ENVELOPES AND p-SIGNALIZERS OF FINITE GROUPS

BY

John G. Thompson
The object of this paper is to obtain information about p-signalizers of finite groups, more particularly, to construct a characteristic subgroup which contains all the p-signalizers and is "small". As an application of the result obtained, and of independent interest, we obtain some information about groups whose c.f. are Suzuki groups.

If X is a group and p is a prime, $\mathrm{S}_{p}(X)$ is the join of all the normal p-solvable subgroups of X. Thus, $\mathbf{S}_{2}(X)=\mathbf{S}(X)$ is the largest solvable normal subgroup of X. The socle of X is $\operatorname{Soc}(X)$, the join of all the minimal normal subgroups of X; and $\operatorname{Soc}_{p}(X)=\operatorname{Soc}\left(X \bmod \mathbf{S}_{p}(X)\right)$. Finally, $\operatorname{ESoc}(X)$ is the extended socle of X and is defined by $\operatorname{ESoc}(X)=\cap \mathbf{N}_{\boldsymbol{X}}(M)$, where M ranges over all subgroups of $\operatorname{Soc}(X)$ which are subnormal in $X ;{ }^{1}$ and $\operatorname{ESoc}_{p}(X)=\operatorname{ESoc}\left(X \bmod \mathbf{S}_{p}(X)\right)$.

If $1=\mathbf{S}(X)$, then $\operatorname{Soc}(X)=S_{1} \times \cdots \times S_{n}$, where each S_{i} is simple, $1=\mathbf{C}_{X}(\operatorname{Soc}(X))$ and $\operatorname{ESoc}(X)=\bigcap_{i=1}^{n} \mathbf{N}_{X}\left(S_{i}\right)$.

Lemma 1. (a) Suppose $\operatorname{Soc}_{p}(G) \subseteq H \subseteq G$. Then
(i) $\mathbf{S}_{p}(G)=\mathbf{S}_{p}(H)$.
(ii) $\operatorname{Soc}_{p}(G)=\operatorname{Soc}_{p}(H)$.
(iii) $\operatorname{ESoc}_{p}(H) \subseteq \operatorname{ESoc}_{p}(G)$.
(b) If $H \triangleleft G$, then
(i) $\mathrm{S}_{p}(H)=H \cap \mathrm{~S}_{p}(G)$.
(ii) $\operatorname{Soc}_{p}(H) \subseteq \operatorname{Soc}_{p}(G)$.
(iii) $\operatorname{ESoc}(H) \subseteq \operatorname{ESoc}_{p}(G)$.

Proof. (a) Since $\mathrm{S}_{p}(G)$ is a p-solvable normal subgroup of H, we have $\mathbf{S}_{p}(G) \subseteq \mathbf{S}_{p}(H)$. Since $\operatorname{Soc}_{p}(G) \cap \mathbf{S}_{p}(H)$ is a p-solvable normal subgroup of $\operatorname{Soc}_{p}(G)$, we have $\operatorname{Soc}_{p}(G) \cap \mathbf{S}_{p}(H) \subseteq \mathbf{S}_{p}(G)$.
Thus

$$
\left[\operatorname{Soc}_{p}(G), \mathbf{S}_{p}(H)\right] \subseteq \operatorname{Soc}_{p}(G) \cap \mathbf{S}_{p}(H) \subseteq \mathbf{S}_{p}(G)
$$

so $\mathbf{S}_{p}(H)$ centralizes $\operatorname{Soc}_{p}(G) / \mathbf{S}_{p}(G)$, whence $\mathbf{S}_{p}(H) \subseteq \mathbf{S}_{p}(G)$. This gives (i). In proving (ii), we may assume that $S_{p}(G)=S_{p}(H)=1$. Thus, $\operatorname{Soc}_{p}(G) \triangleleft \operatorname{Soc}_{p}(H)$, and so $\operatorname{Soc}_{p}(G)=\operatorname{Soc}_{p}(H)$, since $\mathbf{C}_{G}\left(\operatorname{Soc}_{p}(G)\right)=1$. This yields (ii). Clearly, $\operatorname{ESoc}_{p}(H)=\operatorname{ESoc}_{p}(G) \cap H$, so (iii) holds.

As for (b), since every characteristic subgroup of H is normal in G, (i), (ii), (iii) follow.

