A BORSUK-ULAM THEOREM FOR MAPS FROM A SPHERE TO A COMPACT TOPOLOGICAL MANIFOLD

BY
Hans Jørgen Munkholm

1. Introduction, notation

It is the purpose of this paper to prove the following Borsuk-Ulam-typetheorem:

Theorem 1. Let $f: S^{n} \rightarrow M^{k}$ be a map from the n-sphere to a compact topological k-manifold M^{k}; let $A(f)=\left\{x \in S^{n} ; f(x)=f(-x)\right\}$. Then
(a) if $n>k$, then $\operatorname{dim}(A(f)) \geq n-k$;
(b) if $n=k$ and $f^{*}: H^{n}\left(M^{n} ; \overline{Z_{2}}\right) \rightarrow H^{n}\left(S^{n} ; Z_{2}\right)$ is zero, then $A(f) \neq \emptyset$.

If one restricts to manifolds admitting a differentiable structure the theorem may be found in [1]; the restriction to the case $M^{k}=R^{k}$ is known as the Bourgin-Yang-theorem (see [5] and [6]); our line of reasoning is close to that of [1].

As for notation the following should be noted: All coefficient groups are Z_{2}; therefore, they shall be suppressed from the notation. $H_{*}\left(H^{*}\right)$ denotes singular homology (cohomology), and \bar{H}^{*} denotes Alexander-Spanier cohomology in the sense of Section 6.1 of [2] (see also Section 6.4 of [2]). By dim we understand the usual topological dimension. Finally manifold is taken to mean topological manifold, and the word closed (for a manifold) is an abbreviation for "compact and without boundary".

2. Reduction of the problem

Throughout this section and the next one M^{k} will be a closed, connected manifold of dimension $k \leq n$, and $f: S^{n} \rightarrow M^{k}$ will be a fixed map, taking the south-pole into x_{0}. On the manifold $Y=S^{n} \times M^{k} \times M^{k}$ there is an involution T given by the formula $T(x, y, z)=(-x, z, y)$; letting $\Delta\left(M^{k}\right)$ be the diagonal in $M^{k} \times M^{k}$ we have in Y two submanifolds $S^{n} \times\left(x_{0}, x_{0}\right)$ and $S^{n} \times \Delta\left(M^{k}\right)$; they are both invariant under T, so they project to give submanifolds
$\left(S^{n} \times\left(x_{0}, x_{0}\right)\right) / T=P^{n} \times\left(x_{0}, x_{0}\right) \quad$ and $\quad\left(S^{n} \times \Delta\left(M^{k}\right)\right) / T=P^{n} \times \Delta\left(M^{k}\right)$ of the orbit manifold Y / T. -Also the map $\bar{s}: S^{n} \rightarrow Y$, given by

$$
\bar{s}(x)=(x, f(x), f(-x))
$$

induces a map $s: P^{n} \rightarrow Y / T$; letting $A(f)=\left\{x \in S^{n} ; f(x)=f(-x)\right\}$ and denoting by $B(f)$ the image of $A(f)$ under the natural map $S^{n} \rightarrow P^{n}$, we have

[^0]that
$$
B(f)=s^{-1}\left(P^{n} \times \Delta\left(M^{k}\right)\right)
$$

Now let $\varphi \epsilon H^{k}(Y / T)$ be the Poincare-dual of the orientation class σ of the submanifold $P^{n} \times \Delta\left(M^{k}\right)$ of Y / T; we then have the following.

Lemma 2.1. If $s^{*}(\varphi) \neq 0$, then $\bar{H}^{n-k}(B(f)) \neq 0$.
Proof. The following proof is just a rearrangement of the proof of [1, (33.2)]. -We first show
(2.1) for every neighbourhood U of $P^{n} \times \Delta\left(M^{k}\right)$ in Y / T we have

$$
\varphi \in \operatorname{Im}\left(H^{k}(Y / T, Y / T-U) \rightarrow H^{k}(Y / T)\right)
$$

To prove this assertion we let V be an open neighbourhood of $P^{n} \times \Delta\left(M^{k}\right)$ with $V \subseteq U$; we then read off (2.1) from the commutative diagram

where $\bar{\gamma}_{v}$ denotes duality in the sense of [2, (6.2.17)], i is the natural transformation from \bar{H} to H (see [2, p. 289]), and all the unlabelled maps are induced by appropriate inclusions.

