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The lattice, D(X), of continuous extended (real-valued) functions on a com-
pact space X is used in virtually every representation theorem for "nice"
ordered algebraic systems (see [P] and [P,.] for roups, [JK] for linear spaces,
and [HJ] for algebras). In this note we inore the (partially defined) algebraic
operations and concentrate on the lattice structure of D(X). Specifically, we
answer the question "when does D(X) characterize X?" and ive a (partially
satisfying) answer to the question "when is the Dedekind completion of D(X)
isornorphic to D(Y) for some space Y?"
For the first question, we show tha if X is compact, then X may be con-

structed as the Isbell structure space of D(X) (see [IM]). It is evident that,
for noncompact (completely regular) X, D(X) is isomorphic to
where X is the Stone-ech compactification of X (see [GJ, Chapt. 6]).
For the second question, we show that the Dedekind completion of D(X) is

isomorphic to D(Y) for some Y iff it is isomorphic to D(X)whereX is the
minimal projective extension of X [G]and that the Dedekind completion of
D(X) is isomorphic in a canonical fashion to D(X) iff X is "-thin".
The author wishes to thank T. Memp for a conscientious readin of this

note.
Throughout this note, all given spaces are assumed to be completely regular

Hausdorff spaces.

1. D(X) and its prime ideals

Let X be a compact space; then D(X) is the set of all continuous functions
on X to the two-point compactification, /R of P, which are real-valued on a
dense subset of X (the dense set depending on the function). For f e D (X),
(f) denotes the subset of X on which f is real-valued, and (]) is its comple-
ment. By defining order pointwise, D(X) becomes a distributive lattice.
For r e P,, we will denote by r the constant function whose value is r. For

f A -- B and C A, ][C] denotes the set If(c) c e C}. For f e D(X), Z(])
denotes the set of zeros of f, and Z(f) is referred to as a zero-se$ of D(X).
A prime ideal of D(X) is a nonempty proper sublattice of D(X) which con-

tains an infimum f/k g iff it contains either f or g.
The theorem of this section shows that the set of prime ideals of D(X) is

composed of fibers, each fiber lying above a unique point of the space X.
For x e X, a e ,R, let

J(x, a) {feD(Z) f(x) < a} and I(x, a) [f eD(Z):f(x) a}.
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It is clear that J(x, a) and I(x, a) are prime ideals whenever they are non-
empty proper subsets of D(X).

THEOREM. Let X be a compact space and P a prime ideal of D (X).
for unique x e X, a e 7R,

J(x, a)

_
P

_
I(x, a).

Then

Proof. Suppose P contains no J(x, a).for a . Then, for n e N and
each x e X, there is f D(X) P with f(x) < -n. By compactness of X,
there are fl, f not in P such that inf {f" i _<: m} < -n. Hence no
element of P is bounded below by -n. Since this can be done for each n e N,
every function in P takes the value . For g D(X), let

-(e) Ix x" e(x) }.

Since f’l {9-(g) i

_
n} 9-(sup/g" i _< n} ), {9-(g) g eP} is a familyof

closed subsets of a compact space with the finite intersection property. Hence
there is an x in the intersection. In this case,

(0 )J(x, P

_
I(x, ).

SupposeP contains some J(x, a), a . Let

b sup Ia" J(x, a) P}.

Clearly J (x, b)

___
P. If b = + , then P

_
I(x, b) D(X)), so suppose

b e R. We will assume P I(x, b) and deduce a contradiction. Let f P
with/(x) c > b;we canassume c < + sincef P impliesf/ (b + 1) eP.
Let g D(X) with g(x) 1/2(b + c). Let U be an open neighborhood of x
whose closure is contained in

y’g(y) < f(y)} n 6t(g).

LetheD(X) with h(x) b 1 andhlx~v glx~v. Thenh,J(x,b) P and
h /f >_ g. HenceP

_
J(x, 1/2(b + c)), contradicting the definition of b. We

have shown that, in any case, J (x, b)

_
P

_
I(x, b) for some x and some b.