For each group G, let $\mathbb{Q}(G)=\left\{A \mid A \triangleleft G, \mathbf{C}_{G}(A)=\mathbf{Z}(A)\right\}$.
Theorem 1. Suppose p is a prime, P is $a S_{p}$-subgroup of $G, A \in \mathbb{Q}(P)$ and $Q \in \boldsymbol{h}_{G}\left(A ; p^{\prime}\right) . \quad$ Then $Q \subseteq \operatorname{ESoc}_{p}\left(G_{0}\right)$, where $G_{0}=\mathbf{C}_{G}\left(\mathbf{O}_{p^{\prime}, p}(G) \bmod \mathbf{O}_{p^{\prime}}(G)\right)$.

[^0]Proof. We proceed by lexicographic induction on the ordered triple $(|G|,|P: A|,|Q|)$, and by way of contradiction. The induction hypothesis gives

$$
\begin{equation*}
\mathbf{O}_{p^{\prime}}(G)=1 \tag{1}
\end{equation*}
$$

Let $H=\mathrm{O}_{p}(G) \subseteq P$ and let $H_{1}=[H, Q]$. Suppose $H_{1} \neq 1$. Let $Q_{0}=$ $\mathbf{C}_{Q}(A)$. Since $A H \subseteq P$, it follows that $\mathbf{C}_{H}(A) \subseteq \mathbf{Z}(A)$. Hence, Q_{0} centralizes $\mathbf{C}_{H_{1}}(A)$, and so Q_{0} centralizes H_{1}. Let $Q_{1}=[Q, A]$. We will show that Q_{1} centralizes H. This follows from the induction hypothesis if $Q_{1} \subset Q$, so suppose $Q_{1}=Q$. In any case, $[H, A] \subseteq A$, and so $[H, A, Q] \subseteq H \cap Q=1$. This violates Lemma 5.16 of [3]. We conclude that

$$
\begin{equation*}
Q \subseteq \mathbf{C}_{G}(H)=G_{0} \tag{2}
\end{equation*}
$$

Our induction hypothesis, together with Lemma 1, gives

$$
\begin{equation*}
G=G_{0} A \tag{3}
\end{equation*}
$$

Let $\tilde{A}=A \cdot \mathbf{O}_{p}(G)$, so that $\tilde{A} \in \mathbb{Q}(P)$. Since $Q \in \boldsymbol{h}\left(\tilde{A} ; p^{\prime}\right)$, our induction hypothesis gives $A=\tilde{A}$.

Let $G_{1}=\operatorname{Soc}_{p}\left(G_{0}\right)$. Now $\mathbf{S}_{p}\left(G_{0}\right)=\mathbf{Z}\left(G_{0}\right)$ is a p-group and $G_{1} / Z\left(G_{0}\right)=$ $S_{1} \times \cdots \times S_{m}$, where each S_{i} is a simple non abelian group of order divisible by p. Since $Q \nsubseteq \operatorname{ESoc}_{p}\left(G_{0}\right)$, we may assume that Q does not normalize S_{1}.

By our induction hypothesis, every proper subgroup of Q which admits A normalizes S_{1}. Hence, Q is a q-group for some prime $q \neq p$, and $Q \cap \mathbf{N}_{G}\left(S_{1}\right)=Q_{1} \supseteq \mathbf{D}(Q)$, while $Q / \mathbf{D}(Q)$ is an irreducible A-group.

Let $S_{i}=L_{i} / \mathbf{Z}\left(G_{0}\right)$, and let G_{2} be the normal closure of L_{1} in G. Thus, $Q \nsubseteq \mathrm{ESoc}_{p}\left(G_{2} Q A\right)$, and so

$$
\begin{equation*}
G=G_{2} Q A, \quad G_{1}=G_{2}, \quad L_{1} \simeq L_{i}, \quad i=1,2, \cdots, m \tag{4}
\end{equation*}
$$

Let $P_{i}=P \cap L_{i} . \quad$ Since $L_{i} \triangleleft \triangleleft G$, we see that

$$
\begin{equation*}
P_{i} \text { is an } S_{p} \text {-subgroup of } L_{i}, \quad i=1, \cdots, m \tag{5}
\end{equation*}
$$

We proceed to show that

$$
\begin{equation*}
A \text { normalizes } L_{i}, \quad i=1, \cdots, m \tag{6}
\end{equation*}
$$

