/X-, Y) (X’-VX--, F) 0

Therefore we have

q(X/X-q-, F) Im a’ D;TM

To show i, is natural, we consider the diagram

where e" F+I -- F and g’P-q X/Xp-q-1
"- X/Xp-q. We see that triangle 1

is commutative because i+ i e; triangle 2 commutes evidently; and
square 3 commutes because (i), is natural. Hence the outside square is com-
mutative. Next we note that the following diagram

a (e),
q(X,F+I) q(X,F,)

rq(X/X,_q,F,+ (g-q)*(e,). vq(X/X,_q_l,F,)

is commutative. Hence we have the natural isomorphism

DP--q ’qip* gP-q-1)-I D,q _.

To avoid too many symbols, we use the same notation for two homomorphisms if
they are induced by the same map.
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LEMMA 3. There is a natural isomorphism

Proof. We produce the isomorphism as follows. Let Z be the kernel of

Z rq(Z*’-q+’/z’-q, Y) ._.+ (X,-q+I/Xp-q+, Y)

We look at the diagram

"’ Y" (5/(P-q+l g(r+l(Y), p+ 1))0-+ rq(X/X g(r+(Y), p+ 1))

From lemma 2, we know that ker 5’ DPlp-q+l’q-1 is isomorphic to Im ip,.
Hence

ker/’y’ ker (h+,),u’ ker , Im

which is isomorphic to rq(X/X’-q, K(r,+(Y), p q- 1)), i.e.,

s (/c+,)- fl"-(h+,), "Z >-’, ’,(X/X’-q,K(’,,+,(Y),P q- 1))

Now we let j’ be the homomorphism

Z ::s_, r(X/X,-q, K(rm-a(Y), p q- 1))
(g’-),

rq(X/Z’--, K(rr+(Y)p q- 1))

rq(X, K(,,+,(Y), p "k 1)) EE’q.

The homomorphism (g’-q)* is epic because of the exact sequence

rr(X/X’-q, K(rq,+(Y), p q- 1))

Consequently, j’ is an epic.
natural, j’ is a natural epic.

Let B be the image of 5’y’.

.-+ rq(X/X’-q-’, K(rr(Y), p q- 1))

"--"> "Ir’q(XP-q/xp-q-l, K(rr(Y), p nt- 1) 0

Since each homomorphism constituting j’ is

ThenE-q+l’q Z/B.
If we write out the appropriate diagram, we see that j’ induces an iso-

morphism

j. E’-+*. _+ E,.
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/-IF"p-q

COROLLARY 4. E-q+x’q HP-q+I(X, ’+I(Y)).

Proof. The assertion follows from the fuct that
ob

rq(X, K(r_I(Y), p + 1)) HP-q+I(x, +(y))

by obstruction theory.
We cn, of course, prove Corollary 4 by direct computation nd then deduce

the fct that

z(X, K(+(Y), p- 1)) H-+(X, +x(Y)).

Then it is not difficult to verify that this isomorphism n is the sme s the ob-
struction isomorphism ob by using Proposition 3 of 1 to show that ob.n is

the identity transformation of H* ,(Y)). We need this fct lter nd
will give proof lter (lemm 7).

LEMMA 5. The diagram

D;-q,q __fl, , Elp-q+l,q

i commutative.

Proof. he assertion amounts o showing ha he square i of ghe following
diagram is commutative.

(x/x’ y) (g’-)* (x/x--’, ) .(x/x (+,(Y), p + 1))

Since square 2 is commutative and (g’-")* are epic, it suffices to show that
diagram 1 plus 2 is commutative. Recall that we have maps

h" Y Y, -- X X/X-"-,
and

,+," K(+(Y), p + ) Y+.
Let us introduce the following notations"

5" F--> K(+(Y). p + ))
and

q,-,. X--,-1/X,-, X/X-".
From the definition of ’, we have

’,(.-,)*(i), (-,)*(i),.



Hence

where (K-q-1) *jl j.

we may write

,-), e,-),2( (i),-= ],+)-lP-(h+),(q’-q)*(i,),
(g’-q)*(k+)(h+),(i),

In view of the homotopy commutative square

F , Y

K(r+(Y), p + 1) Y+

j,;(z’-)*(i), (z’-)*(h),
(h),(e,-),
(g,-)*.

This completes the proof.

LEMMA 6. The diagram

commutes.

Proof. Let f X --> qK(’+(Y), p -t- 1 represent an element in

rq(X, K(-I( Y), p - 1) E’q.

