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1. Introduction’

Let G be a finite group. Let E be an algebraically closed field. As is well
known, the study of the characters of G is closely related to that of the group
algebra E[G] and of its center Z = Z(E[G]). We call Z the class algebra of
G. We are concerned here with a further investigation of Z continuing the
work in [1].

The dimension of Z as a E-space is the class number k(@) of G. Since we
are interested in characters and related functions, we also consider the dual
space Z consisting of all linear functions defined on Z with values in =.

Write Z as a direct sum

(1.1) Z=oy B

of block ideals of Z, i.e. of indecomposable ideals of Z. This decomposition
(1.1) corresponds to the decomposition

(1.2) Z2=@®) Fs

where F is the subspace of Z consisting of those f ¢ Z which vanish on all
block ideals By ¢ B in (1.1). Then B and Fjp are themselves dual vector
spaces and they have the same dimension k5 .

Each B is a commutative ring with a unit element 5. If 1 is the unit
element of Z, we have

(1-3) 1= ZB U]

and (1.3) is the decomposition of 1 into primitive orthogonal idempotents.
It follows that

2@ = @ 25 s E[G]

is the decomposition of the group algebra into (two-sided) block ideals.

Since B is indecomposable, the residue class ring B of B modulo its radical
is simple and hence an extension field of finite degree of E. Since E was
algebraically closed, B is isomorphic to Z. We then have an algebra homo-
morphism w of B onto E. Clearly, » can be extended to an algebra homo-
morphism wp of Z onto = such that wp vanishes for all block ideals B; % B in
(1.1). Thus wz e Fz. Conversely, it is seen at once that each non-zero
algebra homomorphism of Z into E coincides with wz for some B.

1 This work has been supported in part by a National Science Foundation grant.
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The case that & has characteristic 0 is well known and fairly trivial. Let
X1, X2y * 5 Xu(e) denote the irreducible characters of G. Each x; defines
an algebra-homomorphism «; onto E given by Frobenius’ formula
(14) wi(8K) = | K | xj(ox)/x;(1)
where K is a class of conjugate elements of G, where SK ¢ Z[(] is the sum of
the | K | elements of K, and where ox ¢ K. Since the k(@) homomorphism
w; are distinct, we have k(G) block ideals B = & in (1.1) and Z is semi-
simple.

We now turn to fields of prime characteristic. Throughout this paper,
p will be a fixed prime number and we shall reserve the letter @ for an alge-
braically closed field of characteristic p. Take then = = Q above and set

Z = Z(G) = Z(QAG)).

It is clear in principle that if we know the irreducible characters
X1y X2, *° , Xk , We can construct the block ideals B, or as we shall simply
say, the blocks B of G. Actually, this can be done in an explicit fashion (§2,
2). In particular, the dimension kz turns out to be the number of irreducible
characters x; in B in the sense of [1].

In a way, our aim lies in the opposite direction. This is part of our effort
to find new links between characters of G and group theoretical properties of
G. The main result of [1, I] is already of this type. With each block B of
@, we associate a p-subgroup D of G, the defect group of B. If we know’
the normalizer Ng(D) of D, we can construct the algebra homomorphism
wp for the blocks B of G with the defect group D. This gives us the values
(1.4) for the characters x; e B modulo a prime ideal divisor of p in an appro-
priate algebraic number field.

The defect group D of B is determined up to conjugacy. We shall asso-
ciate with B a system of p-subgroups of G which we shall call the lower de-
fect groups of B. Again, they are really only determined up to conjugacy.
In order to fix ideas, it will be convenient to choose a set ®(G) of representa-
tives for the classes of conjugate p-subgroups of G. We then take defect
groups and lower defect groups in ®(G).

Let K be a conjugate class of G. There is a unique element P ¢ ®(G)
such that P is a p-Sylow subgroup of the centralizer Cq(o) for suitable ¢ ¢ K.
We then call P the defect group Dy of the class K.

Let B now be a block. A member P of ®(G) will be called a lower defect
group of B, if there exist elements f of the space F 3 in (1.2) with the following
properties:

(i) There exist conjugate classes K with the defect group P such that
f(SK) # 0 with 8K defined as in (1.4).

2 When we say that a subgroup H of G is known, we usually assume that we know
H not only as an abstract group but also the imbedding of H in G, i.e. the manner in
which the conjugate classes of H lie in the conjugate classes of G.
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(ii) We have f(S8K) = 0 for all conjugate classes K for which the order
| Dg | of the defect group Dy is smaller than the order | P | of P.

More generally, we consider subspaces V of Fp such that all f ¢ 0in V
have properties (i) and (ii). Let mz(P) denote the maximal dimension of
such a space V. We count P exactly mz(P) times as lower defect group of
B. Let D3 denote the system consisting of the groups P ¢ ®(G), each P
taken with the multiplicity mz(P) = 0. This is the system Dy of lower defect
groups of B. 'We shall show (§4) that D5 consists of exactly kp groups. In
other words,

(1.5) ks = 2rms(P);  (Pe®(@))

If P is a lower defect group of B, i.e.if mp(P) > 0, then P is conjugate to a
subgroup of the defect group D of B, and D itself is a lower defect group of
B. If we know the normalizer N¢(P) of P ¢ ®(G), we are able to construet
a subspace Vp of dimension mz(P) of Fp with the properties (i), (ii) above
such that Fj is the direct sum of the V » for the various P ¢ ®(G). If P 5 1,
Ng(P)is a ‘local subgroup’ of G. However, since P = 1 occurs in ®@(G), our
construction falls short of a full construction of Fp based on a knowledge of
the local subgroups of G. In particular, in (1.5) the term mz(1) cannot be
determined, and we can only give a lower estimate for kg .

By a p-section ©(7) of an element 7 of G, we mean the set of all elements
£ € G such that the p-factor £, of £ is conjugate to the p-factor 7, of 7, cf.
[1, II, §3]. Each p-section is a union of conjugate classes. We shall denote
by II a set of representatives for the conjugate classes of p-elements of G.
Each p-section has the form &(«) with = ¢ Il and @ is the disjoint union of
these &(w). In §6, we shall associate each lower defect group of B with one
of the sections. Let m‘3’(P) of the mz(P) members P of D be associated
with &(7) so that

(1.6) S mE(P) = ms(P);  (meIl).

We shall show that m(§)(P) can be determined when we know the centralizer
Ce(w) of = and the blocks b of Ce(x) with b¢ = B (in the sense of [1, II,
§2]. It suffices to know the lower defect groups of b associated with the
section of the unit element in Cg(x).

The numbers m§’ (P) have some remarkable properties. If 5 is the num-

ber of modular irreducible characters in B, then
(1.7) Is = 2pmP(P); Ped(@).

This is a kind of analogue of (1.5). Ifin (1.7) we sum only over the P ¢ ®(G)
of a fixed order p’, the partial sum represents the multiplicity of p" as ele-
mentary divisor of the Cartan matrix Cz of B. This refines a result announced
without proof in [2].

Notation. Most of the notation used has been explained above. The
letter G will always stand for a finite group and p will be a fixed prime number.
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We shall denote by Q an algebraically closed field of characteristic p. The
class algebra Z (2[G]) of G over @ will be denoted by Z or Z(G). Occasionally
in §2, a particular field @ will be used, but it is clear that the results concern-
ing Z will not depend on the choice of Q. If M is a subset of G we denote
by SM the sum of the elements of M in the group algebra of G.

The set of conjugate classes of G will be denoted by @4(G). For K € €{(G),
we shall denote by ox a representative element in K. If fis a function de-
fined on Z, we shall usually write f(K) instead of f(S8K). The set of blocks
of G (for given p) will be denoted by B£(G).

We choose a set ®(G) of representatives for the classes of conjugate p-sub-
groups of G. If P, Q ¢ ®(@), we write P < Q when P is conjugate in G to
a subgroup of Q. Then ®(G)is partially ordered. A set of representatives for
the conjugate classes of p-elements of G will be denoted by II.

If M is a subset of @, the centralizer of M in G is denoted by Ce(M ) and
the normalizer of M is denoted by N ¢(M ). We write | M | for the cardinality
of M.

In summations, the range of the summation is often indicated in parentheses
at the end of the line, e.g. see (1.5). We frequently have to use determinants
A of the following kind. We have a set F of » functions f and a set X of n
arguments. Each row of A correspond to one f e F and each column of A
corresponds to one z ¢ X. We then write®

A = det (f(2)); (feF, zeX).

2. Preliminaries

1. In the following, a simple method developed in [1, I, §7] will play an
important role. We discuss it briefly. We shall say that a pair of subgroups
(T, H) of G is an admissible pair, if there exists a p-subgroup Q of G such that

(2.1) T=0CuQ) QT S H S No&(Q).

(Actually, these conditions could be replaced by weaker ones.)
As shown in [1, I, §7], there exists a unique algebra homomorphism u of
Z(Q) = Z(Q[G]) into Z(H) = Z(Q[H)) such that

(2.2) u:8K — 8(K n T) for KeCUG).

The dual mapping A then maps the dual space Z(H) of Z(H) into Z(G). For
¢ e Z(H), we have

(2.3) A ——— ¢ = gop

In particular, if b is a block of H and if ¢ is the corresponding algebra-
homomorphism w, of Z(H) onto  then wp is an algebra homomorphism of
Z(G) onto Q. Hence wy = wp for some block B. We then write B = b°;

3 The order in which the elements of G and of X are taken will always be immaterial.
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of. [1,11, §2]. We show:

(2A) Let (T, H) be an admisstble pair of subgroups of G. Let by be a block
of H and let Fy, denote the subspace of Z(H) corresponding to by. If ¢ € Fy,
and if \ is the mapping (2.3), then ¢ ¢ F 5, with By = b; .

Proof. Since u is an algebra homomorphism, it maps the idempotent 55 of
B ¢ ®£(@) on an idempotent of Z(H ) or on 0. Hence we can set

(2.4) M= Db M

where b ranges over a set ' of blocks of H. If by e ®¢(H) and if By = by ,
by (2.3) and (2.4),

wno(n5) = wrg(n3) = s wne(m);  (bels).

This shows that wg,(n5) = 1, if and only if by e I's. Hence I's consists of
exactly those b ¢ ®¢(H ) for which b° = B.
Suppose now that ¢ € F,. Then, for { e Z(G),

O (ns¢) = e(na ") = 2re(m’);  (bels).

If B # bg , then by ¢ I's and it follows that our expression vanishes. This
shows that ¢" ¢ F' 8y With By = be .

(2B) Let (T, H) form an admissible pair of subgroups of G with T = C¢(Q),
Qe®(@). LetoeZ(H)andf = ¢, ¢f. (2.3). Iff(K) 5 0for some conjugate
class, then the defect group Dx of K satisfies Dx > Q in the partial ordering of
®(@).

Indeed, by (2.2) and (2.3)
f(K) = ¢(8(K n Ca(Q)).
If f(K) 5 0, the class K meets C¢(Q) and this implies Dx > Q.

2. We next discuss the connection between the algebras Z(E[G]) and
Z(Q[G)) where E is an algebraically closed field of characteristic 0 and Q (as
always) an algebraically closed field of characteristip p. As we have seen in
§1, the class algebra Z(E[G]) is semi-simple and, if k(@) is the class number of
@G, we have exactly k(@) distinet algebra homomorphisms w; of Z(E[G]) onto
&, of. (1.4). These formulas show that this result remains valid, if & is re-
placed by the field E of the | G |-th roots of unity over the field Q of rational
numbers. Indeed, all x;(og) in (1.4) lie in =, .

