ONE-FLAT SUBMANIFOLDS WITH CODIMENSION TWO

BY

HIROSHI NOGUCHI¹

The following is in the *PL*-category. Manifolds are orientable and oriented and homeomorphisms are onto and orientation-preserving.

Some of the deep results recently obtained by C. T. C. Wall [8] and the theory of block bundles [7], [3] enable us to generalize a result by the author [5], [6] as follows. (For terminology, see [5], [6].)

THEOREM. Let (M_i, W_i) be one-flat (n, n + 2)-manifold pairs, let N_i be regular neighborhoods of M_i in W_i , i = 1, 2, and let $f: M_1 \rightarrow M_2$ be a homeomorphism.

Then f extends to a homeomorphism $g: N_1 \to N_2$ if and only if $f_* \chi_1 = \chi_2$ and the singularities at x and fx are the same for each point $x \in M_1$, where χ_i is the Euler class of (M_i, W_i) .

(In [5] χ_i was called by the Stiefel-Whitney class.)

It is shown to be true by C. T. C. Wall [8] that each locally flat (p, p + 2)elementary (i.e., sphere or ball) pair (M, W) is *collared*, that is to say, a regular neighborhood N of M in W is $M \times B^2$, where B^2 is a 2-ball.

Let T be the frontier of N which is an admissible regular neighborhood (i.e., $N \cap W$ is a regular neighborhood of M in W and N admissibly collapses to M) of a locally flat elementary pair (M, W). Then $T = M \times S^1$ where S^1 is a 1-sphere $B^{\cdot 2}$. A *p*-cycle mod T denoted by $M \times 0^1$, and a 1-cycle $0^p \times S^1$ are called *longitude l* and *meridian m* of T respectively where 0^1 , 0^p are points of S^1 and of the interior M° . (The cycles should be consistent with the orientation of M, W, see [6].)

The theorem has been proved for $n \geq 3$ in [5], [6] (where it is assumed that the manifolds M_i are closed). The stumbling block was the following lemma for dimension p = 3. In the lemma, ρ_* means the homomorphism between homology groups with integer coefficients induced by ρ and \sim means homologous.

LEMMA 1. Let (M, W) be a locally flat (p, p + 2)-elementary pair and let N be an admissible regular neighborhood of (M, W). Let $\rho: N \to N$ be a homeomorphism such that $\rho \mid M =$ identity and $\rho_* m \sim m$ on T and $\rho_* l \sim l$ on T mod T. Then ρ is pseudo-isotopic to the identity in N.

Received July 5, 1967.

¹ The author was a Senior Foreign Scientist Fellow in Mathematics visiting the University of Illinois in 1966–67, and supported partly by the National Science Foundation.

Proof. The similar lemma is true for p = 1 by the classical Baer theorem, see [6]. Let us assume that $p \geq 2$.

At first we note that $\pi_p(\tilde{P}L_2) = 0$ if $p \neq 1$, for notation, see [7]. By Theorem 3 of [8] and Theorems 5.6 and 5.7 of [7] we have $\pi_3(\tilde{P}L_2, PL_2(I)) = 0$. Since $PL_2(I)$ has the homotopy type of the orthogonal group O_2 by Lemma 3 of [8], $\pi_2(PL_2(I)) = 0$, and hence $\pi_3(\tilde{P}L_2) = 0$ by the exactness of the homotopy sequence. Then by the corollary B1 of [3, Part II], $\pi_p(\tilde{P}L_2) = 0$ if $p \neq 1$.

Let K, H, J be subdivisions of M, N, W such that K, H are subcomplexes of J. Then by Theorem 4.3 of [7] there is a 2-block bundle ξ over K with N as the total space. Let ξ_P be the principal $\tilde{P}L_2^p$ -bundle over K associated with ξ . Since N is a collar of (M, W), ξ is trivial and there is a cross section $s: K \to E(\xi_P)$, the total space. By Theorem 4.4 of [7] it may be assumed that $\mu: E(\xi) \to E(\xi)$ is an automorphism. For each k-simplex Δ_i^k of K,

$$s(\Delta_i^k)^{-1} \cdot \rho \mid E(\xi \mid \Delta_i^k) \cdot s(\Delta_i^k) : \sigma^k \times I^2 \to \sigma^k \times I^2$$

is an automorphism of the trivial block bundle, where σ^k is the standard k-simplex. Then we may define a map $f: K \to \tilde{P}L_2$ by taking

$$f(\Delta_i) = s(\Delta_i)^{-1} \cdot \rho \mid E(\xi \mid \Delta_i) \cdot s(\Delta_i)$$

for each simplex Δ_i of K; for a map see [7]. Since the process can be reversed, we say that ρ and f are related to each other (with respect to the cross section s).