Letxy. IfJ(x,a) _I(y,b),theneithera= -oo orb +;forif
a -,b +,thereisfC(X) withf(x) a- lndf(y) b+ 1.
Hence, if

J(x, a) P

_
I(x, a) and J(y, b) P

_
I(y, b),

then either

or
a=b=-

a=b=+

(and P I(x, a I(y,

(and J(x, +) uJ(y, +) P).

Now, suppose P I(x, a I(y, ). Let f e P (since f/k 0 P, we
can suppose if - 0). Let U, V be open neighborhoods of x, y, resp. with dis-
ioint closures. Let g D(X) be defined as follows: g’(x) O, g’(z) f(z)
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for z e bdry U--extend g’ over cl U (Ix} u bdry U is compact, hence C*-em-
bedded [GT, 1.17]) so that g’ <_ O, and let g’ ]x~v f I~ g’ is continuous;
let g g’ / f. Then 9(g) -(g) -(f), so g e D(X), g(x) O, and
g lx~v f l:~v Let h e D(Z) with h(y) 0 and hl~ flx~v. Then
g/h_<f, sog/heP--butgI(x, ), hence g P; and h e I(y, o ),
hence h P. This contradicts primeness of P. Thus, in this case, x y. For
the last case, suppose

J(x, - u J(y, - P.

LetfP. As above, letg, h.D(X) withg/h >_f,g(x) O,h(y) 0;
then g e J (x, - ), h e J (y, -t- o ), so g /h e P--a contradiction. This con-
cludes the proof of uniqueness.

It should be remarked here that there usually are prime ideals strictly be-
tween J(x, a) and I(x, a), and that these need not even form a chain.

Example. (This is an easy modification of an example of Kaplansky [K, 3].)
Let M (resp. L) be the set of functions f in D([- 1, 1]) for whichf(x) <_ -I x
for all x >_ 0 (resp., for all x _< 0) in some neighborhood of 0. Then M and L
are ideals. Let M’ (resp. L’) be the set of all f in D([-1, 1]) for which
f(x) >_ Ix] for all x >_ 0 (resp., for all x _< 0) in some neighborhood of 0.
Then M’ andL’ are dual ideals of D([-1, 1]). By [$1, Theorem 6], M andL
are contained in prime ideals P, Q, disjoint from M’ and Lr, resp. Since M
meets L andM meets L, P and Q are not comparable; clearly both lie between
J(0, 0) and I(0, 0).

Theorem 1 leaves completely untouched the problem of describing the sets
of prime ideals between J(x, a) and I(x, a). This question will have to be
examined before there is much hope of solving the problem of recognizing
D(X)" given a lattice L, when is L isomorphic to D(X) for some space X?

2. Recovery of X from D(X)
Let L be an arbitrary distributive lattice. We repeat Isbell’s definition of

the structure space K(L) of L [IM]. Define the relation k on the set of prime
ideals of L to be the smallest equivalence relation containing "". In the
case of D(X), the/c-classes are just the fibers over points. The/c-class of a
prime ideal P will be denoted [P]. Topologi,e the set K(L) of k-classes of
prime ideals of L as follows" a class c is an immediate limi point of a set
H (L) if the members h of H have representativesP whose kernel FIP
is nonempty and contained in some representative P of c. Then c is a limi$

poin$ of H if it is an immediate limit point of some subset of H. For a proof
that this defines a topology, see [IM].
Note that if f belongs to a prime ideal P of D(X) and g _< f on a neighbor-

hood U of x, where J(x, a) P I(x, a), then g e P. For, if a _> 0, let
heD(X) with h(x) < a and hl~u gig~v; then heJ(x, a) P and
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h /f >_ g;if a _< 0, let beD(X) with h(z) > a, h[x_v f]:_v;then
hI(x,a) Pandg/h <_f, sogeP.

THEOREM.
pact.

The structure space K(D(X) is homeomorphic to X if X is corn-

Proof. Define h’X ---> (D(X)) by h (x) [[(x, 0 )].
it is clear that h is a bijection. We prove that

From Theorem 1,

for xeX and S_ X, x ecl S iff h(x) cl h[S].

