ENVELOPES AND p-SIGNALIZERS OF FINITE GROUPS

BY

JOHN G. THOMPSON

The object of this paper is to obtain information about p-signalizers of finite groups, more particularly, to construct a characteristic subgroup which contains all the p-signalizers and is "small". As an application of the result obtained, and of independent interest, we obtain some information about groups whose c.f. are Suzuki groups.

If X is a group and p is a prime, $\mathbf{S}_p(X)$ is the join of all the normal p-solvable subgroups of X. Thus, $\mathbf{S}_2(X) = \mathbf{S}(X)$ is the largest solvable normal subgroup of X. The socle of X is $\mathbf{Soc}(X)$, the join of all the minimal normal subgroups of X; and $\mathbf{Soc}_p(X) = \mathbf{Soc}(X \mod \mathbf{S}_p(X))$. Finally, $\mathbf{ESoc}(X)$ is the extended socle of X and is defined by $\mathbf{ESoc}(X) = \bigcap \mathbf{N}_X(M)$, where M ranges over all subgroups of $\mathbf{Soc}(X)$ which are subnormal in X;¹ and $\mathbf{ESoc}_p(X) = \mathbf{ESoc}(X \mod \mathbf{S}_p(X))$.

If 1 = S(X), then $Soc(X) = S_1 \times \cdots \times S_n$, where each S_i is simple, $1 = C_x(Soc(X))$ and $ESoc(X) = \bigcap_{i=1}^n N_x(S_i)$.

Lemma 1. (a) Suppose $Soc_p(G) \subseteq H \subseteq G$. Then

(i)
$$\mathbf{S}_p(G) = \mathbf{S}_p(H)$$
.

- (ii) $\operatorname{Soc}_p(G) = \operatorname{Soc}_p(H)$.
- (iii) $\operatorname{ESoc}_p(H) \subseteq \operatorname{ESoc}_p(G).$

(b) If $H \triangleleft G$, then

- (i) $\mathbf{S}_{p}(H) = H \cap \mathbf{S}_{p}(G)$.
- (ii) $\operatorname{Soc}_p(H) \subseteq \operatorname{Soc}_p(G)$.
- (iii) $\mathbf{ESoc}(H) \subseteq \mathbf{ESoc}_p(G)$.

Proof. (a) Since $S_p(G)$ is a *p*-solvable normal subgroup of H, we have $S_p(G) \subseteq S_p(H)$. Since $Soc_p(G) \cap S_p(H)$ is a *p*-solvable normal subgroup of $Soc_p(G)$, we have $Soc_p(G) \cap S_p(H) \subseteq S_p(G)$. Thus

$$[\operatorname{Soc}_p(G), \ \mathbf{S}_p(H)] \subseteq \operatorname{Soc}_p(G) \ \cap \ \mathbf{S}_p(H) \subseteq \ \mathbf{S}_p(G),$$

so $S_p(H)$ centralizes $Soc_p(G)/S_p(G)$, whence $S_p(H) \subseteq S_p(G)$. This gives (i). In proving (ii), we may assume that $S_p(G) = S_p(H) = 1$. Thus, $Soc_p(G) \triangleleft Soc_p(H)$, and so $Soc_p(G) = Soc_p(H)$, since $C_G(Soc_p(G)) = 1$. This yields (ii). Clearly, $ESoc_p(H) = ESoc_p(G) \cap H$, so (iii) holds.

As for (b), since every characteristic subgroup of H is normal in G, (i), (ii), (iii) follow.

For each group G, let $\alpha(G) = \{A \mid A \triangleleft G, C_{\mathcal{G}}(A) = Z(A)\}.$

THEOREM 1. Suppose p is a prime, P is a S_p -subgroup of G, A $\epsilon \mathfrak{A}(P)$ and $Q \epsilon \sqcup_{\mathfrak{G}}(A; p')$. Then $Q \subseteq \operatorname{ESoc}_p(G_0)$, where $G_0 = \operatorname{C}_{\mathfrak{G}}(\operatorname{O}_{p',p}(G) \mod \operatorname{O}_{p'}(G))$.

¹Observe that if $Y \subseteq \operatorname{Soc}(X)$ then $Y \triangleleft \triangleleft X$ if and only if $Y \triangleleft \operatorname{Soc}(X)$.