Since K(r+I(Y), p -t- 1) is p-connected we may assume that f[Xp-q O.
In view of Proposition 1 of Section 1, is identified with the homomorphism
induced by the map

q-r qK(rI(Y). p - 1)) -* q-F+l
as in the cartesisn diagram

K(r(Y), p + 1) K(I(Y), p "t- 1)

lr+
F,+ PK(’+(Y), p + 1)

F f
:) K(,+(Y), p -I- 1).

To avoid too many symbols, we use these rather ambiguous notations. There
should be no confusion if one writes out the corresponding commutative diagram.
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Then 7(/) is given by the element represented by in the commutative
diagram

x/x- f. eK(+(Y), p + ) a-’r+, _,. a-i _y

X/Xp-q
U CxP-q+l/X’-q

The map f’ can be described as follows:
Since F,+ is (p + 1)-connected, we have an isomorphism

-q(X’-q+/X"-q, F,) f’" "lrq(XP-q+i/xP-q, K(r(Y), p + 1))

Let f" represent the eounterimage of [f lX’-q+*/Xq]. Let

f’ X/X
be defined by

if(x) aq-rf(x) (,,f(x)), xeX/Xv-q

if(x, t) (f"(x)(t),f(x),), (x,t)

wheref(x), is a path on q-K(r,+(Y), p + 1) given byf(x),(r) f(x)(rt).
We see thatf’ is actually map forf’(x, 1) (f" (x) (1), f(x)) (,,f(x))
since f" (x) is a loop on ]q-F, and

f,f"(x)(t) f,.(f")(x, t)

for (x, t) e CX’-q+/X"-q.
If we assume that the natural isomorphismj- coincides with the obstruc-

tion isomorphism ob, we see that

which can be represented by the map

ftt! x_q+l/xp_q .--> flq-ly
given by

if(x, t) (hl)-(kl),f(x)(t)
Thus

/3 (f)(x, t) (s’-q+)*(hv+)-(kl),f(x)(t),

where s-q+ is the map,

X/Xp-q u CxP-q+I/XP-q .--+ xP-q+I/X-q,

in the Puppe-sequence for the map XP-q+I/XP-q X/XP"qo NOW

/()() i,+,(, f(x)), x x/x-
i’($)(x, t) ix(f"(x)(t),f(x),), (x,t)

d.q(J, *) is the difference coehain of f and the constant map *.
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Since i+1 i e, we my write

i, (f) (x) for x e X/X’-q

i’y(f)(x, t) i,f’(x)(t) for (x, t) eCXP-q+I/xP-q

If we regard Y+I as obtuined from Y by killing homotopy groups higher thun
p 1, we see immediately that

.1. (f) (x) ,, x z/z-for s-q+ is the collapsing mp, and
"--1 Cxp-q+l/xp-q
2 (f)(x, t) (lc+),f(x)(t) (x, t) e

+f()(t)
which is clearly equal to i,f"(x)(t) in view of the homotopy commutative
diagram

K(+I(Y), P + 1)

p+l

So now it remains to prove

LEMMA 7. The isomorphism j- is just the obstruction isomorphism.

Proof. By the remtrk we mnde ufter Corollary 4, we need only show thut
.? and the obstruction isomorphism ob coincide when X In this
ce j-" (S, K(,+(Y), p + 1)) H-q+(S, v+(Y).) for q p + 1,
is the zero homomorphism nd

--1 H3 .,+(0, n(+(y) p + )) (0, ,+(y))

is given by
,? ] hp+)-l qv-q l+ ,- (e’’-)

(+,);’ (,+,) ,If]-

ob[f] d(f, ,) (hp+)l(]p+),[f].

Hence the proof is complete for Theorem 1.

COROLLARY 8. When X is finite dimensional, there is a spectral sequence
with Ep’q ’q(XP/Xp-I, Y) converging to the graded group associated with
r,(X, Y) filtered by the kernels of -,(X, Y) -- ,(X, Y). In particular, we
show that if X is a finite dimensional polyhedron and Y G a topological group,
the Shih spectral sequence coincides with that of Atiyah-Hirzebruch for K-theory
[2].
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Remarks 1. The proof of Theorem 1 is quite conceptual until it breaks
down in Lemma 6. In proving Lemma 6, we actually assume Corollary 4 in
order to have Lemma 7. However, Corollary 4 holds without Theorem 1.
In the Shih spectral sequence, the Kan definition of homotopy groups is used.
As X is a finite-dimensional polyhedron, the two definitions coincide.

2. We actually proved Theorem 1 in the relative form, i.e., we use the
functors rr,(f, and rr,( g) instead of ,(X, and r,( Y) sincef
is a cofibration and g a fibration, we can always replace them by its cofiber
and fiber.