Let p be a fixed rational prime. Let » denote a fixed extension of the p-adic
(exponential) valuation of Q to a valuation of Eo. If o is the ring of local
integers for » in =y and p the corresponding prime ideal, we set

(2.5) o/p = Q
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and form the subring
(2.6) J = 2 x0(8K); (KeelG))

of “integral” elements of Z(E[G]). If 6, is the natural homomorphism of o
onto Q in (2.5), clearly 6, can be extended to a homomorphism 6 of J onto the
class algebra Z(Q[G]). If ¢ is a linear function defined on Z(E[G]) with
values in Ey , and if ¢(a) € o for all & € J, then the map 8 defines a linear func-
tion ¢’, defined on Z(Q[G]) with values in Q,. Let Q denote the algebraic
closure of Q. By linearity, ¢’ can be considered as a linear function on the
class algebra Z = Z(Q[@]) with values in @, i.e. ¢’ can be considered as an
element of the dual space Z.

Since as is well known the right sides in (1.4) are algebraic integers in 5,
we can apply this to the function ¢ = w;. It is clear that «} is an algebra
homomorphism of Z onto 2. Hence w} must be an wz for some block B of G.
In [1], the irreducible character x; of G was said to belong to the block B of G,
if o} = ws. We shall also say now that then w; is associated with B. If this
is so for k» values of j, clearly

(2.7) KG) = D sks; (Be®UQ)).
Consider the E,-space W spanned by the w; associated with B,
(28) W= 2ljEw; (xjeB)

and take the subset M » consisting of those ¢ ¢ W for which ¢(a) €0 for all
aeJ. Then My is an o-module of rank k3 . Since o is a principal ideal do-
main, M5 has an o-basis. It follows that the module (M;)? of all ¢’ with
¢ € M 5 has again rank ks . On the other hand, the method in [1 , I, §4] shows
that (M)’ C F». Hence

(2.9) dimg B = dimg Fjs 2 kj .

If we add over all B, both sides have the same sum k(G), ef. (1.1) and (2.7).
Hence we must have equality in (2.9). Thus

(2C) Let Q be an algebraically closed field of characters p. Let B be a block
of @. Then dimg B s equal to the number of ordinary irreducible characters of G
in B in the sense of [1].

With the notation introduced above, we also have

(2D)  If ¢ ranges over the elements of the o-module M 5 , then ¢’ ranges over Fs .

3. We add some remarks which will only be used in §6 and §7.
(2E) Let B be a block of G. Suppose we have coefficients ax ¢ = such that
(2.10) Sraxwi(K) =0; (Keel(G))

for every w; associated with B. Then (2.10) remains valid if we let K range only
over the conjugate classes which belong to a fizxed p-section.
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Proof. Expressing w; by x; by means of (1.4), we have
Z | K| ax xi(ox) = 0.

We may assume that the p-factor of ok is an element 7z e II. If ox = 7x px,
we can express x;(ox) by the decomposition numbers belonging to B and the
section & (g ) and the values of modular irreducible characters of C ¢(7x ) for
the element pg , cf. [1, IT (3.2), (6A)]. Since [I1, IT (7B)] implies that the
matrix of decomposition numbers belonging to B is non-singular the statement
is immediate.

(2F) Let B be a block; ky = dimg B. Suppose we have a set F of ky ele-
ments of Fg and a set & of ks conjugate classes such that

det f(K) = 0; (feF, Ke&).

Let Ko be a fixed conjugate class. There exist coefficients cx € o such that
(2.11) wi(Ko) = 2 xexwi(K); (K e®)
for each w; associated with B. Here, cx vanishes when K and K, belong to different
p-sections. For each f e Fp , then
(2.12) f(Ko) = Zx e f(K); (K eQ).

Proof. For each feFp, there exists a ¢ e My with ¢’ = f. If ® is the
system of ks functions ¢ obtained from F in this manner,

det (¢(K)) % 0 (mod p); (pe®, Kef).

It follows that we can find coefficients cx € 0 such that

o(Ko) = 2xexo(K); (Ke®)

for each ¢ ¢e®. Since the k; functions ¢ are certainly linearly independent and
belong to W in (2.8), they form a Ey-basis of W and hence

wi(Ko) = 2Zxexwi(K); (K ef)

for each w; associated with B. Now (2E) shows that this result remains valid,
if we replace cx by 0 for all K ¢ & which do not belong to the section of K .
The relation (2.11) remains valid if w; is replaced by an arbitrary element ¢
of W. In particular, we may take ¢ e M 5. Now (2.12) is immediate from
(2D).
The following result has been observed by M. Osima and K. Iizuka

(2G) Let B be a block of G. There exists a unique idempotent ep ¢ Z (0[G])
such that w;(ez) = 1 or 0 according as to whether or not w; is associated with B.
If Ky is a fized conjugate class, we have formulas

(2.13) (8Ko)en = 2xax(SK); (K e CUG))

with ag eo. If K, belongs to the p-section &(r), here ax = 0 for all K not con-
tained in S(w).
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Proof. As shown in [1, II, §4] there exists an idempotent ¢z ¢ Z(0[G]) for
which w;(&z) has the values 1 or 0 as indicated. It is clear that &z is unique.
Then for each Ko e €{(G), we have an equation (2.13) with ax eo. This
implies that

2ox ax 0;(K) = w;(Ko)
if w; is associated with B while in the other case the sum is 0. In either case,
(2E) shows that

Yraxwi(K) =0; (Keet@), KES)).
Since this holdsforj = 1,2, - - - , k(G), we have ax = 0 for all K not contained

in &(r), Q.ED.

The map 6 of Z(o[G]) onto Z(Q[G]) clearly maps 5 onto the idempotent
ns € B. Hence

(2H) Let B be a block of G. Let K, be a fixed conjugate class. There exist
elements cx € @ such that

(8Ko)ns = Dok cx (SK).

where K ranges over those conjugate classes which are contained in the section
Of Ko .

3. Selection of sets of conjugate classes for the blocks

(83A) For each block B of G, we can select a set &5 of kyp conjugate classes of

G and a set X 5 of ks elements of Fz , denoted by hx with K € 85 , such that:
(i) The set CL(G) s the disjoint union of the sets Rz with B ¢ B¢(QG).

(ii) The set X ts a basis of Fp .

(iii) If Q e ®(Q) and of Kz(Q) s the subset of K s consisting of those classes
with defect group Q, each hx with K e 8(Q) has the form he = o
where ¢ € Z(No(Q)) and where \ is the operator in (2.3) with T = C¢(Q),
H = N4&(Q).

(iv) hx(K) = 1; hxe(K’') = O for K, K’ ¢ 3(Q) and K % K'.

Proof. Consider a fixed Q ¢ ®(G@) and set H = Ng(Q). For each
b e®E(H), let Fy be the subspace of Z(H) defined in a manner analogous to
the definition of Fz in Z(G). Let Y, denote a basis of F, .

If B e ®¢(G), denote by By the set of blocks b of H with b’ = Bandlet Y
be the union of the Y3 for these b. Since

ZH) =@ 2uFy;  (be®i(H)),
the union Y of the sets Y5 for all B ¢ ®¢(GQ) is a basis of Z(H). Hence
(3.1) det (o(L)) = 0; (peY, LeCE{H)).

It follows from (3.1) that, for each B ¢ ®4(G), we can select a subset £z of
C{(H) such that

(3.2) Cl(H) = U, 2 (disjoint); (Be®(@))
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and that [ | = | Y| and
(3.3) det (o(L)) # 0; (peYy, LeRp).

For | Y| = | R | = 0, the determinant in (3.3) is 1 by definition and (3.3) is
always satisfied.

Let 23(Q) denote the subset of €5 consisting of the classes in &5 with the
defect group Q in H. If follows from (3.3) that we can find a subset Y (Q)
of Y with | Y3(Q) | = | 2:(Q) | such that

(34) det (o(L)) # 0; (e eV5(Q), L es(Q)).

It is an immediate consequence of Sylow’s theorems that if L is a conjugate
class of H = N ¢(Q) with the defect group @ in H, then the conjugate class
L€ of G which contains L has defect group @ in G. Conversely, every con-
jugate class K of G with defect group @ is obtained in this fashion; the cor-
responding class L of H is uniquely determined; L = K n Cg(Q). Let
Y5(Q)" denote the set of functions @ with ¢ € Y5(L) and with X defined in
(2.3), with T = C4(Q), H = N4o(Q). On account of (2A), Y5(Q)" is a sub-
set of Fp. Let £5(Q) denote the set of classes L® with L ¢ 23(Q). Then
each classin £(Q) has defect group Q. Moreover, fore € Y5(Q)and K = L¢
with L € 22(Q), by (2.3)

MNEK) = ¢(8(Kn Co(Q))) = o(L).
Hence (3.4) implies

det (F(K)) # 0; (feVx(Q), Kef:(Q)).

It is now clear that we can find linear combinations hx of the elements of
Y5(Q)" which satisfy the conditions (iv) in (8A). If 5 is the union of the
sets R5(Q) for all Q e ®(G), then condition (iii) is likewise satisfied. For
each K ¢ 8z, the function hx belongs to Fp .

If K is any class of G and if @ is the defect group, then by (3.2),
L = K n Cx(Q) belongs to 5 for a unique block B. It follows that K belongs
to & for a unique B. Hence condition (i) of (3A) holds.

We show that the set X 5 of functions hx with K ¢ 8 is linearly independent.
Suppose we have a non-trivial relation

(3.5) Zx Ck hx = 0; (K € QE)

with coefficients ck € Q. Since not all ¢k vanish, we can choose a group
P ¢ ®(@) such that cx # 0 for some K e (P ) while we have cx = 0 for all
K ¢ 8 3 whose defect group Dx has smaller order than | P |.

Take K’ ¢ 85(P). Then K’ has defect group P. Consider a term cg hix
in (3.5). If here K ¢ 85(Q) with Q ¢ ®(G@), by (iii) and (2B), we have
he(K') = 0 except when P > Q. If P > @, by construction cx = 0. It
follows from (3.5) that, for K’ e Kz(P), we have

S kcxhe(K') =0
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where K ranges over the classes in 5 with the defect group @ = P. These
arethe K ¢ R3(P). It nowfollows from (iv) thatck = Oforall K ¢ §5(P),
a contradiction.

Hence the set X = {hx} is linearly independent. This implies

I‘QB|= IXBI_S..diInnFB=kB.

If we add here over all B ¢ ®¢(G), the sum on the left is k(G) by (i). Since
the sum on the right is also k(@) by (1.2), we must have equality for each B.
Hence X is a basis of F . This proves (ii) and the proof of (3A) is complete.

(3B) Let 85 be chosen as in (3A). There exists a basis {fx} of Fs with K
ranging over & » with the following properties

fe(K) = 1; fx(K') =0 for K,K'efz,K = K'.
Moreover, if fx(K*) 5 0 for some K* ¢ C{(G), then Dgx > Dx.

Proof. Let Q ¢ ®(G). Suppose that fx has already been obtained for all
K e R3(P)withP ¢ ®(G) and P > Q. Suppose now that K ¢ R5(Q) and set

(3.6) fx = hxe — 2x, hx(K1)fx, ; (Ki €8s, Dg, > Q).

Here, fx, is assumed to be defined. If fx(K*) 5 0 for K* ¢ €4(G), then
he(K*) # 0 or fx,(K*) # 0 for some K; ¢ 5 with D, > Q. In the latter
case, by assumption Dgx > Dg, and hence Dgx > Q. In the former case,
by (38A) (iii) and (2B), Dgx > Q. This shows that fx has the last property
in (3B).

Suppose now that K’ ¢ 5 . If Dxr > Q then K’ is one of the K; in (3.6)
and we see that fx(K’) = 0. If Dy, = @, then K’ is not one of the K; and
(3.6) yields

fx(K') = hx(K').

Now (3A) (iv) shows that fx(K’) = 0 for K’ # K and that fx(K) = 1.
Finally, for the remaining K’ ¢ 85, we have fx(K') = 0 since otherwise as
shown above Dx' > Q.

Applying this successively for all Q ¢ ®(G') we obtain the required system
{fx}. Since {hx} was a basis of Fp, 50 is {fx}.

If for the local subgroups H = N(P) with P ¢ ®(G), P # 1, we know a
basis of Fp with b ¢ ®¢(H ), we can construct the functions fx except for the
K e 85 with Dg = 1.

(8C) Let B be a block ideal of Z(G) and set
B*= @ 2.5,B1, (Bie®G), Bis B).
For each K* ¢ €4(Q), K* ¢ 85 form the element
frx = SK* — 2 x fx(K*)SK; (K e Ra).

These elements form a basis of B*.
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Proof. It is clear that all fx with K ¢ Rz vanish for the elements {xx and
this implies {xx € B*. Itis clear that the elements ¢ x« are linearly independent
and since the number of these elements is equal to dimg B¥, they form an
Q-basis of B*.

Remark. The construction in (3A), (8B) can be performed in the case
when we have a partition

®&¢(G) = UB (disjoint)
where each B is a union of blocks. In particular, if we take
®¢(G) = Bu B*

with B and B* asin (3C) and interchange the roles of B and B*, we obtain
an Q-basis of B.

It should be mentioned that the selection {5 of sets of classes for the blocks
in (3A) is not uniquely determined.

4. The lower defect groups of a block

The system Dp of lower defect groups of a block has been defined in the
introduction. We show

(4A) If Rz vsasin (3A), the system Dy of lower defect groups of the block B
coincides exactly with the system of defect groups of the kp classes K ¢ Kz .

Proof. We have to show that for P ¢ ®(G), the multiplicity mz(P) of P
in Dp (cf. §1) is equal to | Rz(P) | = kz(P). Let V, denote the subspace of
F 5 spanned by the kz(P) functions fx with K ¢ 83(P). Itis clear from (3B)
that V, has dimension kz(P) and that for v # 0 in V,, there exist classes K
with Dg = P such that v(K) ¢ 0. We may even choose K ¢ 3(P). More-
over, if K* ¢ €¢(G) and if »(K*) 5 0, then fx(K*) 5 0 for some K ¢ R5(P)
and then, by (3B), Dgx > P. Inparticular,| Dgx | = | P|. Thisshows that
Vo has the properties (i) and (ii) required in the definition of mz(P) in §1 of
subspaces V of F and hence kz(P) = mp(P).

Conversely, let V be any subspace of Fp with these properties (i), (ii), §1.
Express v ¢ V by the basis {fz} of Fzin (3B),

V= ZK aKfK; (KG@B), aKeQ.
Here ax = v(K) for K ¢ ;. Forany K* ¢ @4(G), then
(4.1) v(K*) = 2xv(K)fe(K*); (K e8Rs).
Because of the property §1, (ii) of V, it suffices to let K range over the classes
for which |Dg| = | P|.
If v 5 0, then by §1, (i), we can choose K* with the defect group P such
that o(K*) % 0. By (3B), fx(K*) = 0in (4.1) except when P > Dg. It

follows that there exist K ¢ & with the defect group P for which »(K) s 0.
Since K ¢ Rz(P) and | 8s(P) | = kz(P), this implies that the dimension of
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V is at most equal to kz(P). Hence mz(P) = kz(P). We then have equal-
ity and the proof is complete.

In particular, the numbers | 8 (P) | in (3A) do not depend on the choice of
Rz . Asa corollary of (4A), we mention

(4B) The number kg of irreducible characters x; of G in the block B is given by

(4.2) ke = 2pms(P); Pe®Q).
For each P, the sum
(4.3) 2sms(P); (B e®UR))

represents the number of conjugate classes of G with defect group P.
A re-examination of the proof of (3A) yields
(4C) For any B e ®4(G) and any Q ¢ ®(QF)

(4.4) ma(Q) = 225 my(Q)
where b ranges over the blocks of H = N ¢(Q) with b¢ = B.

Proof. It follows from (3.3) that, for each B e ®(G') and each b ¢ B,
we can find subsets Y3 of ¥ and &, of 85 with | Y| = | & | such that Y, is
the disjoint union of the Y, that €z is the disjoint union of the &, with b
ranging over By and that for each b

det (¢(L)) # 0; (peYy, Le%).

We apply (3A) to the group H = N 4(Q) instead of G. Let %,(Q) denote the
set of those L ¢ ¥, which have defect group Q in H. Since L¥ = L, we see that
(@) has the same significance for H and b as £5(Q) has for G and B. Hence
by (3A)

12(Q) | = mu(Q)-

Since £3(Q) in §3 is the disjoint union of the sets &,(Q) with b ¢ By and since

l 85(Q) [ = IQB(Q) |
cf. §3, (4.4) now is evident.

(4D) The defect group D of B (in the sense of [1]) occurs in Dp . It is the
unique maximal element of Dy in the partial ordering of ®(G).

Proof. The algebra homomorphism wp in Fp (ef. §1) vanishes for all
Kect(@) with |[Dxg| < |D|, but not for all K with D¢ = D,
[1,1, §8]. Hence D ¢ Dp .

On the other hand, if P ¢ Dy, there exist blocks b of H = Ng(P) with
b = B. Let d be a defect group of b in the sense of [1]. Since P <] H, then
P C d,[1,1, (9F)] and d is conjugate in G to a subgroup of D, [1, IT (2B)].
Hence D > P as stated.

Ifd = P,then D = Pby[l]. If P C d, there exist blocks by of Ng(d) with
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b¢ = band then b = B. Hence we have

(4E) If B and D are as in (4D) and if P is a lower defect group of B with
P £ D, there exists a p-subgroup d of G with

PcdC NeP)
and a block by of N¢(P) n Ne(d) with b = B.
We finally prove an extension of (4A).

(4F)  Suppose that for each block B of G we have a subset &% of C(Q) such
that

(i) each K ¢ @4(Q) belongs to at least one K .

(ii)) If| ®% | = k» , there exists a subset Uy of F with | Uy | = | k3 | and

(4.5) det (H(K)) #= 0; (heUs, KeS85)
Then ky = ks and exactly m(Q) classes of % have defect group Q; (Q € ®(G)).
Proof. 1t follows from (i) that
2k 2 k(@) = 2sks;  (Be®UA)).
On the other hand, (ii) implies that
by £ dim Fp = ky .

If we add over B, we conclude that k3 = k;. Each K ¢ €(G) belongs to
exactly one &5 .

For any @ ¢ ®(G), let r5(Q) denote the number of K ¢ R% with the defect
group Q. Then
(4.6) ZB r5(Q) = EB mz(Q); B e ®4(G),

since on both sides, we have the number of conjugate classes of G with defect
group Q.

If r5(Q) = mp(Q) for some B and @, choose a @ of maximal order for which
this happens. On account of (4.6), we can then choose B such that

(4.7) rs(Q) < ma(Q).

If {fx} has the same significance as in (3B), it follows from the assumption
(i) and k3 = ks that

(4.8) det (fx(K™)) # 0; (K ef®3s,K" e R3).

Consider here the rows for which Dx > Q. By (3B) then fx(K*) = 0
except when

(4.9) Dgx > Dk > Q.
The number of rows in question is

R = 2rms(P); (Pe®(@), Px Q).
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As shown by (4.9), the non-zero coefficients in the rows occur in
C = 2.rm(P); (Pe®@), P> Q)

columns. Our choice of @ implies that mz(P) = rz(P) for [P| > | Q.
By (4.7), R > C. But this is inconsistent with (4.8) and (4F) is proved.

5. The ideals I, of Z(G)

We shall give another characterization of the multiplicity mz(Q) of
Q e ®(@) as lower defect groups of the block B. We first note

(5A) Let Q ¢ ®(G). Let K range over the conjugate classes of G which do
not meet T = C(Q). The corresponding class sums SK form the basts of an ideal
Ioof Z(@).

This is immediate since I ¢ is the kernel of the homomorphism u in (2.2) of
Z(G)into Z(H); H = No(Q), T = Co(Q).

(6B) Let B e®t(Q). IfIgisasin (5A),
(5.1) dimg (BnIo) = 2 ma(P)

where P in the sum ranges over the members of ®(G) which do not contain a con-
Jugate of Q.

Proof. Consider B as an algebra over @. Then I = B n Ig¢is anideal of B.
Let R denote the representation of B belonging to the B-module B/I. We
thenhave R(¢) = Ofor{ eI. Conversely,if ¢ e Band R({) = 0, then By = 1.
Since B has a unit element 55 , this implies { e /. Hence R has the kernel .

Choose an Q-basis of B/I and write R in matrix form. Each coefficient of
R considered as a function of a variable element of B can be viewed as an
element of the dual space B of B. Let W denote the subspace of B spanned
by the different coefficients of R. Since R has the kernel I, we have

(5.2) dimg W = dimg(B/I) = ks — dimg I.
If we W C B, we can consider w as an element of F . Then
w(§) = wns§)
for ¢ e Z. Express w by the basis {fx} in (3B),
(5.3) w= 2xw(K)fx; (Kefs)
If here SK ¢4, then #5(SK) eI and
w(K) = w(nz(8K) = 0.

Therefore, it suffices to let K in (5.3) range over those elements K of &5
which meet T. These are the K for which Dg > @. Then

dimg W = ZP mB(P); (Pe (P(G): P z Q)
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since the sum of the right represents the number of K in (5.3). By (5.2)
and (5.3),

— 2 rmy(P) £ dimeI; (Pe®@), P x> Q).
Here the left side is equal to the sum in (5.1), ef. (4.2). Thus
(5.4) > ma(P) < dimgI = dimg(I¢ n B).

Add here over all B e ®¢(G@). On the left, we obtain the number of
K ¢ @£(G) whose defect group does not contain a conjugate of @, cf. (4.3).
By (5A), this is the dimension of . Since [ o is the direct sum of the [on B
for the different blocks, we have equality after adding (5.4) and hence equality
in (54), QE.D.

It is clear from (5.1) that, for each P ¢ ®(G), mz(P) can be expressed by
the dimensions of the ideals B n I o for suitable @ ¢ ®(G) if kz is known.

6. The p-sections of G

The p-sections of a group have been defined in §1. FEach { eZ = Z(G)
has a unique representation
(6.1) ¢ = 2xax(SK); (K eCUR)).

If 7 is a p-element of @, let '™ denote the sum of the terms in (6.1) for which
K belongs to the section S(7) of #. Then

(6.2) ¢= 2587 (mel).

We note

(6A) If ¢ belongs to the block B of G, each '™ in (6.2) does.

Indeed, since { = 7z {, we have

¢ =287 (well).
On account of (2H), each 55 ¢'™ is a linear combination of class sums SK
with K € &(w). On comparing this with (6.2), we find
f(w) = N8 f(x) eB.

We shall say that an element f of Z is sectional and is associated with the
section ©(w),if f(K) = 0for all K © @{(G) which are not contained in &().

(6B) The functions fx in (3B) are sectional.

Proof. Let K, be a fixed conjugate class, say Ko © &(m). Apply (2F)
with & = f; and with F consisting of the fx with K ¢ 3 . It follows that
for K ¢ R5 there exists elements cx e Q such that, for every f e Fp ,

f(Ko) = 2xce f(K); (K e8s)

and that ¢k = 0if K is contained in a section S(r) # &S(m). Takingf = fx
with K C &(x), we see that fx(Ko) = 0 as we wished to show.
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We shall denote by Fs™ the subset of F consisting of the functions f ¢ F5 ,
which are sectional and are associated with &(w). As a corollary of (6B),
we have

(6C) The space Fy is the direct sum of the subspaces FS~ with © ranging
over 1I.

Indeed, the functions fx wiht K ¢ &5 form a basis of F5. Here fx is sec-
tional and, if K C &(«), then as fx(K) = 1, fx is associated with &(«) and
hence fx ¢ F5".

We now replace F by FS™ in the definition of mz(P) in §1. For given
B e®l(G), Pe®@G) and 7 ¢TI, we consider subspaces V of F$” such that
every f # 0in V has the following properties:

(i) There exist conjugate classes K with the defect group P such that
f(K) # 0.

(ii) We have f(K) = 0 for every K e €4(G) for which | Dx | < | P |.

Of course, it will suffice here to consider only classes K & S(=).

We denote by m};")(P ) the maximal dimension of a space V with the
properties (1), (ii). Let D" be the system of groups consisting of the groups
P ¢ ®(G) with each P taken with the multiplicity ms” (P). Now a proof
quite analogous to that of (4A) yields

(6D) Let R be asin (3A) and let K™ be the subset consisting of the K ¢ 85
which are contained in the section S(x), = € M. Then D" consists exactly of
the defect group Dx of the K € 5" .

We shall say that DS is the system of lower defect groups of B associated
with the section ©(7). Now (6D) yields the following:

(6E) The system Dp is the union of the systems D for all wel. In
other words

(6.3) ms(P) = 2. ms”(P);  (well)
Jor each P e ®(G). If we set | R | = 17, we have
(6.4) O = SomiP(P);  (Pe®(@)).

The number of conjugate classes K C S(w) with a given defect group P is given
by

(6.5) Sami(P); (Be®UE)).
We can also extend (4F').

(6F) Suppose that for each B ¢ ®6(Q) and each m ¢TI, we have a set K3
of conjugate classes K C &(x) such that each K ¢ CL(Q) contained in the sec-
tion &() belongs to K% for some B.  Suppose further that for each B, we have
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a subset Uy of ™ with | Us | = | 8% | such that

det (h(K)) #0; (heUs, Ke83).

Then | 8% | = 15" and exactly ms™ (Q) classes K ¢ &5 have defect group Q;

(Q € @(G)).
This is shown by the same method as (4F) considering only classes con-
tained in the section &() and replacing mz(Q) by m$™(Q) and Fj by F§™.
Our next result shows that the numbers m$™ (P) can be expressed by the
analogous numbers with G replaced by C4(7) and B replaced by blocks of
Co( ™ )

(6G) Let mell and set C Ce(m). For each B e®{(G) and each
P e ®(@), we have

(6.6) ms” (P) = 2oa 2sms™(Q)

where Q ranges over those groups in ®(C) which are conjugate to P wn G and
where b ranges over the set B of blocks b of C with b¢ = B.

Proof. We apply here the method of §2, 1 with Q@ = (7 ), T = H = C.
Let ©¢(7) denote the p-section of 7in C. If K e €4(G@) and K C &S(7), set

(6.7) K nGg(r) = L.

Then L is not empty and L consists of elements of the form =p with p-regular
peC. Any two elements of L are conjugate in G. It follows from their
form that they are conjugate in C. It is now evident that L is a conjugate
classof C; L © ©¢(w). Conversely, if L ¢ @(C) and L © &¢(w), the con-
jugate class K = L¢ of G containing L belongs to S(x) and satisfies (6.7).
Hence we have a one-to-one correspondence between the set of K e C4(G)
with K C &(x) and the set of L ¢ @(C) with L & &¢(w). Moreover, if
Q ¢ ®(C) is the defect group of L in C, the defect group P of K = L%in @
is conjugate to Q.

We now use a method similar to that used in the proof of (3A).
If b e ®6(C), let F, be the subspace of the dual space Z(C) of Z(C) defined
in a manner analogous to the definition of Fj in Z(@). Let Y, denote a
basis of F, consisting of sectional functions, (cf. (6C)). Let Y5 be the union
of all Y, with b¢ = B and let Y be the union of Y for all B e ®¢(G). Then
Y is a basis of Z(C) and hence

det (¢(L)) # 0; (¢e¥, LectC)).

It follows that, for each B, we can select a subset €z of €£(C), such that
@£(C) is the disjoint union of the sets Lz, that | Y, | = | € |, and that

det (o(L)) # 0; (peYsp, Lef).
Let 25" denote the set of all L ¢ R such that L & Sc¢(w). We can then
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find a subset Y5 with | Y§™ | = | " | such that
(6.8) det (o(L)) # 0; (peYs”, Le¥).

Since all ¢ € Y™ are sectional, it follows from (6.8) that they are associated
with the section S¢(w). Let X5 denote the system of functions ¢* with
e eYs and \ defined by (2.3) with T = H = C. Each f = ¢ belongs to
Fp,cf. (2A). If K ee{@), by (2.2) and (2.3)

f(K) = ¢(8(K n C)).

If K is not contained in & (=), then K does not meet &€ ¢(w) and hence f(K) =
0. If K € &(x), K n C is the union of L in (6.7) and of conjugate classes
L* ¢ @¢(C) contained in sections of C different from S¢(w). Since o(L*) =
0 for these L*, we find f(K) = o(L).

If R} is the set of classes L® with L e 2", we then have

det (f(K)) = 0; (feX$, Ke&3).

Since every L e @£(C) with L C S¢(w) belongs to 25" for some B e ®4(G),
every K ¢ @{(G) with K € &(r) belongs to some 85 . We can now apply
(6F) and see that exactly ms™ (P) classes K ¢ & have defect group P.
It follows that exactly ms™ (P) of the classes L ¢ 25" have defect groups Q
in C with @ conjugate to P. On the other hand, if we set

Yi¥ = Y5 n Y,

for b e B, it follows from (6.8) that we can break up " into subsets
%" with b e B¢ such that | Y5~ | = | Li™ | and

det (o(L)) # 0; (pe¥i”, Le¥).

Applying (6F) to C and b, we see that m§™ (Q) of the classes L ¢ " have
defect group @ € ®(C). It is now clear that (6.6) holds.

7. The section of the unit element
(7A) Assume that w is a p-element in the center Z(G) of G. Let B be a
block of G. Let 85 have the same significance as in (3A). As before, let R
denote the set of classes K ¢ 85 with K C &(r) and set | R | = I§”. We
can find a set X5 of 157 irreducible characters x; in B such that

(7.1) det (xi(ox)) # 0 (mod 9); (xieXz, Kef").

Here, p has the same meaning as in §2, 2. Moreover, IS” coincides with the

number Iz of modular irreducible characters in B. Finally, Dy = DY,

Proof. Asshown in [1, I (5A)] there exists a set X 5 of I irreducible charac-
ters x: e B and a set &% of 15 conjugate classes K € &(1) such that each
conjugate class in &(1) belongs to &5 for exactly one B, and that for every B

det (x(ox)) # 0 (mod p);  (xeXsz, Ke¥F).
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The section &(1) consists of the p-regular elements of G. If K ranges
over the classes in &(1), =K ranges over the classes in &(x). Let 2"
denote the set of classes 7K with K ¢ 25°. Since

x(ox) = x(oxx) (mod p)
we have

(7.2) det (x(ox)) # 0 (mod p);  (xeXs, KeR")

Let r5” (P) denote the number of classes in 25" with the given defect
group P ¢ ®(G@). Then

(7.3) 2575 (P) = 2ami”(B); (B e®UG))

since both sides represent the number of classes K © &(r) with defect group
P, cf. (6.5).

If some class K ¢ 25" does not belong to 57, we try to replace it by a
class in ®5" with the same defect group such that the condition (7.2) is
preserved after the replacement. We continue in this manner as long as
possible.

Assume first that, for every = ¢ Z(G) and for every B e ®¢(G), this process
only comes to an end when all classes in 25" have been replaced by classes
in R, Then, obviously,

rs” (P) £ mg” (P)

and (7.3) implies that we have equality. This means that we have replaced
25 by 85" and hence (7.1) holds. Also,

B = |85 | =% =1

Since the classes K and 7K have the same defect group, we have ry (P) =
rs’(P). Since our result above can be applied for = = 1, we find

mi” (P) = ;7 (P) = r5’(P) = ms’(P)

Hence D5 = D5, and (7A) holds in the case under discussion.

Assume then that for some 7 € Z(G) our exchange comes to an end before
all classes in 25" have been replaced. Let H; denote the set obtained from
25 when the process terminates. All classes in Hp lie in &(7). Exactly
rs"(P) classes in H » have defect group P, we have | Hz | = I3 and

(74) A = det (x(ox)) % 0 (mod p); (xeXs, KeHp).

Finally, for some B, there exist classes K, e Hp which do not belong to o5
and which cannot be exchanged with a class in R with the same defect
group such that (7.4) is preserved. Choose here B and K, such that the de-
feet group Q of K, has maximal order.

If Pe®G) and |P| > |Q], our choice 1mphes that for every block
B; and every K ¢ Hp, with Dx = P, we have K ¢ R57. This implies that
rg(P) £ m§(P). On account of (7.3), we have equality. This shows
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that,( f)or |P| > |Q], the same classes of defect group P occur in Hp, and
in .Q 31; .

We shall now derive a contradiction. It follows from (2F) that there exist
elements cx € o for K ¢ 85" such that
(7.5) wi(Ko) = 2xexwi(K); (K ef57)
for each w; associated with B. Then, by (1.4)

(7.6) xi(ox,) = 2xex(|K|/|Koxi(ox); (K e R57).

Let Ak, denote the determinant obtained form A in (7.4) by replacing the
column x(ox,) by x(ox,) with K; e . On account of (7.6), then

(7.7) A= Dxex(|K|/|Ko|)Ax; (K eR5).

If here K has a defect group Dx with | Dx | > | @ |, then asremarked, K ¢ Hp
and hence Ax = 0 since two columns are equal. It will therefore suffice to
let K range over the classes with | Dx | < [ Q. Since Dx, = @, then | K|/
| Ko| eo. It then follows from (7.7) that there exist classes K e 857 for
which

(7.8) ¢k, 0, |Ax, | #0(modp), |Dx | =@
In the notation of §2, 2, the equation (7.5) remains valid if we replace w;
by an element of M 5. Then (2F) shows that
f(Ko) = 2k cxf(K); (K e 85)
for any f e Fg . For f = fg, , this yields
cgq = fxl(Ko)

By (7.8), then fx,(Ko) # 0 and by (3B) @ > Dk, . Now (7.8) shows that
Dx, = Q and that we could have exchanged K, with K; ¢ 5" since both
have the same defect group and since (7.4) would be preserved. This is a
contradiction and the proof is complete.

If 7 is an arbitrary p-element of the group G, we can apply (7A) to the group
C = Co(r). If be®(C) and if Q e ®(C), then D’ = Dy and hence
m®(Q) = mi”(Q). Now (6G) becomes

(7B) Let w be a p-element of G and set C = Cq(w). For each B e BL(G)
and each P ¢ ®(@),

(7.9) m§?(P) = 2o 2am”(Q)

where Q ranges over the groups in ®(C) which are conjugate to P and where b
ranges over the blocks of C with b° = B.

By (7A), ii° = I, is the number of modular irreducible characters in b.
If we add (7.9) over all P e ®(@), (6E) yields the corollary:

(7C) If the notation is as in (7B), we have
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(7.10) 50 = 20lh
where b ranges over the blocks of C with b¢ = B.
On comparing (7.10) with [1, II, §7] we have

(7D)  The number 15" of lower defect groups of B associated with the section
&(w) 1s equal to the number of modular irreducible characters of Ce(m) which
belong to B in the sense of [1, II, §7].

In particular, there are I, lower defect groups of B associated with the
section S(1). On account of (6E), we have

(TE) The number lz of modular irreducible characters in the block B 1s
given by
(7.11) =13 = 2pmi’(P); (Pe®@)).
The proposition (7A) can be applied for # = 1 for any G. Hence
(7F) For every B ¢ ®¢(G), we have
det (x(ox)) # 0 (mod p);  (xeXs; Kef5).

Since every p-regular class of G belongs to 85 for exactly one B, we can
apply the method in (1, I, §5) and obtain

(7G) Let B be a block. Let r = 0 be a rational integer. The multiplicity
of " as an elementary divisor of the Cartan matriz of B is given by

2 mg’ (P)
where P ranges over all groups in ®(Q) of order p'.

This is a refinement of a result stated without proof in [2].
As a consequence of (7G), we have

(7H) If B has defect group D (in the sense of [1]) with D chosen in ®(G));
then D occurs exactly once in DF.

The results of [3] show that D occurs in D" for = 11, if and only if =
is conjugate to an element of Z(D); they also allow us to characterize the
multiplicity m$” (D). For arbitrary = ¢ II, we can determine the maximal
elements of Dy,
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