Proof. We proceed by lexicographic induction on the ordered triple (|G|, |P:A|, |Q|), and by way of contradiction. The induction hypothesis gives

$$\mathbf{O}_{p'}(G) = \mathbf{1}.$$

Let $H = O_p(G) \subseteq P$ and let $H_1 = [H, Q]$. Suppose $H_1 \neq 1$. Let $Q_0 = C_Q(A)$. Since $AH \subseteq P$, it follows that $C_H(A) \subseteq Z(A)$. Hence, Q_0 centralizes $C_{H_1}(A)$, and so Q_0 centralizes H_1 . Let $Q_1 = [Q, A]$. We will show that Q_1 centralizes H. This follows from the induction hypothesis if $Q_1 \subset Q$, so suppose $Q_1 = Q$. In any case, $[H, A] \subseteq A$, and so $[H, A, Q] \subseteq H \cap Q = 1$. This violates Lemma 5.16 of [3]. We conclude that

$$(2) Q \subseteq \mathbf{C}_{\mathbf{G}}(H) = G_{\mathbf{0}}.$$

Our induction hypothesis, together with Lemma 1, gives

$$(3) G = G_0 A.$$

Let $\tilde{A} = A \cdot \mathbf{O}_{p}(G)$, so that $\tilde{A} \in \mathfrak{A}(P)$. Since $Q \in \mathfrak{H}(\tilde{A}; p')$, our induction hypothesis gives $A = \tilde{A}$.

Let $G_1 = \operatorname{Soc}_p(G_0)$. Now $S_p(G_0) = Z(G_0)$ is a *p*-group and $G_1/Z(G_0) = S_1 \times \cdots \times S_m$, where each S_i is a simple non abelian group of order divisible by *p*. Since $Q \not \sqsubseteq \operatorname{Soc}_p(G_0)$, we may assume that *Q* does not normalize S_1 .

By our induction hypothesis, every proper subgroup of Q which admits A normalizes S_1 . Hence, Q is a q-group for some prime $q \neq p$, and $Q \cap \mathbf{N}_G(S_1) = Q_1 \supseteq \mathbf{D}(Q)$, while $Q/\mathbf{D}(Q)$ is an irreducible A-group.

Let $S_i = L_i/\mathbb{Z}(G_0)$, and let G_2 be the normal closure of L_1 in G. Thus, $Q \not \subseteq \operatorname{ESoc}_p(G_2 QA)$, and so

(4)
$$G = G_2 QA, \quad G_1 = G_2, \quad L_1 \simeq L_i, \quad i = 1, 2, \cdots, m.$$

Let $P_i = P \cap L_i$. Since $L_i \triangleleft \triangleleft G$, we see that

(5)
$$P_i$$
 is an S_p -subgroup of L_i , $i = 1, \dots, m$.

We proceed to show that

(6)
$$A$$
 normalizes L_i , $i = 1, \cdots, m$

Suppose false. Choose $a \in A$ such that $L_i^a = L_j$ with $j \neq i$. Thus, for each $x \in P_i$, $x^a \in L_j$, so

$$y = x^{-1} \cdot x^a = [x, a] \epsilon L_i L_j \cap A.$$

For each $z \in Q$, we get $[y, z] \in Q \cap G_1 = \mathbf{D}(Q)$, so y centralizes $Q/\mathbf{D}(Q)$. Hence [y, z] = 1. Hence Q normalizes $L_i L_j$, and so $Q \cap \mathbf{N}(L_i)$ is of index at most 2 in Q. First, suppose q is odd. Then Q normalizes L_i , so Q normalizes L_1 , as QA permutes $\{L_1, \dots, L_m\}$ transitively. This is not the case, so $|Q:Q \cap \mathbf{N}(L_i)| = 2$. Thus, $\{L_i, L_j\}$ is permuted transitively by Q, so we may

assume that

$$\{L_1, L_2\}, \{L_3, L_4\}, \cdots, \{L_{2n-1}, L_{2n}\}$$

are the orbits of $\{L_1, \dots, L_m\}$ under Q, 2n = m, and that i = 1, j = 2. On the other hand, a is an arbitrary element of A which does not normalize L_1 , and so we conclude that A normalizes $L_1 L_2$. Hence m = 2, n = 1, and so A normalizes L_1 and L_2 , p being odd. We conclude that (6) holds.

Since $A \subseteq \bigcap_{i=1}^{m} \mathbf{N}(L_i)$, so also $[A, Q] \subseteq \bigcap_{i=1}^{m} \mathbf{N}(L_i)$. This implies that $[A, Q] \subseteq \mathbf{D}(Q)$, and so

$$AQ = A \times Q.$$

Since P is a S_p -subgroup of $\mathbf{N}_{\mathfrak{g}}(A)$, $P \cap \mathbf{C}_{\mathfrak{g}}(A) = \mathbf{Z}(A)$ is a S_p -subgroup of $\mathbf{C}_{\mathfrak{g}}(A)$. Hence $\mathbf{C}_{\mathfrak{g}}(A) = \mathbf{Z}(A) \times D$, where $D = \mathbf{O}_{p'}(\mathbf{C}_{\mathfrak{g}}(A)) \supseteq Q$. By induction, we get A = P.

Since A = P, it follows that Q centralizes P_i . Hence, for each $x \in Q$, $L_i \cap L_i^x \supseteq P_i$, and so $L_i \cap L_i^x \supset Z(G_i)$. This implies that $L_i = L_i^x$, for all $x \in Q$, $i = 1, \dots, m$, and completes the proof.