3. Proof of Theorem 2. It is well known that homology decompositions of
a space are not homotopy invariants [1]. The following example shows that
their associated spectral sequences are not homotopy invariants.

Let n >_ 7 be an integer. Let h represent the generator of the group
vn+6(S) Z2. Let h’ be an extension of h to Sn+6u 2&+7 where integer 2
indicates the degree of the attaching map. Let/c S+5 u e+ S+ be the
collapsing map.

+7 h’

(6)

Let

Then the sequences
n-l-7SX+
Pn-t-7S X+ X

re two (non-homotopie) homology decompositions of X, where kn+7 is the
enoniel embedding nd ktn+7 is defined as follows

k’n+7 (X) X for x S

k’"+(x, t) (jkx, t) for (x, t) e C(X+Su =e"+6).
This example is a special case of the Brown-Copeland example [1].
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+(X+, Y)

We now show that the spectral sequences associated with these two decom-
positions re different. Let Y Sn+q+l. If we apply the modified homotopy
functor r,( Y) to the first decomposition, we have a spectral sequence
which we may represent by diagram as follows"

(x, Y)

... >. %+,(X, Y) --> %(zS+ u =e"+, Y) %(X.+, Y).

The horizontal sequence is induced by the Puppe sequence

S X+ --+ (S+ e+) -+

_.+ y)Now it is evident that from the way y, is induced, y, maps (2:S"+ u =e
isomorphically onto the direct factor (2S"+ u .e"+) of rr(X,+, Y) and

_n+6that r+(Y,Sn+5 u 2e in r+(xn+6, Y) is in the image of (k"+7) *. Since/’1 is
trivial, we see immediately that

’-t(Im (/c"+7 (S+, Y) -+ (,, Y))rEg+6’q 3’t ),)//’l(ker (r+l r+

(28.+5 ,+6 y)7rq U 2e

which we will soon show is isomorphic to Z=.
Similarly, we apply the functor r,( Y) to the second decomposition to

obtain the spectral sequence represented by the diagram

y) a= 5
r ++5 -"+ " Y)

+(+, Y)

We want to show that k’h* is nontrivial and then to calculate the rrE+ term
of the spectral sequence. Since n + q + 1 < 2(n + q + 1) 1, we have,
by the suspension theorem,

+(S"+, Y) +(8"+, S"++) Z:.
From the sequence

+(8,+, y)_ X2: +x(S"+, Y)
k* (S"+ u e"+, Y)

(z-+, Y) (z-+, Y)
we see that

(2S+ "+ Y) (S"+, Y) Z.7rq U 2v ’q+l
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since r+() 0 for m _> 7. By our choice, h* sends the fundamental class
in rq+l(S, Y) to the generator [h] of rq+l(S"+6, Y). Hence h* is epic. In
view of all these data, we have

zrEn+6,q (’)’-l(Im k’n+7)/Im )
_

"/i’q+l (k.nq-5
U 2e+6, Y)/Im k’h*--- Z#Z. O.

Therefore we conclude that the two sequences are not the same. As a con-
sequence, we see that the two homology decompositions are not homotopic.
This example also kills the hope that the spectral sequence associated with a
homology decomposition is isomorphic to that associated with the skeleton
decomposition since we saw that the latter is homotopy invariant. However,
in [1], some sufficient conditions on the space X are given to insure that all
homology decompositions of X are homotopic. Then one may ask again
whether, in this case, the spectral sequence associated with the homology
decomposition is isomorphic to that associated with the skeleton decomposi-
tion. The answer to this question is again negative as we see from the fol-
lowing example.

Let X S o e+, p > 1. Clearly, X admits only the trivial homology
decomposition. The infinite term E+’q Of the corresponding spectral se-
quence is clearly trivial since Ep+’q 71"q(X:p+l/X:p Y) rq(X/X, Y) O.
On the other hand, the spectral sequence associated with the skeleton decom-
position

can be represented by the diagram

’ S+, Y) -q+I(S, Y) rq (X+/X, Y) rq(X, Y)

If we let Y S+q+l, f’ is simply multiplication by/c. Hence the term

E+’q -(z(X, Y)/Im B’ =Z # O.