Next we prove (c is the generator of $H^{1}\left(P^{n}\right)$)
(2.2) for every neighbourhood V of $B(f)$ in P^{n} we have

$$
c^{k} \in \operatorname{Im}\left(H^{k}\left(P^{n}, P^{n}-V\right) \rightarrow H^{k}\left(P^{n}\right)\right)
$$

Since for every neighbourhood V of $B(f)$ in P^{n} there is a neighbourhood U of $P^{n} \times \Delta\left(M^{k}\right)$ in Y / T with $s^{-1}(U) \subseteq V$, it is clearly sufficient to prove (2.2) with $V=s^{-1}(U), U$ a neighbourhood of $P^{n} \times \Delta\left(M^{k}\right)$ in Y / T; and in this case the assertion follows immediately from the commutative diagram

using (2.1) and the hypothesis that $s^{*}(\varphi)=c^{k}$.
Now, assume that $\bar{H}^{n-k}(B(f))=0$; then c^{n-k} maps to zero under the composition

$$
H^{n-k}\left(P^{n}\right) \stackrel{i^{-1}}{\cong} \bar{H}^{n-k}\left(P^{n}\right) \rightarrow \bar{H}^{n-k}(B(f))
$$

therefore, by the definition of \bar{H} there is an open neighbourhood U of $B(f)$
in P^{n}, such that c^{n-k} maps to zero under $H^{n-k}\left(P^{n}\right) \rightarrow H^{n-k}(U)$, i.e. we have (2.3) $c^{n-k} \epsilon \operatorname{Im}\left(H^{n-k}\left(P^{n}, U\right) \rightarrow H^{n-k}\left(P^{n}\right)\right)$ for some open neighbourhood U of $B(f)$ in P^{n}.
Using (2.3) and (2.2) with V closed and $V \subseteq U$ we get that

$$
c^{n}=c^{k} \cdot c^{n-k} \epsilon \operatorname{Im}\left(H^{n}\left(P^{n}, U \mathbf{u}\left(P^{n}-V\right)\right) \rightarrow H^{n}\left(P^{n}\right)\right) ;
$$

since $H^{n}\left(P^{n}, U \mathbf{u}\left(P^{n}-V\right)\right)=H^{n}\left(P^{n}, P^{n}\right)=0$ this gives the desired contradiction and Lemma 2.1 is proved.

This lemma reduces the proof of Theorem 1 to a consideration of $s^{*}(\varphi)$; however, there is a further reduction which is only implicitly contained in [1], but which we shall here need in an explicit form. It is stated in the next two lemmas.

Lemma 2.2. If $k<n$, and

$$
j_{*}: H_{n+k}\left(P^{n} \times \Delta\left(M^{k}\right)\right) \rightarrow H_{n+k}\left(Y / T, Y / T-P^{n} \times\left(x_{0}, x_{0}\right)\right)
$$

is non-zero, then $\bar{H}^{n-k}(B(f)) \neq 0$.
Proof. Changing f by a homotopy will change s by a homotopy; since we only have to prove that $s^{*}(\varphi) \neq 0$, we may, therefore, assume that f maps the lower hemisphere E^{n} to x_{0}; then the restriction of s to P^{n-1} imbeds P^{n-1} in the standard manner in $P^{n} \times\left(x_{0}, x_{0}\right)$; we then have the commutative diagram

and it is sufficient to prove that $i_{3}^{*}(\varphi) \neq 0$ (since then $i_{2}^{*} s^{*}(\varphi)=i_{1}^{*} i_{3}^{*}(\varphi)=$ $i_{1}^{*}\left(c^{k} \otimes 1\right)=c^{k}$, and $\left.s^{*}(\varphi) \neq 0\right)$; but $i_{3}^{*}(\varphi) \neq 0$ follows immediately from the assumptions of the lemma combined with the commutative diagram

Lemma 2.3. If $k=n, f^{*}: H^{n}\left(M^{n}\right) \rightarrow H^{n}\left(S^{n}\right)$ is zero and

$$
j_{*}: H_{n+k}\left(P^{n} \times \Delta\left(M^{k}\right)\right) \rightarrow H_{n+k}\left(Y / T, Y / T-P^{n} \times\left(x_{0}, x_{0}\right)\right)
$$

is nom-zero, then $\vec{H}^{0}(B(f)) \neq 0$.

Proof. As above we may assume that $f: S^{n}, E^{n} \rightarrow M^{n}, x_{0}$; then s factors through $Y^{\prime} / T=\left(S^{n} \times\left(M^{n} \vee M^{n}\right)\right) / T$ as shown in the diagram

Consider now the diagram

where i_{3}, i_{4}, and i_{5} are inclusions, h is the obvious homeomorphism, and p_{1} is the map induced by the projection $Y^{\prime}=S^{n} \times\left(M^{n} \vee M^{n}\right) \rightarrow S^{n}$. Since $p_{1} s_{1}=1$ we have that $s_{1}^{*}\left(p_{1}^{*}\left(c^{n}\right)\right)=c^{n}$; let $\gamma=p_{1}^{*}\left(c^{n}\right)$; then

$$
i_{5}^{*}(\gamma)=\left(p_{1} i_{5}\right)^{*}\left(c^{n}\right)=h^{*}\left(c^{n}\right)=c^{n} \otimes 1 \epsilon H^{n}\left(P^{n} \times\left(x_{0}, x_{0}\right)\right) ;
$$

also, precisely as in the proof of Lemma 2.2 we have that $i_{3}^{*}(\varphi) \neq 0$, i.e. $i_{3}^{*}(\varphi)=c^{n} \otimes 1$; now

$$
i_{5}^{*}\left(i_{4}^{*}(\varphi)+\gamma\right)=i_{3}^{*}(\varphi)+i_{5}^{*}(\gamma)=c^{n} \otimes 1+c^{n} \otimes 1=0
$$

so that $i_{4}^{*}(\varphi)+\gamma \in \operatorname{Im}\left(j_{1}^{*}\right)$, where j_{1} is the inclusion $Y^{\prime} / T \rightarrow Y^{\prime} / T$, $P^{n} \times\left(x_{0}, x_{0}\right)$. If we can now prove that the composition

$$
H^{n}\left(Y^{\prime} / T, P^{n} \times\left(x_{0}, x_{0}\right)\right) \xrightarrow{j_{1}^{*}} H^{n}\left(Y^{\prime} / T\right) \xrightarrow{s_{1}^{*}} H^{n}\left(P^{n}\right)
$$

is zero, we then get that $s_{1}^{*}\left(i_{4}^{*}(\varphi)+\gamma\right)=s^{*}(\varphi)+c^{n}=0$, from which $s^{*}(\varphi)=c^{n} \neq 0$.

We may, therefore, concentrate on proving that $s_{1}^{*} j_{1}^{*}=0$. -To that end let t be the involution on $M^{n} \vee M^{n}$ given by

$$
t\left(y, x_{0}\right)=\left(x_{0}, y\right) \quad \text { and } t\left(x_{0}, y\right)=\left(y, x_{0}\right)
$$

the projection $S^{n} \times\left(M^{n} \vee M^{n}\right) \rightarrow M^{n} \vee M^{n}$ induces a map

$$
b: Y^{\prime} / T \rightarrow\left(M^{n} \vee M^{n}\right) / t
$$

and the $\operatorname{map} \bar{F}: S^{n} \rightarrow M^{n} \vee M^{n}$, given by $\bar{F}(x)=(f(x), f(-x))$, induces a map

$$
F: P^{n} \rightarrow\left(M^{n} \vee M^{n}\right) / t
$$

these two maps serve to make the diagram

commutative. -Looking at the commutative diagram

where the isomorphism to the left is that induced by the obvious homeomorphism

$$
\left(M^{n} \vee M^{n}\right) / t \rightarrow M^{n}
$$

and the isomorphisms to the right are all standard isomorphisms, we see that $F^{*}=0$. Consider next the commutative diagram

where $a(x, y)=\operatorname{cls}\left(x, y, x_{0}\right), a^{\prime}(y)=\operatorname{cls}\left(y, x_{0}\right)$, and b^{\prime} is projection.
It is easy to see that a is a relative homeomorphism; also $S^{n} \times x_{0}$ is a strong deformation retract of one of its closed neighbourhoods N in $S^{n} \times M^{n}$ (e.g. $N=S^{n} \times D, D$ a closed disc around x_{0} in M^{n}); hence (see e.g. [2, (4.8.9)])

$$
a_{*}: H_{n}\left(S^{n} \times M^{n}, S^{n} \times x_{0}\right) \rightarrow H_{n}\left(\left(S^{n} \times\left(M^{n} \vee M^{n}\right)\right) / T, P^{n} \times\left(x_{0}, x_{0}\right)\right)
$$

is an isomorphism; since coefficients are Z_{2} we also get that

$$
a^{*}: H^{n}\left(\left(S^{n} \times\left(M^{n} \vee M^{n}\right)\right) / T, P^{n} \times\left(x_{0}, x_{0}\right)\right) \rightarrow H^{n}\left(S^{n} \times M^{n}, S^{n} \times x_{0}\right)
$$

is an isomorphism. $\left(a^{\prime}\right)^{*}$ and $\left(b^{\prime}\right)^{*}$ are easily seen to be isomorphisms; and we get that

$$
\begin{aligned}
b^{*}: H^{n} & \left(\left(M^{n} \vee M^{n}\right) / t,\left(x_{0}, x_{0}\right)\right) \\
& \rightarrow H^{n}\left(\left(S^{n} \times\left(M^{n} \vee M^{n}\right)\right) / T, P^{n} \times\left(x_{0}, x_{0}\right)\right)
\end{aligned}
$$

is an isomorphism. -Putting in " $F^{*}=0$ " and " b * iso" in the diagram (2.4) we get $s_{1}^{*} j_{1}^{*}=0$ as desired.

Remark. What is actually proved in the first part of this section is the following more general proposition:

Let M^{k} be a (normal, Hausdorff or something like that) topological space; suppose you have an element $\varphi \in H^{k}(Y / T)$ such that (2.1) holds, and such that $s^{*}(\varphi) \neq 0$; then $\bar{H}^{n-k}(B(f)) \neq 0$.

3. Proof of " $j_{*} \neq 0$ "

In this section we keep the notation from Section 2; we start the section with the assumption that
(3.1) $j_{*}: H_{n+k}\left(P^{n} \times \Delta\left(M^{k}\right)\right) \rightarrow H_{n+k}\left(Y / T, Y / T-P^{n} \times\left(x_{0}, x_{0}\right)\right)$ is zero, and we finish it by a contradiction.

Since H_{n+k} has compact support (in the sense of [2, 4.8.11]) we have a closed set $B \subseteq Y / T-P^{n} \times\left(x_{0}, x_{0}\right)$ such that $H_{n+k}\left(P^{n} \times \Delta\left(M^{k}\right)\right) \rightarrow$ $H_{n+k}(Y / T, B)$ is zero; B is of the form B^{\prime} / T, where B^{\prime} is a closed subset of $S^{n} \times\left(M^{k} \times M^{k}-\left(x_{0}, x_{0}\right)\right)$; now B^{\prime} is contained in

$$
S^{n} \times\left(M^{k} \times M^{k}-D \times D\right)
$$

for some $\operatorname{disc} D$ around x_{0} in M^{k}; also we may suppose that D is an open disc, contained (properly) in some other open disc D^{\prime} around x_{0} in M^{k}. Then $B \subseteq\left(S^{n} \times\left(M^{k} \times M^{k}-D \times D\right)\right) / T$, and from the above we have

$$
\begin{align*}
j_{*}: H_{n+k}\left(P^{n}\right. & \left.\times \Delta\left(M^{k}\right)\right) \rightarrow \\
& H_{n+k}\left(Y / T,\left(S^{n} \times\left(M^{k} \times M^{k}-D \times D\right)\right) / T\right) \text { is zero. } \tag{3.2}
\end{align*}
$$

Consider then $P^{n} \times \Delta\left(M^{k}-D\right)$; this is a submanifold of $P^{n} \times \Delta\left(M^{k}\right)$ with boundary; therefore, in the commutative diagram

(where the column is part of the exact sequence of the pair) the upper left hand group is zero; from (3.2) we then get that j_{*}^{\prime} is not monic.

Now

$$
P^{n} \times \Delta\left(M^{k}-D^{\prime}\right)
$$

is closed and contained in the interior of $P^{n} \times \Delta\left(M^{k}-D\right)$; also

$$
\left(S^{n} \times\left(M^{k} \times M^{k}-D^{\prime} \times D^{\prime}\right)\right) / T
$$

is closed and contained in the interior of $\left(S^{n} \times\left(M^{k} \times M^{k}-D \times D\right)\right) / T$; hence in the diagram

$$
\begin{aligned}
& H_{n+k}\left(P^{n} \times \Delta\left(D^{\prime}\right), P^{n} \times \Delta\left(D^{\prime}-D\right)\right) \xrightarrow{j_{*}^{\prime \prime}} H_{n+k} \\
& \cdot\left(\left(S^{n} \times D^{\prime} \times D^{\prime}\right) / T,\left(S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right)\right) / T\right) \\
& H_{n+k}\left(P^{n} \times \Delta\left(M^{k}\right), P^{n} \times \Delta\left(M^{k}-D\right)\right) \\
& \quad \xrightarrow{j_{*}^{\prime \prime}} H_{n+k}\left(\left(S^{n} \times M^{k} \times M^{k}\right) / T,\left(S^{n} \times\left(M^{k} \times M^{k}-D \times D\right)\right) / T\right)
\end{aligned}
$$

the vertical maps are excision-isomorphisms, and we get that
(3.3) $j_{*}^{\prime \prime}$ is not monic.

Considering next the pair-sequences of the pairs involved in (3.3) and noticing that $H_{n+k}\left(P^{n} \times \Delta\left(D^{\prime}\right)\right)=0$ we get

$$
\begin{align*}
j_{*}^{(3)}: H_{n+k-1} & \left(P^{n} \times \Delta\left(D^{\prime}-D\right)\right) \\
& \rightarrow H_{n+k-1}\left(\left(S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right)\right) / T\right) \text { is not monic. } \tag{3.4}
\end{align*}
$$

We now assume that D is a disc around 0 of radius 1 in euclidean k-space, and that D^{\prime} is a disc around 0 of radius (say) 2 in euclidean k-space. There is then a continuous map

$$
\bar{R}: S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right) \times I \rightarrow S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right)
$$

given by

$$
\begin{array}{rlr}
\bar{R}(x, y, z, t) & =(x,((1 /\|y\|-1) t+1) y, z), & y \in D^{\prime}-D, z \in \bar{D}, \\
& =(x, y,((1 /\|z\|-1) t+1) z), & y \in \bar{D}, z \in D^{\prime}-D \\
& =(x,((1 /\|y\|-1) t+1) y,((1 /\|z\|-1) t+1) z) \\
& y \in D^{\prime}-D, z \in D^{\prime}-D .
\end{array}
$$

Since \bar{R} is equivariant it induces a map
$R:\left(S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right)\right) / T \times I \rightarrow\left(S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right)\right) / T$,
which is easily seen to give deformation retractions from $\left.S^{n} \times\left(D^{\prime} \times D^{\prime}-D \times D\right)\right) / T$ to $\left(S^{n} \times\left(\bar{D}^{\cdot} \times \bar{D}\right.\right.$ ч $\left.\left.\bar{D} \times \bar{D}^{\cdot}\right)\right) / T\left({ }^{-}\right.$is closure, is boundary) and from $\left(P^{n} \times \Delta\left(D^{\prime}-D\right)\right)$ to $P^{n} \times \Delta\left(\bar{D}^{\cdot}\right)$.