If x ecl S, then [I (x, 0) e cl [I (y, 0) y e S} follows from the statement
f(y) <_ 0 for all y e S implies f(x) <_ O.

Suppose x cl S. Let V be a closed neighborhood of x disjoint from cl S and
let W be a closed neighborhood of x contained in int V. Let {P,} be a set of
representatives of elements of h[S] and let f e l P,. Let Q be a representa-
tive of [I(x, 0)], and let g Q. Finally, let k’ be a continuous function on X to
-R such that k’lx.v flx_vandk’lw gl,. Letk (l’ /f) / g.
Then k e D(X) and k _< f on a neighborhood of each point of S, so k e l P,
also, k _> g on a neighborhood of x, so kQ. Hence P, Q. Thus
h(x) cl hiS].
As remarked above, if X is not compact, then D(X) and D(X) are iso-

morphic, so in general, (D(X)) is homeomorphic to X.
In view of this theorem it is (in some sense) possible to recover the lattice-

ordered algebra C(X) from the lattice structure of D(X) alone.

3. The Dedekind completion of D(X)
Let L be a lattice and M be a sublattice. Then M is order dense in L iff for

each e e L,
e sup {meM" m

_
el inf {meM’m >_. el.

The lattice L is Dedelcind complete iff every bounded subset has a sepremum and
an infimum. Finally, an order isomorphism q" L -- P between lattices is
complete iff whenever a supremum or infiuum exists ia L it is preserved by .

If L is a lattice, a pair (P, ) is a Dedeind completion of L iff is a complete
isomorphism of L onto an order dense subset of the Dedekind complete lattice
P. If a lattice L has a Dedekind completion, it is determined up to an iso-
morphism "leaving L pointwise fixed".
In investigating the above properties in the lattice D(X), it is frequently

enough to check only half of the condition, since f - -f is an order auto-
morphism of D(X).
For every compact space X there exists [G] a compact extremally disconnected

space X(R) (i.e., every open subset of X has open closure) and a continuous
map r ofX onto X which is tight (i.e., maps no proper closed subset onto
equivalently, every nonempty open subset of X contains the preimage of a
nonempty open subset of X). The pair (X, ) is called the minimal pro-
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jective extension of X, and it is characterized up to a homeomorphism "respect-
ing r" by the above properties.
For any X, the map r X -- X induces a lattice isomorphism r* of D(X)

into D(X) by sending f e D (X) to f o r e D(X) (since is tight, f o r is real-
valued on a dense subset of X).

THEOREM. For compact X, (D(X), *) is the Dedekind completion of
D(X) iff r*[D(X)] is order dense in D(X).

Proof. Let ff be an upper bound in D(X) of F

_
D(X), and let f’ e F.

Let Y (R (if) n 6(f’). Since Y is dense in the extremally disconnected space
X, Y is extremally disconnected [GJ, 1HI. By [S., 12], C(Y) is a Dedekind
complete lattice. Iet g e C(Y) be the supremum of {f IY -< f ef’ F}. Since
Y is C*-embedded in X[GJ, 1H], g has a continuous extension, h, overX h
is the supremum of F. Hence D(X) is Dedekind complete.,.

It remains only to show that r is a complete isomorphism (this argument is
patterned after a proof of E. C. Weinberg for C(X)). Let g be an upper,
bound in D(X) of F D(X) and suppose r (g) is not the supremum of
r*[F]. Then there exists r > 0 such that

{xeZ" r*(f)(x) +r < r*(g)(x) for all feF}

has nonempty interior. Since r is tight, there is a nonempty open subset U of
X such that r* (f) (x) -}- r < * (g) (x) for all f e F whenever r(x) e U. Hence
f(y) r < g(y) for all f e F, y e U, so g is not the supremum of F. Hence r*
is complete.

4. Necessary and sufl:icient conditions

A function f X -- ,R is lower semi-continuous (lcs) iff for each ), e ,R, the
set, Ix e X f(x) > )} is open.

Following Dilworth [D], if f X -- ,R is any function, we define

f*(x) inf lsup If(y) y e U1 U a neighborhood of x}
a.nd

f.(x) sup {inf {f(y) y e UI U a neighborhood of x}.

Dilworth proves the following statements for bounded functions f--the proofs
can easily be modified to upply to unbounded functions.

(1)
(2)

f is lsc iff f f.. , , ,
f* >_f>_f.,andf.. =f.

Alsc function f is normal lsc iff for each .R, {x X f(x) < )} is a union
of regular closed sets.

(3) If f f** then f is normal lsc.
(4) Iffis normallsc, thenfor each x eX, d > f(x), and neighborhood U of

x, there exists a nonempty open set V

_
U such that f(y) < d for all y e V.
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(5) Since for extremally disconnected X, the closure of an open set is open,
a normal lsc function on an extremally disconnected space is continuous.

A space X is z-thin iff whenever S is a nowhere dense subset of X which can
be written S ,N U with (U)N a decreasing sequence of closed sets,
each of which is a union of regular closed sets, then S lies in a nowhere dense
zero-set of X. A slightly less obscure definition is the following" X is z-thin iff
every nowhere dense "minus-infinity-set" of a normal lsc function on X lies
in a nowhere dense zero-set of X.

THEOREM. Let X be a compact space and let (X, r) be the minimal pro-
jective extension of X. The following are equivalent"

(a) (D(X), *) is the Dedekind completion of D(X).
(b) For f e D(X) there exists g D(X) with -* (g) <_ f.
(c) Every normal lsc function f on X with 9-(f) nowhere dense is bounded

below by an element g of D(X).
d X is z-thin.

Proof. (a) implies (b) is clear.
(b) implies (c). Let f be normal lsc on X with-(f) nowhere dense. We

supposef < 0. Then h (f r)*. is normal lsc on an extremally disconnected
space, hence (by (5)) h is continuous; since h >_ (fo-). for, heD(X).
LetgeD(X) withgor _< h. We will showg_<f. LetxeXandsuppose
h(y) > f(x) for all y e r(x). Since r-(x) is compact, there is a neighborhood
U of r’-(x) on which h(y) > d > f(x) for some d R. By [Ke, 3.12], r induces
an upper semi-continuous decomposition, so we can assume U r-r[U]; i.e.,
r[U] is a neighborhood of x. Since f is normal lsc, there is a nonempty open
subset Vof-[U]suchthatf[V]

_
[-,d). But thenfo r[r’-(V)]_ [- ,d),

so h[r-(V)]

___
[-, d), a contradiction. Hence h(y)

_
f(x) for some

y e r-(x) thus g o ’(y) <_ h(y) <_ f(x), so g(x) <_ f(x).
(c) implies (a). Let f e D(X). Definef X -- -I;t by

f(x) inf{f(y)’r(y)

Clearly -(f) is nowhere dense. For k e 71,

{xeX" f(x) <_ kl lxeX" f(y) _< k for some ye’-(x)l

[Ix x’/(x) < xl].

which is closed in X; hence f is lsc. Let ), e R u -t- m }, and let x e X with
f(x) < k. Let f(x) < d < , W {y eX "f(y) < d}. Let U be any
neighborhood of x. Then, since fa(x) < d, r"[U] n W O. Since r is tight,
there is a nonempty open set Vv for which

(v)

_
w [u].

The condition of z-thinness will be explored fully in a forthcoming paper of J. E.
Mack entitled The Dedekind completion of D(X).



If z e Vv then r-(z) W, so f*(z) < d. Hence

Vv c_ {zeX" f(z) <_

and the latter is closed. Then clearly

xcl U {Vv" U a neighborhood of xl c_ {z.X "f(z) < I.
This shows that f is normal lsc.
Let h eD(X) such that h _< fa. Then, clearly, -*(h) <_ f. Let

f’ sup lr*(g) r*(g) <_ f, g eD(X)},

and suppose f’ < f. Then there is r e R such that

U {xeX. "f’(x) < r < f(x)}

is nonempty. Let V be an open subset of X such that

clV___ 6t(h) and r’-(V) U.

Let a e V; let s e C(X) with s(a) 1, s[X V] {0}, and 0 _< s _< 1. Since
s vanishes on the neighborhood X cl V of 9Z(h), h’ rs + (1 s)h can be
defined as an element of D(X). Now, h’(a) r, h’(x) <_ r for all xe V, and

h’ r* f’ r-(a),h’_<h, onX-V. Hencer )_fand (h’)(x) =r> (x) forxe
so r (h’) f’, contradicting the assumption. Hence f f’ and r*[D(X)] is
order dense in D(X.).

(c) implies (d). Let S be a nowhere dense subset of X with S fl, U.
where ( U.)., is a decreasing sequence of closed sets each of which is a union of
regular closed sets. Let U0 X. Define f" X --* R by

f[U Un+ll {-n}, f[S] {- }.

It is easy to check that f is normal lsc; using (c), 9Z- (g) is the desired nowhere
dense zero-set containing S.

(d) implies (c). Let f be a normal lsc function on X with 0Z-(f) nowhere
dense.

Let Z be a nowhere dense zero-set containing 0Z-(f). By [MJ, 3.1, 3.2], there
is anh’eC(XZ) withh’ _< (fl_z) /0. LetkeC(X) andZ(/) Z
and k _< O. Define h’X - R by h(x) -oo for xeZ, h(x)
(1/It(x)) -t- h(x) for x Z. Since h _< f Iz-z, we have h _< f; h is real-valued
on the dense setX-Z. ForxeZandneN, {y.X’k(y) >. -1/n} isa
neighborhood of x on which h(y) < -n. Hence h D(X).
In view of the proof of this theorem,

A {feD(X..)" r*(g’) <_ f <_ r*(g"), for some g’, g" en(x)}

contains r*[D(X)] as an order dense sublattice; A is clearly Dedekind com-
plete. Hence every D(X) has a Dedekind completion contained in D(X).
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5. A characterization

If (D(Y), ) is a Dedekind completion of D(X), then (D(Y), ) is said
to be regular if there exists an automorphism of D(Y) such that takes
bounded functions to bounded functions.

THEOREM. Let X, Y be compact spaces, and suppose (D(Y), q) is the
Dedekind completion of D(X). Then

(a) there exists r Y -- X such that Y, r) is the minimal projective exten-
sion of X, and

(b) if (D(Y), q) is regular, then r can be chosen so that r* for some
automorphism 0 of D (Y).

PROOF. If (D(Y), ) is regular, replace by 0’ where 0 takes bounded
functions to bounded functions.
We will define r (D( Y) --. (D(X) ). Let

r’([I(y, 0)]) [-(I(y, 0))];

it is clear that r’ is well defined; we will show that it is onto.
Let P be a prime ideal of D(X). Let

Q’ /feD(Y) :f_(g) for somegeP}
and

Q" /feD(Y) :f>_ (g) for somegtP}.

Then Q’ is a nonempty proper ideal of D(Y) and Q" is a nonempty proper
dual ideal of D(Y). Hence, by [S, Theorem 6] Q’ lies in a prime ideal
QofD(Y) missingQ’. It is clear that P -(Q’) andD(X) P q’-(Q’);
hence P -(Q) i.e., r’ ([Q]) [P], so r’ is onto.

Since D(Y) is Dedekind complete, the sublattice C(Y) is Dedekind com-
plete; by [$2, 12], Y is extremally disconnected.

Let C (D(X)) be closed and suppose [Q] e cl r’-(C). Then there is
a family {R,} of representatives of some of the elements of r’(C) such that
’l R, is nonempty and is contained in some representative Q’ of [Q]. Now,
l -(R,) ’-(1R,) is nonempty and is contained in "(Q’), so

r’([Q]) [(Q)] [(Q’)] eel C;
hence [Q] e r’-(C). Therefore r’ is continuous. Define r Y -- X via the
homeomorphisms of Theorem 2.
Suppose C is proper closed subset of Y for which tIC] X. Let f e D(Y)

such that (0) . f and (0) Iv f Iv for some proper open subset U of Y
containing C. For ech x e X, let y(x)e r(x) C. Let K be a prime
ideal of D(Y) for which

J(y(x), a) g I(y(x), a)

for some a e 1, and q’-(K) I(x, 0). (K can be generated as above from
K IgeD(Y)’g <_ q(h) on some neighborhood of y(x) for some
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heI(x, 0)1.) Suppose heD(X) and(h) _< f. Then(h) _< (0) on a
neighborhood of each y(x), x e X, so (h) e K for all x e X. This implies
heI(x, 0),soh_< 0. Hence

f > (0) sup {(h) h D(X), ,(h) <_ f},

u contradiction. Thus r is tight and (Y, r) is the minimal projective exten-
sion of X. This completes the proof of ().
Let ] D(Y) and let 0 >_ ]c’ e D(X) such that (l’) <_ lc. Suppose x Y

is such that ]c(x) -. Let beR, and letK(x, b) be a prime ideal of
D(Y) for which ,"-(K(x, b)) I(r(x), b) and J(x, c) c. K(x, b) I(x, c)
for some ce,R. Since (b) is bounded, c > . Hence ]eJ(x, c),
so (]d) e J(x, c), so

e q-(J(x, c))

_
I (r (x) b)

Since this is true for all b e R, k’(r(x)
Let Z 9-(k’) by [MJ, 3], X Z is a weak cb space; as in the proof of

Theorem 4, lc is normal lsc; hence [MJ, 3], there is 0 _> /" e C(X Z)
such that ]" _< Ix_z. Define h’X --forxZ,h[Z] {-}. ClearlyheD(X) andhor_< k. Hencer*[D(X)]
is order dense in D (Y). By uniqueness of Dedekind completions, there exists
an automorphism 0" of D(Y) such that r* 0".

6. Further remarks
The contents of Sections 4 and 5 can be summarized as follows" If D(X)

has any D(Y) as a Dedekind completion, then it must be D(X); if D(X)
has any (D(Y), ,) as a regular Dedekind completion, then (up to auto-
morphism) it must be (D(X), r*), and the latter can occur iff X is z-thin.
I do not know whether every Dedekind completion which turns out to be a

D(Y) must be regular, but I strongly suspect the answer to be yes.
If X is a completely regular space for which the completion of D(X) is

D(X) (see [MJ] for the definition of X for noncompact X), the same state-
ment is true for X" writing D(X) ^ for the Dedekind completion of D(X),
we have D(X) ^ D(X) ^ D(X) D((X)) D((X))--the
last equality following from [HI, 1.5].
By arguments like those of Theorem 4, one can show that if X is, e.g., a

metric space, then D(X) is the Dedekind completion of D (X). Combining
this with the previous paragraph, if Y is the Stone-Cech compactification of a
metric space, then D(Y) is the Dedekind completion of D(Y).

History

The question answered in Section 2 was motivated by [K], in which it was
proved that, for compact X, the lattice C(X) of all continuous real-valued
functions on X characterizes X. Kaplansky’s theorem has recently been
extended by Subramanian [SU] and further improved by Isbell and Morse
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[IM] in a direction slightly different from that taken here: for a rather general
class of lattice-ordered rings, the maximal /-ideal space is characterized in
terms of the lattice structure alone.
The question attacked in the remainder of this paper was motivaten by

the following question for C(X): is there a C(Y) which is the Dedekind
completion of C(X) under a map which preserves the algebra structure of
C(X)? An affirmative answer was given for compact X by Dilworth [D],
for countable paracompact and normal spaces by Weinberg [W], and finally,
necessary and sufficient conditions were given by J. E. Mack and D. G.
Johnson [MJ] for realcompact X.
We have liberally used techniques of these authors.
It is worth mentioning here that the condition of regularity used in the

study of the Dedekind completion of D(X) is superfluous in the case of C(X),
since preservation of the algebra structure insures that the constant functions
go to constant functions.
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