We saw in the above example that the non-triviality of the attaching map
is really the reason why the two spectral sequences do not coincide. Thus we
are led to think that when there is torsion in the space X, the two spectral
sequences are different. This turns out to be true.
We now begin our proof of Theorem 2. Let j+l :X -+ Xp+ be the in-

clusion map. To prove the theorem, we need only show that if X has torsion,
the spectral sequences will be different. So let us suppose there is a least
integer p such that H,,(X) has torsion, i.e.,

K’ (Hr,(X), p 1) / S- u.t / e’
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with f S’o -+ Si0 essential for some io, jo. The relation between the spectral
sequences in consideration can be expressed by the commutative diagram

%(X, Y)
(X, Y)

%(X,+2, Y)

T’q+l(Xp, Y) "/I’q(X;p+l/X:p Y) ---’--)" TC’q(Xp+D Y)

where k+ X+/X ---> X+/X is the induced map between the cofibers of
X" X and X X+,. We try to show that there is an element in
E.q of the spectrM sequence associated with the skeleton decomposition which
is not in the image of the induced mp of spectrM sequences. For this purpose,
we make explicit the following spces"

X+x X_ u C(V Sf- u] V ey) u CK’(H+(X), p),

X+ X_ u C(V S- u V e) u, V d+,
g’ g[ (p + 1) cells of K’(H+(X), p).

X+/X V SY+ V S+,
where Sy+1 comes from the cells ey, etc.

p+lX /x V
X_ X-x

Now let Y be obtained from S++ by killing all homotopy groups of S+a+

higher than p + q + 1. Our idea of proof is to pick an element in
r(X’+/X, Y) in such a way that it cannot be pulled back by (i)*. To
do ts, we first show that the homomorphism

.+(x, Y) .(x+’/x, Y)

does not cover he factor r(V SY+, Y) in r(X+/X, Y). We consider
he follong Puppe sequence

VSY f -XoVef XXVSy+
which induces the exact sequence

rq+,(Xp, Y) -- rq+,(V S}’) r(V S+1) --+ rq(X, Y) -- ....
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Let

X"/X,_

be the canonical projection. We have the commutive diagram

+(x_, Y) +(x-, Y) o

+,_(x, Y) +(V s, Y)

r(V S+’, Y) +(X’/X-,, Y) v(xj S+, y).

Since s onto and is not, it is clear that the homomorphism

+(x, Y) + +(Vs+*, Y)
is not epic. Next, we observe that the image of a(S+, Y) in
a_,(X’+=/X"+, Y) is trivial. To prove this, it suffices to show that the
attaching map g" in

x,+=/x,_, (V ZY u V eY+) u CK’(H,(X), p) uo,, CK’(H(X), p +
induces tribal attaching map from the (p + 1)-cells of K’(H,+(X), p + 1)
to ey+, i.e., the induced map g’ in

(V S+ V K’(H,+,(X), p + )) u,, V e+

(we 11 justify this lter) is tribal when composed with the embedng when
restricted to Sy+. For if this were not trivial, we would have a nontrial
homomorphism:

H,(V ’+*) -- H,(V Z+).
This is not the case because this homomorphism factors thru a trivial homo-
morpsm as in the diagram

H,+(V S,+I) H,+(Sfu, V e’+u, CK’(H,(X),p)

H,+=(ZK’(H,+=(X),p + ) * H+,(K’(H,(X),p + ))
projection

,q.+i K’H,(V - V (H,+,(S),V + i ) )
v

g+(V sf+) g+
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To complete the proof, let h" /S+1 -- Y represent an element that is
not in Im a’. By the remark above, [h] comes from rq(Xp+, Y); hence from
rq(X, Y). Thus h represents a nontrivial element in 8E’q. Let d represent
the class [d] such that (i+)*[d] ’[h]. We argue that [d] is not in
Im (q(X/X, Y)). Suppose it were. Then [d] goes to zero in q(X, Y)
and hence [h] comes from (X+/X, Y) (S+, Y) (see diagram
below). Th is impossible.

p+l [p+l,(x /x,Y) Y)

r(X Y) ..> %(X", Y)

We now justify the fet that fter identiffing S to point, the spce
X/X_ ll become

.+ K’ e+*)V- V (H(X) oor V
Ls. Let

x K’(a, p) o CK’(a’, p) (V Sf o V e+’) oo cg’(a’, p),

wre g is homobgically trivial. Then

X/ Sf S+ K’(G’, p + 1) for p 2

Proof. Consider the sequence

.,(g’(a, p), V S) +,(V S) .(K’(a, p))

6-, .(K’(a, p), V S) (V) a.
Since S is (p 1)-connected nd S+ is p-connected, by Proposition 4,

.(K’(a, p), V S) .,(V S+’)
since p + 1 < 2p. Thus the homomorphism is triviM since (r+S+x)
is just the kernel of r( S) G. Now the ssertion follows from the
following dimm

0 .Ext (G’, r,(g’(G, p)) r(V’, K’(G, p)) n:: Horn (G’, G) 0

0 Ext (G’, r+(V S+X)) r(G’, V S+’) Y=: Hom (G’, @g) 0

because the element [g] lies in the kernd of y.
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