Suppose false. Choose $a \in A$ such that $L_{i}^{a}=L_{j}$ with $j \neq i$. Thus, for each $x \in P_{i}, x^{a} \in L_{j}$, so

$$
y=x^{-1} \cdot x^{a}=[x, a] \epsilon L_{i} L_{j} \cap A
$$

For each $z \in Q$, we get $[y, z] \in Q \cap G_{1}=\mathbf{D}(Q)$, so y centralizes $Q / \mathbf{D}(Q)$. Hence $[y, z]=1$. Hence Q normalizes $L_{i} L_{j}$, and so $Q \cap \mathbf{N}\left(L_{i}\right)$ is of index at most 2 in Q. First, suppose q is odd. Then Q normalizes L_{i}, so Q normalizes L_{1}, as $Q A$ permutes $\left\{L_{1}, \cdots, L_{m}\right\}$ transitively. This is not the case, so $\left|Q: Q \cap \mathbf{N}\left(L_{i}\right)\right|=2$. Thus, $\left\{L_{i}, L_{j}\right\}$ is permuted transitively by Q, so we may
assume that

$$
\left\{L_{1}, L_{2}\right\}, \quad\left\{L_{3}, L_{4}\right\}, \cdots,\left\{L_{2 n-1}, L_{2 n}\right\}
$$

are the orbits of $\left\{L_{1}, \cdots, L_{m}\right\}$ under $Q, 2 n=m$, and that $i=1, j=2$. On the other hand, a is an arbitrary element of A which does not normalize L_{1}, and so we conclude that A normalizes $L_{1} L_{2}$. Hence $m=2, n=1$, and so A normalizes L_{1} and L_{2}, p being odd. We conclude that (6) holds.

Since $A \subseteq \bigcap_{i=1}^{m} \mathbf{N}\left(L_{i}\right)$, so also $[A, Q] \subseteq \bigcap_{i=1}^{m} \mathbf{N}\left(L_{i}\right)$. This implies that $[A, Q] \subseteq \mathbf{D}(Q)$, and so

$$
\begin{equation*}
A Q=A \times Q \tag{7}
\end{equation*}
$$

Since P is a S_{p}-subgroup of $\mathbf{N}_{G}(A), P \cap \mathbf{C}_{G}(A)=\mathbf{Z}(A)$ is a S_{p}-subgroup of $\mathbf{C}_{G}(A)$. Hence $\mathbf{C}_{G}(A)=\mathbf{Z}(A) \times D$, where $D=\mathbf{O}_{p^{\prime}}\left(\mathbf{C}_{G}(A)\right) \supseteq Q$. By induction, we get $A=P$.

Since $A=P$, it follows that Q centralizes P_{i}. Hence, for each $x \in Q$, $L_{i} \cap L_{i}^{x} \supseteq P_{i}$, and so $L_{i} \cap L_{i}^{x} \supset Z\left(G_{1}\right)$. This implies that $L_{i}=L_{i}^{x}$, for all $x \in Q, i=1, \cdots, m$, and completes the proof.

For each group G, let $\varepsilon(G)$, the envelope of G, be the class of all groups H which have a normal subgroup K such that

$$
\begin{align*}
& K / \mathbf{Z}(K) \simeq G \tag{1}\\
& \mathbf{C}_{H}(K / \mathbf{Z}(K))=\mathbf{Z}(K)
\end{align*}
$$

For each prime p, let S_{p} be the class of all groups G such that if $H \in \mathcal{E}(G), H_{p}$ is an S_{p}-subgroup of H and $A \in \mathbb{Q}\left(H_{p}\right)$, then $\mathbf{O}_{p^{\prime}}(H)$ contains every element of $\boldsymbol{h}_{H}\left(A ; p^{\prime}\right)$. Let \tilde{s}_{p} be the class of all groups G such that if $H \in \mathcal{E}(G)$ and U is a p-subgroup of H, then $\mathbf{O}_{p^{\prime}}\left(\mathbf{C}_{H}(U)\right) \subseteq \mathbf{O}_{p^{\prime}}(H)$.

Lemma 2. If $q=2^{n}>2$ is an odd power of 2 , then $S z(q) \in \mathbb{S}_{2} \cap \tilde{S}_{2}$.
Proof. Choose $H \in \mathcal{E}(G)$, where $G=S z(q)$. In proving the lemma, we may assume that $\mathbf{O}_{2^{\prime}}(H)=1$. Let K be a normal subgroup of H such that $K / \mathbf{Z}(K) \simeq G$ and $\mathbf{C}_{H}(K / \mathbf{Z}(K))=\mathbf{Z}(K)$. Let P be a S_{2}-subgroup of H. As is well known [2], $|H: K|$ is odd, so $P \subseteq K$.