Therefore, in the diagram

the vertical maps are isomorphisms, and we get

$$
\begin{equation*}
j_{*}^{(4)}: H_{n+k-1}\left(P^{n} \times \Delta\left(\bar{D}^{\bullet}\right)\right) \rightarrow H_{n+k-1}\left(\left(S^{n} \times\left(\bar{D} \times \bar{D} \text { ч } \bar{D} \times \bar{D}^{\bullet}\right)\right) / T\right. \tag{3.5}
\end{equation*}
$$

is not monic (and, hence, zero).
We have now reformulated our assumption in terms of differentiable manifolds, and we may proceed as follows:

Let N denote the normal bundle of the imbedding

$$
P^{n} \times \Delta\left(\bar{D}^{\cdot}\right) \subseteq\left(S^{n} \times\left(\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}\right)\right) / T
$$

and let \bar{N} be the normal bundle of the imbedding

$$
\Delta\left(\bar{D}^{\cdot}\right) \subseteq\left(\bar{D} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}\right)
$$

then from [1, (32.3)] we get

$$
\begin{equation*}
w_{k}(N)=\sum_{\mu=0}^{k} c^{\mu} \otimes w_{k-\mu}(\bar{N}) \tag{3.6}
\end{equation*}
$$

On the other hand Thom ([4], see also [1, pp. 84, 85]) has proved that $w_{k}(N)$ is the image of the orientation class of $P^{n} \times \Delta\left(\bar{D}^{\cdot}\right)$ under the map

$$
\begin{aligned}
H_{n+k-1}\left(P^{n} \times \Delta\left(\bar{D}^{\cdot}\right)\right) & \xrightarrow{j_{*}^{(4)}} H_{n+k-1}\left(\left(S^{n} \times\left(\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}\right)\right) / T\right) \\
& \xrightarrow{\gamma_{U}} H^{k}\left(\left(S^{n} \times\left(\bar{D} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}\right)\right) / T\right) \xrightarrow{\left(j^{(4)}\right)^{*}} H^{k}\left(P^{n} \times \Delta\left(\bar{D}^{\cdot}\right)\right),
\end{aligned}
$$

so $w_{k}(N)=0$, which clearly contradicts (3.6).

4. Proof of Theorem 1

Step 1. M^{k} is closed and connected. Using Lemma 2.2, Lemma 2.3, and Lemma 3.1 one only has to notice that $\operatorname{dim}(A(f)) \geq \operatorname{dim}(B(f))$.

Step 2. M^{k} is compact and connected but with boundary. Since the boundary of M^{k} is collared in M^{k} (see [3, IV]) we have the usual construction of the "double of M^{k} " W (W consists of two copies of M^{k}, identified along their common boundary); applying step 1 to W we get the result.

Step 3. M is compact, but not connected. Since f maps S^{n} into a connectedness component of M^{k}, the theorem follows from the other cases.

Remark. If one knew that a compact subset of an arbitrary manifold is contained in some compact submanifold one could of course drop the assumption of compactness of M^{k}; the author, however, has no knowledge concerning that point.

Bibliography

1. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer Verlag, Berlin, 1964.
2. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
3. M. Brown, Locally fat imbeddings, Ann. of Math., vol. 75 (1962), pp. 331-341.
4. R. Тном, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole. Norm. Sup., vol. 69 (1952), pp. 109-182.
5. D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helv., vol. 29 (1955), pp. 199-214.
6. C.-T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobû and Dyson, I, Ann. of Math., vol. 60 (1954), pp. 262-282; II, Ann. of Math., vol. 62 (1955), pp. 271-283.

Aarhus Universitet
Aarhus, Denmark

[^0]: Received June 1, 1967.

