WALSH SERIES AND ADJUSTMENT OF FUNCTIONS ON SMALL SETS

BY

J. J. PRICE

1. Introduction

D. E. Menshov proved that a measurable function finite almost everywhere on $[0, 2\pi]$ can be changed on a set of measure less than ε to a function whose Fourier series converges uniformly ([4]; see also [1, Chapter VI]). Recently, B. D. Kotlyar [3] proved an analogous theorem for Walsh series. Menshov proved also that for continuous functions the set where the adjustment is made can be chosen to depend only on ε and the modulus of continuity.

In this paper, we present a different proof of Kotlyar's theorem that contains also an analogue of Menshov's theorem on continuous functions. Actually, our result contains somewhat more. Let $\{p_r\}$ and $\{q_r\}$ be increasing sequences of positive integers such that

(1)
$$p_1 < q_1 < p_2 < q_2 < \cdots$$
, $\{q_{\nu}/p_{\nu}\}$ is unbounded.

Define

(2)
$$W = \bigcup_{\nu=1}^{\infty} [\psi_k : p_\nu \leq k < q_\nu]$$

where ψ_k is the k-th Walsh function. We shall prove that a measurable function can be changed on a small set to a function whose Walsh-Fourier series converges uniformly and contains only Walsh functions in W.

THEOREM. Let f be measurable and finite almost everywhere on [0, 1] and let a positive ε be given. Then there exists a function g such that

(a) g(x) = f(x) except on a set E of measure less than ε ,

(b) the Walsh-Fourier series of g contains only Walsh functions in the set W defined by (1) and (2) and converges uniformly.

Furthermore, suppose $\rho(\delta)$ is a nondecreasing function defined for $\delta > 0$ with

$$\lim_{\delta\to 0}\rho(\delta)=0.$$

Then there is a set E depending only on ε and ρ such that (a) and (b) hold for every continuous function f whose modulus of continuity $\omega(\delta)$ satisfies

$$\omega(\delta) \leq \rho(\delta).$$

This theorem contains a previous result of the author [5].

COROLLARY. The system of Walsh functions W defined by (1) and (2) is total in measure on [0, 1].

Received May 5, 1967.

J. J. PRICE

By the theorem, any bounded measurable function can be uniformly approximated by linear combinations of Walsh functions in W except on sets of arbitrarily small measure. That means those linear combinations are dense in the sense of convergence in measure.

2. Definitions

Basic properties of Walsh functions. For a detailed treatment of Walsh functions, see the paper of N. J. Fine [2]. In this section, we review several of their properties.

For each x in the interval [0, 1), there is a dyadic expansion

$$x = \sum_{n=1}^{\infty} \frac{d_n(x)}{2^n}$$

where $d_n(x) = 0$ or 1. The expansion is unique if the terminating form is chosen for dyadic rationals. Define

(3)
$$\psi_0(x) \equiv 1$$
, $\psi_{2^n}(x) = 1$, if $d_{n+1}(x) = 0$,
= -1, if $d_{n+1}(x) = 1$,

and if

$$N = 2^{n_1} + 2^{n_2} + \dots + 2^{n_k} \quad ext{where} \quad 0 \leq n_1 < n_2 < \dots < n_k \, ,$$

define

(4)
$$\psi_N(x) = \psi_{2^{n_1}}(x)\psi_{2^{n_2}}(x)\cdots\psi_{2^{n_k}}(x).$$

These are the Walsh functions. They are a complete orthonormal set in $L^{2}[0, 1]$.

If f is an integrable function, the k-th partial sum of its Walsh-Fourier expansion will be denoted by $s_k(x; f)$.

V(n) will denote the set of linear combinations of the Walsh functions ψ_i where $i < 2^n$. V(n) consists of all step functions constant on each interval $I(n,j) = [j \cdot 2^{-n}, (j+1)2^{-n})$. If n < k, V(n,k) will denote the set of linear combinations of Walsh functions ψ_i where $2^n \leq i < 2^k$. V(n, k) is the orthogonal complement of V(n) in V(k). If $f \in V(n, k)$, then

$$egin{array}{lll} s_i(x;f) &= 0, & ext{if} & i < 2^n, \ &= f(x), & ext{if} & i \geqq 2^k. \end{array}$$

The dyadic interval I(n, j) can be characterized as follows.

$$I(n,j) = [x: d_1(x) = d_1(\bar{x}), d_2(x) = d_2(\bar{x}), \cdots, d_n(x) = d_n(\bar{x})]$$

where \bar{x} is any point of I(n, j). From (3),

$$1 + \psi_{2^{i-1}}(\bar{x})\psi_{2^{i-1}}(x) = 2, \quad \text{if} \quad d_i(x) = d_i(\bar{x}),$$
$$= 0, \quad \text{if} \quad d_i(x) \neq d_i(\bar{x}).$$

Therefore,

$$\chi_{n,j}(x) = 2^{-n} \prod_{i=0}^{n-1} (1 + \psi_{2i}(\bar{x})\psi_{2i}(x))$$

where $\chi_{n,j}$ is the characteristic function of I(n, j). Because of (4),

$$\chi_{n,j}(x) = 2^{-n} \sum_{i=0}^{2^{n-1}} \psi_i(\bar{x}) \psi_i(x).$$

Since $|\psi_i(x)| = 1$ for every x and all i.

$$\max_{x} |s_{k}(x; \chi_{n,j})| \leq 1, \qquad k \geq 0.$$

3. Adjustment of characteristic functions

LEMMA. Let $\chi_{n,j}$ be the characteristic function of the interval

$$I(n,j) = [j \cdot 2^{-n}, (j+1)2^{-n}).$$

Let r and N be positive integers, $N \ge n$. Then there is a function g with the following properties.

(a) $g(x) \equiv 0$ outside of I(n, j).

- (b) $g(x) = \chi_{n,i}(x)$ except on a set of measure 2^{-n-r} .
- (c) $g \in V(N, N + r)$.
- (d) $\max_x |g(x)| < 2^r$
- (e) $\max_{x} |s_k(x;g)| < 2^r$ for every $k \ge 0$.

Proof. Define

(5)
$$E_{N,r} = \bigcup_{\nu=0}^{2^{N-1}} [\alpha_{\nu}, \beta_{\nu}]; \quad \alpha_{\nu} = \nu \cdot 2^{-N}, \qquad \beta_{\nu} = \alpha_{\nu} + 2^{-N-r}$$

or equivalently,

$$E_{N,r} = [x : d_{N+1}(x) = d_{N+1}(x) = \cdots = d_{N+r}(x) = 0].$$

 \mathbf{Set}

$$g(x) = 0,$$
 if $x \notin I(n, j),$
= $-(2^r - 1),$ if $x \in I(n, j) \cap E_{N,r},$
= 1, otherwise.

(a) and (d) hold by definition. g(x) differs from f(x) only on $I(n, j) \cap E_{N,r}$, a set of measure 2^{-n-r} as can be seen from (5). Thus, (b) holds. Assertions (c) and (e) are verified directly from the Walsh series for g.

(6)
$$g(x) = 2^{-n} \prod_{i=0}^{n-1} (1 + \psi_{2^i}(\bar{x})\psi_{2^i}(x))(1 - \prod_{i=N}^{N+r-1} (1 + \psi_{2^i}(x))).$$

This is so since

$$2^{-n} \prod_{i=0}^{n-1} (1 + \psi_{2i}(\bar{x})\psi_{2i}(x)) = \chi_{n,j}(x)$$

and for similar reasons,

$$\prod_{i=N}^{N+r-1} (1 + \psi_{2^{i}}(x)) = 2^{r} \varphi_{N,r}(x)$$

where $\varphi_{N,r}$ is the characteristic function of $E_{N,r}$. The product (6) can be

J. J. PRICE

expanded with the use of (4). All terms $\psi_i(x)$, $i < 2^N$, cancel out and

$$g(x) = 2^{-n} \sum_{i=2^N}^{2^{N+r-1}} a_i \psi_i(x)$$

where $a_i = \pm 1$ or 0 and exactly $2^{n+r} - 2^n$ of these coefficients are nonzero. Consequently, $g \in V(N, N + r)$ and

$$\max_{x} |a_{k}(x;g)| \leq 2^{-n} \sum |a_{i}| = 2^{-n}(2^{n+r} - 2^{n}) = 2^{r} - 1.$$

This completes the proof of the lemma.

Because the integer N may be chosen arbitrarily large, the lemma enables us to adjust a sequence of characteristic functions, each time using a new block of Walsh functions.

4. Proof of the theorem

It will suffice to prove the theorem for continuous functions. A measurable function finite almost everywhere agrees with a continuous function except on some set of measure less than $\varepsilon/2$. That continuous function may then be modified on a set of measure less than $\varepsilon/2$.

We start with $\varepsilon > 0$, a Walsh subsystem W defined by (1) and (2), and a function $\rho(\delta)$. Let f be any continuous function whose modulus of continuity satisfies $\omega(\delta) \leq \rho(\delta)$. f can be expressed as the sum of a uniformly convergent series of step functions.

(7)
$$f(x) = \sum_{r=0}^{\infty} f_r(x).$$

For each r, f_r can be taken to be a dyadic step function, i.e. constant on each interval $I(n_r, j)$ for some n_r . The sequence $\{n_r\}$ can be taken to increase so fast that the partial sums of the series (10) converge to f(x) as rapidly as desired. Choose $\{n_r\}$ such that

(8)
$$\max_{x} |f_{r}(x)| < 2^{-2r}, \qquad r > 0$$

Once $\rho(\delta)$ is given, $\{n_i\}$ can be selected independent of f.

Now arrange all the dyadic intervals $I(n_r, j) \ r \ge 0, 0 \le j < 2^{n_r}$, into one sequence. Take first all intervals $I(n_0, j)$, then all intervals $I(n_1, j)$, etc. Define

$$\mu_r = \sum_{\nu=0}^r 2^{n_{\nu}}, \qquad r \ge 0, \qquad \mu_{-1} = 0.$$

Then according to this enumeration,

$$I_i = I(n_r, k)$$
 if $i = \mu_{r-1} + k < \mu_r$.

Let χ_i be the characteristic function of I_i . Equation (7) may be written as follows:

(9)
$$f(x) = \sum_{i=0}^{\infty} a_i \chi_i(x)$$

where $\{a_i\}$ is a suitable sequence of constants. This series converges uni-

134

formly. Because of (8)

(10)
$$|a_i| < 2^{-2r}$$
 if $\mu_{r-1} \leq i < \mu_r$.

We now apply the lemma to modify each of the characteristic functions χ_i . Let *m* be an integer such that

$$\sum_{r=m}^{\infty} 2^{-r} < \varepsilon.$$

Suppose $\mu_{r-1} \leq i < \mu_r$. There is a function g_i with the following properties.

- (a) $g_i(x) \equiv 0$ outside of I_i .
- (b) $g_i(x) = \chi_i(x)$ except on a set I'_i of measure $2^{-n_r r m_r}$
- (c) $g_i \in V(N_i, N_i + r + m)$ where $N_i > N_{i-1} + r + m$ and g_i is a linear combination of Walsh functions in W.
- (d) $\max_{x} |g_{i}(x)| < 2^{r+m}$.
- (e) $\max_{x} |s_k(x; g_i)| < 2^{r+m}$.

By the lemma, there is a function g_i satisfying (a), (b), (d), (e), and belonging to V(N, N + r + m) where N may be taken arbitrarily large. By property (1) of the system W, there is an index ν_i and an integer N_i such that

$$P_{\nu_i} \leq 2^{N_i} < 2^{N_i + r + m} < q_{\nu_i}, \qquad N_i > N_{i-1} + r + m.$$

Choose $N = N_i$ and (c) will be satisfied.

With (9) in mind we define

(11)
$$g(x) = \sum_{i=0}^{\infty} a_i g_i(x)$$

The series (11) converges uniformly; for a fixed $x, g_i(x) = 0$ for all indices i, $\mu_{r-1} \leq i < \mu_r$, with one exception and for that index

$$|a_i g_i(x)| < 2^{-2r} \cdot 2^{r+m} = 2^{-r+m}$$

because of (10) and (d).

We assert that g is the desired modification of f. First observe that g(x) = f(x) except on the set

$$E = \bigcup_{i=0}^{\infty} I'_i.$$

Since $|I'_{i}| = 2^{-n_{r}-r-m}$ if $\mu_{r-1} \leq i < \mu_{r}$,

$$|E| = \sum_{r=0}^{\infty} \sum_{i=\mu_{r-1}}^{\mu_r} |I'_i| = \sum_{r=0}^{\infty} 2^{n_r} (2^{-n_r - r - m})$$

= $\sum_{r=0}^{\infty} 2^{-r - m} = \sum_{r=m}^{\infty} 2^{-r} < \varepsilon.$

The set *E* depends on ε , *W*, and $\rho(\delta)$, but not on *f*.

By (c), each function g_i is a linear combination of a block of Walsh functions in W (the blocks are disjoint). Therefore, the series (11) is easily converted into a Walsh series involving only functions in W. That Walsh series is the Walsh-Fourier series of g since a subsequence of its partial sums converges uniformly to g(x).

It remains to show that $s_k(x; g) \rightarrow g(x)$ uniformly. Because of uniform

convergence in (11),

 $s_k(x;g) = \sum_{i=0}^{\infty} a_i s_k(x;g_i).$

$$egin{array}{lll} s_k(x;g_i) &= 0, & ext{if} \quad k < 2^{N_i}, \ &= g_i(x), & ext{if} \quad k \geq 2^{N_{i+1}}. \end{array}$$

Now for some $j, 2^{N_j} \leq k < 2^{N_{j+1}}$. Hence

$$s_k(x;g) = \sum_{i=0}^{j-1} a_i g_i(x) + a_j s_k(x;g_j).$$

For some $r, \mu_{r-1} \leq j < \mu_r$. Then from (10) and (e),

$$a_j s_k(x; g_j) \mid < 2^{-2r} \cdot 2^{r+m} = 2^{-r+m}.$$

As $k \to \infty, j \to \infty$ and so,

$$\sum_{i=0}^{j-1} a_i g_i(x) \to \sum_{i=0}^{\infty} a_i g_i(x) = g(x)$$

uniformly. As $j \to \infty$, $r \to \infty$ and so

$$a_j s_k(x; g_j) \to 0$$

uniformly. Therefore $s_k(x; g) \rightarrow g(x)$ uniformly and the theorem is proved.

We remark that the theorem and corollary are true if we assume in (1) only that $\{q_{\nu} - p_{\nu}\}$ is unbounded. The proof, though simple, is somewhat tedious and will be omitted.

References

- 1. N. BARY, A treatise on trigonometric series, Vol. I, Pergamon Press, New York, 1964.
- N. J. FINE, On the Walsh functions, Trans. Amer. Math. Soc., vol. 65, (1949), pp. 372-414.
- 3. B. D. KOTLYAR, Walsh series and the theorem of Menshov on adjustment of functions, Izvestia Akad. Nauk S.S.S.R., vol. 30(1966), pp. 1193-1200, (Russian).
- D. E. MENSHOV, Sur les series de Fourier des fonctions continues, Mat. Sb., vol. 11(53), (1940), pp. 493-518.
- 5. J. J. PRICE, A density theorem for Walsh functions, Proc. Amer. Math. Soc., vol. 18 (1967), pp. 209-11.

PURDUE UNIVERSITY LAFAYETTE, INDIANA

136