Case 1. $q>8$. By a result of Alperin and Gorenstein [1], $K=$ $K^{\prime} \times \mathbb{Z}(K)$. Thus, for each $A \in \mathbb{Q}(P)$, we have $A=A_{1} \times \mathbf{Z}(K)$, where $A_{1}=A \cap K^{\prime} \in \mathbb{Q}\left(P \cap K^{\prime}\right)$. In particular, A contains $\mathbf{Z}\left(P \cap K^{\prime}\right)$. By a result of Suzuki [2], 1 is the only element of $h_{H}\left(A ; 2^{\prime}\right)$, and so $G \epsilon \mathbb{S}_{2}$.

If U is a 2-subgroup of H, we may assume $U \subseteq P$. Thus, $C_{P}(U)$ contains $Z\left(P \cap K^{\prime}\right)$, and by the result of Suzuki alluded to above, 1 is the only element of $\boldsymbol{h}_{H}\left(C_{P}(U) ; 2^{\prime}\right)$, and so $G \epsilon \tilde{\mathrm{~S}}_{2}$.

Case 2. $\quad q=8$. Let $L=K^{\prime}$. Thus, K is a central product of L and $\mathbf{Z}(K)$, and L is perfect. Let $P_{1}=P \cap L$. If $A \in \mathbb{Q}(P)$, then A is a central product of A_{1} and $\mathbf{Z}(K)$, where $A_{1}=A \cap P_{1} \in \mathbb{Q}\left(P_{1}\right)$. If $\mathbf{Z}(L)=1$, the argument in Case 1 applies, so suppose $Z(L) \neq 1$. Set $Z=\mathbf{Z}(L)$.

By the result of Alperin and Gorenstein, we get that Z is elementary of order

2 or 4 , and in addition, $Z=Z\left(P_{1}\right)$. Also, $P_{1}^{\prime}=Z \times E$, where E is elementary of order 8. By a basic property of P_{1} / Z, each of its normal subgroups either contains P_{1}^{\prime} / Z or is contained in P_{1}^{\prime} / Z. Since $A_{1} \triangleleft P_{1}$ and $\mathbf{C}_{P_{1}}\left(A_{1}\right)=\mathbf{Z}\left(A_{1}\right)$, we get that $A_{1} \supseteq P_{1}^{\prime}$. Hence, 1 is the only element of $h_{H}\left(A ; 2^{\prime}\right)$, so $G \in \mathbb{S}_{2}$.

Now suppose U is a 2 -subgroup of H. We may assume that $U \subseteq P$.
First, suppose $\mathbf{C}_{H}(U) \subseteq K$. If $U \subseteq Z(K)$, clearly $\mathbf{O}_{2^{\prime}}\left(\mathbf{C}_{H}(U)\right)=1$, so suppose $U \nsubseteq \mathbf{Z}(K)$. Since $K / \mathbf{Z}(K)$ is a CIT-group, it follows that $\mathbf{C}_{H}(U)=$ $\mathbf{C}_{K}(U)$ is a 2-group, so $\mathbf{O}_{2^{\prime}}\left(\mathbf{C}_{H}(U)\right)=1$.

Finally, suppose $\mathbf{C}_{H}(U) \nsubseteq K$. In this case, $H / \mathbf{Z}(K) \simeq$ Aut $S z(8)$. As observed by Alperin and Gorenstein, H / K acts non-trivially on $Z(L)=Z$, and so $\mathbf{O}_{2^{\prime}}(\mathbf{C}(U)) \subseteq K$, whence $\mathbf{O}_{2^{\prime}}(\mathbf{C}(U))=1$.

Combining the various cases gives $G \epsilon \widetilde{S}_{2}$ and completes the proof.

Bibliography

1. J. Alperin and D. Gorenstein, The multiplicators of certain simple groups, Proc. Am. Math. Soc., vol. 17 (1966), pp. 515-519.
2. M. Suzuki, On a class of doubly transitive groups, Ann. of Math., vol. 75 (1962), pp. 105-145.
3. J. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.

[^0]: ${ }^{1}$ Observe that if $Y \subseteq \operatorname{Soc}(X)$ then $Y \triangleleft \triangleleft X$ if and only if $Y \triangleleft \operatorname{Soc}(X)$.