For each group G, let $\mathcal{E}(G)$, the envelope of G, be the class of all groups H which have a normal subgroup K such that

- (1) $K/\mathbf{Z}(K) \simeq G.$
- (2) $\mathbf{C}_{H}(K/\mathbf{Z}(K)) = \mathbf{Z}(K).$

For each prime p, let S_p be the class of all groups G such that if $H \in \mathcal{E}(G)$, H_p is an S_p -subgroup of H and $A \in \mathcal{C}(H_p)$, then $O_{p'}(H)$ contains every element of $\mathsf{H}_H(A; p')$. Let \tilde{S}_p be the class of all groups G such that if $H \in \mathcal{E}(G)$ and U is a p-subgroup of H, then $O_{p'}(C_H(U)) \subseteq O_{p'}(H)$.

LEMMA 2. If $q = 2^n > 2$ is an odd power of 2, then $Sz(q) \in S_2 \cap \tilde{S}_2$.

Proof. Choose $H \in \mathcal{E}(G)$, where G = Sz(q). In proving the lemma, we may assume that $\mathbf{O}_{2'}(H) = 1$. Let K be a normal subgroup of H such that $K/\mathbf{Z}(K) \simeq G$ and $\mathbf{C}_H(K/\mathbf{Z}(K)) = \mathbf{Z}(K)$. Let P be a S_2 -subgroup of H. As is well known [2], |H:K| is odd, so $P \subseteq K$.

Case 1. q > 8. By a result of Alperin and Gorenstein [1], $K = K' \times \mathbb{Z}(K)$. Thus, for each $A \in \mathfrak{A}(P)$, we have $A = A_1 \times \mathbb{Z}(K)$, where $A_1 = A \cap K' \in \mathfrak{A}(P \cap K')$. In particular, A contains $\mathbb{Z}(P \cap K')$. By a result of Suzuki [2], 1 is the only element of $\mathbf{H}_{H}(A; 2')$, and so $G \in S_2$.

If U is a 2-subgroup of H, we may assume $U \subseteq P$. Thus, $C_P(U)$ contains $Z(P \cap K')$, and by the result of Suzuki alluded to above, 1 is the only element of $\bowtie_H(C_P(U); 2')$, and so $G \in \tilde{S}_2$.

Case 2. q = 8. Let L = K'. Thus, K is a central product of L and $\mathbf{Z}(K)$, and L is perfect. Let $P_1 = P \cap L$. If $A \in \mathfrak{A}(P)$, then A is a central product of A_1 and $\mathbf{Z}(K)$, where $A_1 = A \cap P_1 \in \mathfrak{A}(P_1)$. If $\mathbf{Z}(L) = 1$, the argument in Case 1 applies, so suppose $\mathbf{Z}(L) \neq 1$. Set $Z = \mathbf{Z}(L)$.

By the result of Alperin and Gorenstein, we get that Z is elementary of order

2 or 4, and in addition, $Z = Z(P_1)$. Also, $P'_1 = Z \times E$, where E is elementary of order 8. By a basic property of P_1/Z , each of its normal subgroups either contains P'_1/Z or is contained in P'_1/Z . Since $A_1 \triangleleft P_1$ and $C_{P_1}(A_1) = Z(A_1)$, we get that $A_1 \supseteq P'_1$. Hence, 1 is the only element of $\bowtie_H(A; 2')$, so $G \in S_2$. Now suppose U is a 2-subgroup of H. We may assume that $U \subseteq P$.

First, suppose $\mathbf{C}_{H}(U) \subseteq K$. If $U \subseteq \mathbf{Z}(K)$, clearly $\mathbf{O}_{2'}(\mathbf{C}_{H}(U)) = 1$, so suppose $U \not \subseteq \mathbf{Z}(K)$. Since $K/\mathbf{Z}(K)$ is a CIT-group, it follows that $\mathbf{C}_{H}(U) = \mathbf{C}_{K}(U)$ is a 2-group, so $\mathbf{O}_{2'}(\mathbf{C}_{H}(U)) = 1$.

Finally, suppose $C_H(U) \not \subseteq K$. In this case, $H/Z(K) \simeq \text{Aut } Sz(8)$. As observed by Alperin and Gorenstein, H/K acts non-trivially on Z(L) = Z, and so $O_{2'}(C(U)) \subseteq K$, whence $O_{2'}(C(U)) = 1$.

Combining the various cases gives $G \in \tilde{S}_2$ and completes the proof.

BIBLIOGRAPHY

- 1. J. ALPERIN AND D. GORENSTEIN, The multiplicators of certain simple groups, Proc. Am. Math. Soc., vol. 17 (1966), pp. 515-519.
- 2. M. SUZUKI, On a class of doubly transitive groups, Ann. of Math., vol. 75 (1962), pp. 105-145.
- 3. J. THOMPSON, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.

THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS