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1. Introduction
D. E. Menshov proved that a measurable function finite almost everywhere

on [0, 2r] can be changed on a set of measure less than to a function whose
Fourier series converges uniformly ([4]; see also [1, Chapter VI]). Recently,
B. D. Kotlyar [3] proved an analogous theorem for Walsh series. Menshov
proved also that for continuous functions the set where the adjustment is
made can be chosen to depend only on e and the modulus of continuity.

In this paper, we present a different proof of Kotlyar’s theorem that con-
tains also an analogue of Menshov’s theorem on continuous functions. Ac-
tually, our result contains somewhat more. Let {p} and {q} be increasing
sequences of positive integers such that

(1) p < q < p. q < ..., {q/p} is unbounded.

Define

(2) w __< <
where b is the k-th Walsh function. We shall prove that a measurable func-
tion can be changed on smull set to u function whose Walsh-Fourier series
converges uniformly and contains only Walsh functions in W.

THEOnEM. Let f be measurable and finite almost everywhere on [0, 1] and let a
positive be given. Then there exists a function g such that
() g(x) f(x) except on a set E oJ" measure less than ,
b the Walsh-Fourier series of g contains only Walsh functions in the set W

defined by (1) and (2) and converges uniformly.
Furthermore, suppose p() is a nondecreasing function defined for > 0 with

lim0 p() 0.

Then there is a set E dependinq only on and p such that () and (b) hold for
every continuous function f whose modulus of continuity () satisfies

<_

This theorem contains a previous result of the author [5].

COOLLXV. The system of Walsh functions W defined by (1) and (2) is
total in measure on [0, 1].

Received May 5, 1967.

131



By the theorem, any bounded measurable function can be uniformly ap-
proximated by linear combinations of Walsh functions in W except on sets of
arbitrarily small measure. That means those linear combinations are dense
in the sense of convergence in measure.

2. Definitions
Basic properties of Walsh functions. For a detailed treatment of Walsh

functions, see the paper of N. J. Fine [2]. In this section, we review several
of tiheir properties.
For each x in the interval [0, 1), there is a dyadic expansion

X , d,(x)
nml 2

where d,,(x) 0 or 1. The expansion is unique if the terminating form is
chosen for dyadic rationals.

(3) CQ(x) -- I,

Define

,.(x) 1, if

--1, if

and if

N 2TM q- 2 -F q- 2

define

where 0-< nl <n.< <n,

These are the Walsh functions. They are a complete orthonormal set in
L [0,

If f is an integrable function, the k-th partial sum of its Walsh-Fourier
expansion will be denoted by s(x; f).

V(n) will denote the set of linear combinations of the Walsh functions
b where i < 2". V(n) consists of all step functions constant on each interval
I(n,j) [j.2-, (j + 1)2-). If n < lo, V(n, lo) will denote the set of linear
combinations of Walsh functions where 2" -< i < 2. V(n, k) is the
orthogonal complement of V(n) in V(k).. If f e V(n,/o), then

s(x;f) 0, if i<2",
=f(x), if i>_ 2.

The dyadic interval I(n, j) can be characterized as follows.

I(n,j) [x" d(x) dx(g), d(x) d(), ..., d,,(x) d.()]

where is any point of I(n,j). From (3),

0, if d,(x) d,(,).
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Therefore

where x,.s is the characteristic function of I(n, j). Because of (4),

x.,(z) 2--Since @(z) 1 for every x and all i.

max, I,(z; x.) 1, 0.

3. Adjustment of chorocteristic functions

LEMMA. Let X,i be the characteristic function of the internal

(n, ) [i. 2-’, (j + )2-’).
Let r and N be positive tegers, N n. Then there is a function g with the
following properties.

(a) g(x) 0 outside of I(n, j),.
(b) g(x) x.,(x) except on a set of measure 2--.
() v(, + r).
(d) mx g() < 2
(e) max s x g) < 2 for every O.

Proof. Define
]]2’1 [(5) E. --0 ); , 2-, +2--

or equivalently,

E. Ix d+(x) d+,(x) d+(x) 0].

() 0, if x l(n,

--(2- 1), if xeI(n,j) nE,,,

1, otherwise.

(a) and (d) hold by definition, g(x) differs fromf(x) only onI(n,j) nE,,,
a set of measure 2 as can be seen from (5). Thus, (b) holds. Assertions
(c) and (e) are verified directly from the Walsh series for g.

(6) () .-.TT- TT+-
11-0 (1 + b.,()k,(x))(1 -x,- (1 + $,(x))).

This is so since
2-" H,% (1 + @,()$,(x)) X.i(x)

and for similar reasons,

H+-’ (1 + ,(z)) 2.()

where 9., is the characteristic function of E.,. The product (6) can be



expanded with the use of (4). All terms b(x), i < 2N, cancel out and

g(x) 2-

where a d:l or 0 and exactly 2+ 2" of these coefficients are nonzero.
Consequently, g e V(N, N + r) and

max, a(x; g) 2-= la, 2-(2+’ 2) 2" 1.

This completes the proof of the lemma.
Because the integer N may be chosen arbitrarily large, the lemma enables

us to adjust a sequence of characteristic functions, each time using a new
block of Walsh functions.. Pmcf cf he thecrem

It will suffice to prove the theorem for continuous functions. A measura-
ble function finite almost everywhere agrees with a continuous function
except on some set of measure less than /2. That continuous function may
then be modified on a set of measure less than /2.
We start with > 0, a Walsh subsystem W defined by (1) and (2), and a

function p (). Let f be any continuous function whose modulus of continuity
satisfies () p(). f can be expressed as the sum of a uniformly con-
vergent series of step functions.

(7) f(z)

For each r, f can be taken to be a dyadic step function, i.e. constant on each
interval I(n, j) for some n. The sequence {n} can be taken to increase so
fast that the partial sums of the series (10) converge to f(x) as rapidly as
desired. Choose {m} such that

(8) max 15.(x) < 2 r > o

Once p(a) is given, n, can be selected independent of f.
Now arrange all the dyadic intervals I(n, j) r 0, 0 j < 2, into one

sequence. Take first all intervals 1(no, j), then all intervals I(nl, j), etc.
Define

Then according to this enumeration,

Ii I(n,k) if

Let xi be the characteristic function of I. Equation (7) may be written
as follows"

(9) f(x) _,o a x(x)

where {ad is a suitable sequence of constants. This series converges uni-
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formly. Because of (8)

(10)

We now apply the lemma to modify each of the characteristic functions
Let m be an integer such that

Suppose g_ <- i < g,. There is a function g with the following properties.

(a)
(b)
(c)

(d),

gt(x) 0 outside of It.
g(x) x(x) except on a set I of measure 2-’--
gt V(Ni, Nt + r + m) where Nt > Nt_l + r + m and g is a linear
combination of Walsh functions in W.
max g,(x) < 2+.
max. s(x; g) < 2+.

By the lemma, there is a function g satisfying (a), (b), (d), (e), and be-
longing to V(N, N + r + m) where N may be taken arbitrarily large. By
property (1) of the system W, there is an index and an integerN such that

Pv -<_ 2N < 2N++m < qv, N > N-I -t- r + m.

Choose N N and (c) will be satisfied.
With (9) in mind we define

(11) g(x) =o at g,(x).

The series (11) converges uniformly; for a fixed x, g(x) 0 for all indices i,
g_ =< i < g, with one exception and for that index

a g,(x) < 2-2" 2r+m 2-r+’
because of (10) and (d).
We assert that g is the desired modification of f.

f(x) except on the set
Ut-o I

First observe that g(x)

The set E depends on s, W, and p(), but not on f.
By (c), each function g is a linear combination of a block of Walsh func-

tions in W (the blocks are disjoint). Therefore, the series (11) is easily
converted into a Walsh series involving only functions in W. That Walsh
series is the Walsh-Fourier series of g since a subsequence of its partial sums
converges uniformly to g(x).

It remains to show that s(x; g) -- g(x) uniformly. Because of uniform
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convergence in (11),
s(x; g) ’,o a s(x; g).

From (c),
s(x; g) =0, if k < 2’,

g(x), if k >= 2’+’.
Now for some j, 2 k < 2+. Hence

s(x; g) 2 a, g,(x) + a s(x; g).

For some r, g_ j < g. Then from (10) and (e),

]a s(x; g) < 2-’2+ 2-+.
Ask ,j andso,

--1

uformly. Asj ,r andso

a s(x; g) 0

uniformly. Therefore s(x; g) g(x) uniformly and the theorem is proved.
We remark that the theorem and corollary are true if we assume ia (1) only

that {q p} is unbounded. The proof, though simple, is somewhat tedious
and will be omitted.
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