Now suppose that (M, W) is a sphere pair. Since $\pi_p(\tilde{P}L_2) = 0$, there is a homotopy

$$F: K \times I \to \tilde{P}L_2$$

between f and the identity. Let $r: K \times I \to \tilde{P}L_2$ be an extension of s (for example, r is the composition of the projection $p: K \times I \to K$ and s). Then the automorphism

$$\eta: E(\xi \times I) \to E(\xi \times I)$$

of the product bundle $\xi \times I$ related to F (with respect to r) is a pseudoisotopy between ρ and the identity.

Next suppose that (M, W) is a ball pair. Then

$$\rho^{\cdot} = \rho \mid E(\xi \mid K^{\cdot}) : E(\xi \mid K^{\cdot}) \to E(\xi \mid K^{\cdot})$$

is a homeomorphism which satisfies the condition of Lemma 1 where M, N, Ware replaced by $M', N \cap W', W'$ respectively. Since (M', W') is a sphere pair, there is a pseudo-isotopy between ρ' and the identity by Lemma 1 for sphere pairs. Let

$$F: K^{\cdot} \times I \to \tilde{P}L_2$$

be a map related to the pseudo-isotopy. Then $F | K^{\cdot} \times \{0\} = f^{b}$ (the map

related to ρ) and $F | K' \times \{1\}$ = identity. Let us define a map

 $g: (K \times I)^{\cdot} \to \tilde{P}L_2$

by $g | K \times \{0\} = f$ (the map related to ρ), $g | K \times \{1\} =$ identity and $g | K \times I = F$. Since $(K \times I)$ is a *p*-sphere and $\pi_p(\tilde{P}L_2) = 0$, *g* extends to $G : K \times I \to \tilde{P}L_2$. Then the pseudo-isotopy related to *G* is the required one.

Now following Gluck [2], we have

COROLLARY 1. The group of pseudo-isotopy classes of automorphisms of $S^p \times S^1$ for p > 1 is isomorphic to $Z_2 + Z_2 + Z_2$.

See [1], [4] for comparison.

COROLLARY 2. There are at most two knots (S^p, S^{p+2}) p > 1, which have equivalent complements.

For higher dimensional knots, see [6].

Let us review some notions used in [5], [6]. Let (M, W) be an (n, n + 2)manifold pair and (K, J) a full subdivision of the pair. Let Δ be a q-simplex of K. Let ∇ , \Box denote n - q, n - q + 2-balls which are dual to Δ in K, J respectively. Then (∇, \Box) is an (n - q, n - q + 2)-ball pair such that $(\nabla, \Box) = x * (\gamma, \Gamma)$, the join of the barycenter x of Δ and (γ, Γ) where γ, Γ are isomorphic to the first barycentric subdivision of links Lk $(\Delta, K)'$, Lk $(\Delta, J)'$ respectively, see [6], so that (γ, Γ) is an (n - q - 1, n - q + 1)elementary pair, i.e., (γ, Γ) is a sphere pair if the interior Δ° is in the interior M° and (γ, Γ) is a ball pair otherwise. By \mathfrak{R}^{q} , \mathfrak{SC}^{q+2} we denote polyhedra consisting of dual balls ∇, \Box respectively where $\Delta \in K - K^{n-q-1}$. They may be regarded as subcomplexes of K', J' respectively such that $\mathfrak{R}^{n} = K'$ and $\mathfrak{SC}^{n+2} = N(K, J')$, the star neighborhood. We say that (M, W) is flat at a point x of M if the star pair $(\mathfrak{St}(x, K), \mathfrak{St}(x, J))$ is flat and that (M, W)is q-flat if (M, W) is flat at each point $x \in K - K^{q-1}$. We say that (M, W) is *locally flat* if it is 0-flat.

The following lemma will be proved by induction on p assuming the lemma is true for p - 1, because it has been proved for p = 1, 2, see [5], [6].

LEMMA 2. Let (M_i, W_i) be (n - p + 1)-flat (n, n + 2)-pairs and let (K_i, J_i) be full subdivisions, i = 1, 2. Let $f: M_1 \to M_2$ be a homeomorphism which is simplicial with respect to K_1 and K_2 such that $f_* \chi_1 = \chi_2$ and the pair $(\gamma_{1j}, \Gamma_{1j})$ is homeomorphic to $(\gamma_{2j}, \Gamma_{2j})$ for each pair of corresponding (n - p)-simplexes Δ_{1j} of K_1 and $\Delta_{2j} = f\Delta_{1j}$ of K_2 . Then there is a homeomorphism $g^p: \Im C_2^{p+2} \to \Im C_2^{p+2}$ such that $g^p | \Im_1^p = f$ and $g^p \square_{1j} = \square_{2j}$ for each pair of r-simplexes Δ_{ij} of K_i $(r \ge n - p, i = 1, 2)$.

Proof. Since (M_i, W_i) is (n - p + 1)-flat, $(\gamma_{ijk}, \Gamma_{ijk})$ is flat for each (n - p + 1)-simplex Δ_{ijk} of K_i [5], [6]. By the inductive hypothesis there is

222

a homeomorphism $g^{p-1}: \mathfrak{M}_1^{p+1} \to \mathfrak{M}_2^{p+1}$ satisfying the conditions. By [6] $U_k \square_{ijk}$, say N_{ij} , is an admissible regular neighborhood of γ_{ij} in Γ_{ij} where Δ_{ijk} are (n - p + 1)-simplexes incident with an (n - p)-simplex Δ_{ij} of K_i . Since (M_i, W_i) are (n - p + 1)-flat, the (p - 1, p + 1)-pairs $(\gamma_{ij}, \Gamma_{ij})$ are locally flat [6]. By the corollary to Theorem 3 of [8] $(\gamma_{ij}, \Gamma_{ij})$ are collared. By the construction of g^{p-1} it is verified that

$$g^{p-1} | N_{1j} : N_{1j} \to N_{2j}$$

is a homeomorphism such that $g^{p-1}\gamma_{1j} = \gamma_{2j}$, $g_*^{p-1}m_{1j} \sim m_{2j}$ on T_{2j} , $g_*^{p-1}l_{1j} \sim l_{2j}$ on T_{2j} mod T_{2j} where m_{ij} and l_{ij} are meridians and longitudes of T_{ij} which are the frontiers of N_{ij} .

Since $(\gamma_{1j}, \Gamma_{1j})$ is homeomorphic to $(\gamma_{2j}, \Gamma_{2j})$, there is a homeomorphism $\theta: \Gamma_{1j} \to \Gamma_{2j}$ such that $\theta\gamma_{1j} = \gamma_{2j}$. By Theorem 4.4 of [7] it is assumed that $\theta N_{1j} = N_{2j}$ and

$$\boldsymbol{\rho} = g^{p-1} \boldsymbol{\theta}^{-1} \mid N_{2j} : N_{2j} \to N_{2j}$$

is a homeomorphism which satisfies the conditions in Lemma 1. Hence ρ is pseudo-isotopic to the identity in N_{2j} . Using a collar of N_{2j} in Γ_{2j} we have a homeomorphism $g'_j: \Gamma_{1j} \to \Gamma_{2j}$ such that $g'_j | N_{1j} = \rho \theta | N_{1j} = g^{p-1} | N_{1j}$. Since $(\nabla_{ij}, \Box_{ij}) = x_{ij} * (\gamma_{ij}, \Gamma_{ij})$, we have the conical extension $g_j: \Box_{1j} \to \Box_{2j}$ of g'_j . Then $g^p: \mathfrak{M}_2^{p+2} \to \mathfrak{M}_2^{p+2}$ is obtained by taking $g^p | \Box_{1j} = g_j$ for each Δ_{1j} of K_1 , completing the inductive step for p.

Proof of theorem. The necessity follows from [5], [6]. Let (K_i, J_i) be full subdivisions of (M_i, W_i) satisfying the conditions of Lemma 2. If p = n, then n - p + 1 = 1, $\mathfrak{R}_i^p = \mathfrak{R}_i^n = M_i$ and $\mathfrak{R}_i^{p+2} = \mathfrak{R}_i^{n+2} = N(K_i, J'_i)$, proving the theorem.

References

- 1. W. BROWDER, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc., vol. 128 (1967), pp. 155-163.
- H. GLUCK, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc., vol. 104 (1962), pp. 308-333.
- M. KATO, Combinatorial prebundles, Parts I and II, Osaka J. Math., vol. 4 (1967), pp. 289-303, 305-311.
- 4. ——, A concordance classification of PL homeomorphisms of $S^p \times S^q$, to appear.
- H. NOGUCHI, One-flat 3-manifolds in δ-space, Osaka J. Math., vol. 1 (1964), pp. 117– 125.
- 6. ——, Classical combinatorial topology, mimeographed lectures notes, University of Illinois, 1967.
- 7. C. P. ROURKE AND B. J. SANDERSON, Block bundles I, Ann. of Math., vol. 87 (1968), pp. 1–28.
- 8. C. T. C. WALL, Locally flat PL submanifolds with codimension two, Proc. Cambridge Philos. Soc., vol. 63 (1967), pp. 5-8.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS WASEDA UNIVERSITY TOKYO, JAPAN