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1. Introduction
Let G be a finite group. Let be an algebraically closed field. As is well

known, the study of the characters of G is closely related to that of the group
algebra [G] and of its center Z Z([G]). We call Z the class algebra of
G. We are concerned here th a further investigation of Z continuing the
work in [1].
The dimension of Z as a -space is the class number k(G) of G. Since we

are interested in characters and related functions, we also consider the dual
space 2 consisting of all lear functions defined on Z th values in .
Write Z as a direct sum

(1.1) Z B
of block ideals of Z, i.e. of indecomposable ideals of Z. Ts decomposition
(1.1) corresponds to the decomposition

(1.2) 2 F,
where F is the subspace of 2 consisting of those f e 2 wch vash on all
block ideals B B in (1.1). Then B and F are theelves dual vector
spaces and they have the same dimension ks.
Each B is a commutative ring with a ut element y. If 1 is the unit

element of Z, we have

(1.3) 1 z,,
nd (1.3) is the decomposition of 1 into pritive orthogonl idempotents.
It follows that

is the decomposition of the group algebra into (two-sided) block ideals.
Since B is indecomposable, the residue class ring of B modulo its radical

is simple and hence an extension field of finite degree of . Since was
algebraically closed, is isomorpc to . We then have an algebra homo-
morpsm of B onto . Clearly, can be extended to an algebra homo-
morphism of Z onto such that . vanishes for all block ideals B B in
(1.1). Thus cz e Fz. Conversely, it is seen at once that each non-zero
algebra homomorpsm of Z into E coincides with z for some B.
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The case that has characteristic 0 is well knowix and fairly trivial. Let
xl x, ?ok(a) denote the irreducible characters of G. Each x defines
an algebra-homomorphism o. onto given by Frobenius’ formula

(1.4) o.($K) Klx()/x()
where K is a class of conjugate elements of G, where $K e [G] is the sum of
the K elements of K, and where zK e K. Since the/(G) homomorphism
0. are distinct, we have k(G) block ideals B ._ in (1.1) and Z is semi-
simple.
We now turn to fields of prime characteristic. Throughout this paper,

p will be a fixed prime number and we shall reserve the letter 2 for aa alge-
braically closed field of characteristic p. Take then [t above and set

z Z(G) Z(a[G]).

It is clear in principle that if we know the irreducible characters
xl, x2, xk(a), we can construct the block ideals B, or as we shall simply
say, the blocks B of G. Actually, this can be done in aa explicit fashion (2,
2). In particular, the dimension/0B turns out to be the number of irreducible
characters xi ia B in the sense of [1].
In a way, our aim lies in the opposite direction. This is part of our effort

to find new links between characters of G and group theoretical properties of
G. The main result of [1, I] is already of this type. With each block B of
G, we associate a p-subgroup D of G, the defect group of B. If we know
the normalizer Na(D) of D, we can construct the algebra homomorphism
oB for the blocks B of G with the defect group D. This gives us the values
(1.4) for the characters x e B modulo a prime ideal divisor of pia an appro-
priate algebraic number field.
The defect group D of B is determined up to conjugacy. We shall asso-

ciate with B a system of p-subgroups of G which we shall call the lower de-
fect groups of B. Again, they are really only determined up to coajugacy.
In order to fix ideas, it will be convenient to choose a set (p(G) of representa-
tives for the classes of conjugate p-subgroups of G. We then take defect
groups and lower defect groups in (P(G).

Let K be a conjugate class of G. There is a unique element P e ((G)
such that P is a p-Sylow subgroup of’ the centralizer Ca(z) for suitable e K.
We then call P the defect group Dc of the class K.

Let B now be a block. A member P of (p(G) will be called a lower defect
group of B, if there exist elements f of the space F. in (1.2) with the following
properties"

(i) There exist conjugate classes K with the defect group P such that
f(gK) 0 with $K defined as in (1.4).

When we say that a subgroup H of G is known, we usually assume that we know
H not only as an abstract group but also the imbedding of H in G, i.e. the manner in
which the conjugate classes of H lie in the conjugate classes of G.
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(ii) We have f($K) 0 for all conjugate classes K for which the order
[DKI of the defect group DK is smaller than the order [PI of P.
More generally, we consider subspaces V of Fs such that all f 0 in V

have properties (i) and (ii). Let ms(P) denote the maximal dimension of
such a space V. We count P exactly ms(P) times as lower defect group of
B. Let lI)s denote the system consisting of the groups P e (P(G), each P
taken with the multiplicity ms(P) >- 0. This is the system ) of lower defect
groups of B. We shall show (4) that s consists of exactly ks groups. In
other words,

(1.5) ks emz(P); (Pc (P(G)).

If P is a lower defect group of B, i.e. if m,(P) > 0, then P is coniugate to a
subgroup of the defect group D of B, and D itself is a lower defect group of
B. if we know the normalizer Na(P) of P e (G), we are able to construct
a subspace V of dimension mz(P) of Fs with the properties (i), (ii) above
such that Fs is the direct sum of the V for the various P e ((G). If P 1,
Na(P) is a ’local subgroup’ of G. However, since P 1 occurs in (P(G), our
construction falls short of a full construction of Fs based on a knowledge of
the local subgroups of G. In particular, in (1.5) the term ms(l) cannot be
determined, and we can only give a lower estimate for ].
By a p-section (r) of an element r of G, we mean the set of all elements
G such that the p-factor of is conjugate to the p-factor r of r, cf.

[1, II, 3]. Each p-section is a union of conjugate classes. We shall denote
by II a set of representatives for the conjugate classes of p-elements of G.
Each p-section has the form (v) with v e II and G is the disjoint union of
these (v). In 6, we shall associate each lower defect group of B with one
of the sections. Let m( (P) of the ms(P) members P of )s be associated
with (v) so that

(1.6) _, m()(P) m,(P); (ve II).

We shall show that m()(P) can be determined when we know the centralizer
Co(v) of v and the blocks b of Ca(v) with ba B (in the sense of [1, II,
2]. It suffices to know the lower defect groups of b associated with the
section of the unit element in Co(v).
The numbers m (P) have some remarkable properties. If ls is the num-

ber of modular irreducible characters in B, then

(1.7) ls -P m)(P); P e ((G).

This is a kind of analogue of 1.5 ). If in 1.7 we sum only over the P (P(G)
of a fixed order pr, the partial sum represents the multiplicity of p as ele-
mentary divisor ofthe Caftan matrix Cs of B. This refines a result announced
without proof in [2].

Notation. Most of the notation used has been explained above. The
letter G will always stand for a finite group and p will be a fixed prime number.
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We shall denote by 2 an algebraically closed field of characteristic p. The
class algebra Z(2[G]) of G over 2 will be denoted by Z or Z(G). Occasionally
in 2, a particular field 2 will be used, but it is clear that the results concern-
ing Z will not depend on the choice of 2. If M is a subset of G we denote
by SM the sum of the elements of M in the group algebra of G.
The set of conjugate classes of G will be denoted by (G). For K e (G),

we shall denote by aK a representative element in K. If f is a function de-
fined on Z, we shall usually write f(K) instead of f($K). The set of blocks
of G (for given p) will be denoted by (B(G).
We choose a set ((G) of representatives for the classes of conjugate p-sub-

groups of G. If P, Q e (P(G), we write P Q when P is conjugate in G to
a subgroup of Q. Then 5)(G) is partially ordered. A set of representatives for
the conjugate classes of p-elements of G will be denoted by II.

If M is a subset of G, the centralizer of M in G is denoted by Ca(M) and
the normalizer ofM is denoted by Na(M). We write M for the cardinality
of M.

in summations, the range of the summation is often indicated in parentheses
at the end of the line, e.g. see (1.5). We frequently have to use determinants

of the following kind. We have a set F of n functions f and a set X of n
arguments. Each row of A correspond to one f e F and each column of
corresponds to one x e X. We then write

A det(f(x)); (feF, xeX).

2. Preliminaries
1. In the following, a simple method developed in [1, I, 7] will play an

important role. We discuss it briefly. We shall say that a pair of subgroups
(T, H) of G is an admissible pair, if there exists a p-subgroup Q of G such that

(2.1) T Ca(Q), QT

_
H Na(Q).

(Actually, these conditions could be replaced by weaker ones.)
As shown in [1, I, 7], there exists a unique algebra homoraorphism of

Z(G) Z(f[G]) into Z(H) Z(f[H]) such that

(2.2) " $K $(K n T) for K e e(G).

The dual mapping , then raaps the dual space 2(H) of Z(H) into 2(G). For
e 2(U), we have

(2.3) h’q --, qo.

In particular, if b is a block of H and if is the corresponding algebra-
homomorphism b of Z(H) onto 2 then is an algebra homomorphism of
Z(G) onto 2. Hence o cB for some block B. We then write B

The order in which the elements of G and of X are taken will always be immaterial.
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of. [1, II, 2]. We show:

(2A) Let T, H) be an admissible pair of subgroups of G. Let bo be a block
of H and let Fbo denote the subspace of 2(H) corresponding to bo. If
and if is the mapping (2.3), then q e Fso with Bo

Proof. Since is an algebra homomorpsm, it maps the idempotent . of
B e g(G) on an idempotent of Z(H) or on 0. Hence we can set

where b ranges over a set r of blocks of H. If bo e (H) and if Bo b,
by (2.3) and (2.4),

TMs shows that ,0(v,) 1, if and only if b0 e rs. Hence r. consists of
exactly those b e (H) for wch ba B.
Suppose now that e F0. Then, for e Z(G),

If B bg, then bo t F. and it follows that our expression vanishes. Ts
shows that x e Fo with Bo b

(2B) Let T, H) form an admissible pair of subgroups of Gth T Co(Q),
Q e (G). Let e2(H)andf= X, cf. (2.3). Uf(K) Oforsomecjugate
class, th the defect group D of K satisfies D Q in the partial ordering of

Indeed, by (2.2) and (2.3)

f(K) (8(g n Co(Q)).

If f(K) 0, the class K meets Ca(Q) and this implies D )-_ Q.

2. We next discuss the connection between the algebras Z([G]) and
Z(2[G]) where is an algebraically closed field of characteristic 0 and (as
always) an algebraically closed field of characteristip p. As we have seen in
1, the class algebra Z([G] is semi-simple and, if k(G) is the class number of
G, we have exactly ](G) distinct algebra homomorphisms of Z([G] ) onto, cf. (1.4). These formulas show that this result remains valid, if is re-
placed by the field 0 of the G l-th roots of unity over the field Q of rational
numbers. Indeed, all x(a) in (1.4) lie in 0.

Let p be a fixed rational prime. Let denote a fixed extension of the p-adic
(exponential) valuation of Q to a valuation of 0. If o is the. ring of local
integers for in 0 and the corresponding prime ideal, we set

(2.5) o/ eo
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and form the subring

(2.6) J -:. o(3K); (K e(G))

of "integral" elements of Z(o[G]). If 0 is the natural homomorphism of o
onto 0 in (2.5), clearly 0 can be extended to a homomorphism of J onto the
class algebra Z(0[G]). If is a linear function defined on Z(0[G]) with
values in o, and if () o for all J, then the map defines a linear func-
tion , defined on Z(0[G]) with values in 20. Let 2 denote the algebraic
closure of 0. By linearity, can be considered as a linear function on the
class algebra Z Z(2[G]) with values in , i.e. qo can be considered as an
element of the dual space ,,.

Since as is well known the right sides in (1.4) are algebraic integers in 0,
we can apply this to the function q . It is clear that o is an algebra
homomorphism of Z onto 2. Hence must be an s for some block B of G.
In [1], the irreducible character x of G was said to belong to the block B of G,
if 0 . We shall also say now that then . is associated with B. If this
is so for k* values of j, clearly

(2.7) h(G) h* (B e(G)).

Consider the o-space W spanned by the . associated with B,

(2.8) W ’ Z0coj (x eB),

and take the subset MB consisting of those e W for which q(a) e for all
a e J. Then Mn is an o-module of rank h*. Since is a principal ideal do-
main, M. has an o-basis. It follows that the module (Mn) of all 0 with

e MB has again rank k*. On the other hand, the method in [1, II, 4] shows
that (Mn)

_
Fn. Hence

(2.9) dimn B dime Fn >_- /*.
If we add over all B, both sides have the same sum h(G), cf. (1.1) and (2.7).
Hence we must have equality in (2.9). Thus

(2C) Let be an algebraically closed field of characters p. Let B be a block
of (t. Then dime B is equal to the number of ordinary irreducible characters of G
in B in the sense of [1].

With the notation introduced above, we also have

(2D) Ifq ranges over the elements of the o-module MB then qo ranges over FB

3. We add some remarks which will only be used in 6 and 7.
(2E) Let B be a block of G. Suppose we have coecients a: such that

(2.10) a (K) 0; (K (G))

for every o associated with B. Then (2.10) remains valid if we let K range only
over the conjugate classes which belong to afixed p-section.
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Proof. Expressing - by x" by means of (1.4), we have

K a x() 0.

We may assume that the p-factor of is an element r e II. If r p,
we can express x() by the decomposition numbers belonging to B and the
section () and the values of modular irreducible characters of C()for
the element p, cf. [1, II (3.2), (6A)]. Since [I1, II (TB)] implies that the
matrix of decomposition numbers belonging to B is non-singular the statement
is immediate.

(2F) Let B be a bloc ] dima B. Suppose we have a set F of k ele-
ments of F and a set of k conjugate classes such that

detf(K) 0; (feF, Ke).

Let Ko be afixed conjugate class. There exist coecients c such that

(2.11) 0.(K0)

for each o associated with B. Here, c vanishes when K and Ko belong to different
p-sections. For each f e F then

(2.12) f(go) cf(g); (K e ).

Proof. For each f e F, there exists a q eM with f. If is the
system of k functions obtained from F in this manner,

det ((K)) 0(modO); (e, Ke).

It follows that we can find coefficients c e such that

(g0)

for each e . Since the/ functions are certainly linearly independent and
belong to W in (2.8), they form a o-basis of W and hence

.(K0) Y’ c (g); (ge

for each o associated with B. Now (2E) shows that this result remains valid,
if we replace c by 0 for all K which do not belong to the section of K0.
The relation (2.11) remains valid if

of W. In particular, we may take e M. Now (2.12) is immediate from
(2D).
The following result has been observed by M. Osima and K. Iizuka

(2G) Let B be a block of G. There exists a unique idempotent e Z o[G]
such that o( 1 or 0 according as to whether or not is associated with B.
If Ko is afixed conjugate class, we haveformulas
(2.13) ($K0)

with a: e . If Ko belongs to the p-section (r), here a 0 for all K not con-
tained in r ).
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Proof. As shown in [1, II, 4] there exists an idempotent es eZ([G]) for
which 0(e) has the values 1 or 0 as indicated. It is clear that is unique.
Then for each K0 e e(G), we have an equation (2.13) with a e . This
implies that

’ a(g) o(g0)

if o is associated with B while in the other case the sum is 0. In either case,
(2E) shows that

a (g) 0; (ge (G), g @(r)).

Since this holds forj 1, 2, k(G), we have a 0 for allK not contained
in @(r), Q.E.D.
The map 0 of Z(o[G]) onto Z(20[G] clearly maps e onto the idempotent

s eB. Hence

(2H) Let B be a block of G. Let Ko be a fixed conjugate class. There exist
elements c: such that

(sg0) c ($K).

where K ranges over those conjugate classes which are contained in the section
of Ko

3. Selection of sets of conjugate classes for the blocks
(3A) For each bloct B of G, we can selec a set of t conjugate classes of

G and a se X of ks elements of F, denoted by h with K , such that:
(i The set et(G) is the disjoint union of the sets with B e 6(G).
(ii) The se Xz is a basis of Fs
(iii) If Q 6(G) and if z(Q) is the subset of consisting of those classes

with defect group Q, each h: with K e s(Q) has the form h 9
where e(No(Q)) and where is the operator in (2.3) with T Co(Q),
H No(Q).

(iv) h(K) 1; h(K’) O for K, K’ e (Q) and K K’.

Proof. Consider a fixed Q e 6(G) and set H No(Q). For each
b e 6(H), let F be the subspace of (H) defined in a manner analogous to
the definition of Fs in g(G). Let Y denote a basis of F.

If B e 6t(G), denote by B the set of blocks b of H with b B and let Y
be the union of the Y for these b. Since

(H) ’ F (be 6t(H)),

the union Y of the sets Ys for all B e 6t(G), is a basis of g(H). Hence

(3.1) det ((L)) 0; ( e Y, L e e(H)).

It follows from (3.1) that, for each B e 6(G), we can select a subset z of
et(H) such that

(3.2) et(H) I.J (disjoint); (Be 6(G))



DEFECT GROUPS 61

and that B YB [and
(3.3) det((L)) 0; (eYs, Le,).

For Ys 0, the determinant in (3.3) is 1 by definition and (3.3) is
always satisfied.

Let (Q) denote the subset of consisting of the classes in with the
defect group Q in H. If follows from (3.3) that we can find a subset Y(Q)
of Y with Ys(Q) s(Q) such that

(3.4) det ((L)) 0; (q . Ys(Q), L e s(Q)).

It is an immediate consequence of Sylow’s theorems that if L is a conjugate
class of H No(Q) with the defect group Q in H, then the conjugate class
L of G which contains L has defect group Q in G. Conversely, every con-
jugate class K of G with defect group Q is obtained in this fashion; the cor-
responding class L of H is uniquely determined; L K ta Co(Q). Let
Y(Q))’ denote the set of functions x with e Y(L) and with X defined in
(2.3), with T Co(Q),H No(Q). Onaccount of (2A), YB(Q)Xisasub-
set of F. Let s(Q) denote the set of classes L with L e ,(Q). Then
each class in (Q) has defect group Q. Moreover, for e Y,(Q)andK L
with L e (Q), by (2.3)

(K) ($(K r Co(Q))) ,(L).
Hence (3.4) implies

det (f(K)) 0; (f y,(Q)X, K 9,(Q)).

It is now clear that we can find linear combinations h,: of the elements of
Y(Q)’ which satisfy the conditions (iv) in (3A). If is the union of the
sets ,(Q) for all Q e ((G), then condition (iii) is likewise satisfied. For
each K e , the function h belongs to FB.

If K is any class of G and if Q is the defect group, then by (3.2),
L K n C(Q) belongs to for a unique block B. It follows that K belongs
to for a unique B. Hence condition (i) of (3A) holds.
We show that the set Xs of functions h with K e B is linearly independent.

Suppose we have a non-trivial relation

(3.5) ’r c h 0; (K e s

with coefficients c e 2. Since not all cK vanish, we can choose a group
P e (P(G) such that c,: 0 for some K e s(P) while we have c 0 for all
K e whose defect group D has smaller order than P ].
Take K e (P). Then K has defect group P. Consider a term c,: h

in (3.5). If here K e (Q) with Q e (P(G), by (iii) and (2B), we have
h(K) 0exceptwhenP

_
Q. IfP :> Q, by construction c 0. It

follows from (3.5) that, for K’ . KB(P), we have

r c h(K’) 0
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where K ranges over the classes in $B with the defect group Q P. These
retheK e (P). It nowfollows from (iv) thatc 0forallK e ,(P),
a contradiction.
Hence the set X {h} is linearly independent. This implies

dimaF

If we add here over all B e St(G), the sum on the left is k(G) by (i). Since
the sum on the right is also/(G) by (1.2), we must have equality for each B.
Hence X, is a basis of FB. This proves (ii) and the proof of (3A) is complete.

(3B) Let be chosen as in (3A). There exists a basis {f} of F with K
ranging oyer with the following properties

f(K) 1;f(K’) 0 for K,K’e,,KK’.

Moreover, if fx(K*) 0 for some K* e e(G), then Dx,

_
D.

Proof. Let Q e (P(G). Suppose that f has already been obtained for all
K e B(P) withP e (P(G)andP > Q. Suppose nowthat K e .(Q)and set

(3.6) f h , h(K1)fl (Kle ,, nl )- Q).

Here, f is assumed to be defined. If f(K*) 0 for K*e e(G), then
h(K*) 0 or f(K*) 0 for some K e withD > Q. In the latter
case, by assumption D, >-_ D and hence DK, )-_ Q. In the former case,
by (3A) (iii)and (2B),D,

_
Q. This shows that f has the last property

in (3B).
Suppose now that K’ e . If D, > Q then K’ is one of the K in (3.6)

and we see that fx(K’) O. If D Q, then K’ is not one of the K and
(3.6) yields

f(K’ h:(K’ ).

Now (3A) (iv) shows that f(K’) 0 for K’ K and that f(K) 1.
Finally, for the remaining K’ e , we have f(K’) 0 since otherwise as
shown above D, >__ Q.
Applying this successively for all Q e (P(G) we obtain the required system

{f}. Since {h} was a basis of F., so is {f}.
If for the local subgroups H No(P) with P e (P(G), P 1, we know a

basis of F with b e $(H), we can construct the functions f except for the
Ke.withD 1.

(3C) Let B be a block ideal of Z G and set

B* @ B, (B e 6te(G),

For each K* (G), K* form the element

i** SK* -’’ f(K*)$K;
These elements form a basis of B*.

B B).

(KeB).
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Proof. It is clear that all f with K n vanish for the elements i’, and
B*.this implies i’, e It is clear that the elements i’, are linear!y independent

and since the number of these elements is equal to dima B*, they form an
f-basis of B*.

Remark. The construction in (3A), (3B) can be performed in the case
when we have a partition

(G) B (disjoint)

where each B is a union of blocks. In particular, if we take

(g(G) B u B*
with B and B* as in (3C) and interchange the roles of B and B*, we obtain
an f-basis of B.

It should be mentioned that the selection of sets of classes for the blocks
in (3A) is not uniquely determined.

4. The lower defect groups of a block
The system of lower defect groups of a block has been defined in the

introduction. We show

(4A) If is as in (3A), .the system ) of lower defect groups of the block B
coincides exactly with the system of defect groups of the kz classes K e

Proof. We have to show that for P e ((G), the multiplicity m(P) of P
in (cf. 1) is equal to .(P) /,(P). Let V0 denote the subspace of
F, spanned by the/,(P) functionsf with K e .(P). It is clear from (3B)
that V0 has dimension k,(P) and that for v 0 in V0, there exist classes K
withD P such that v(K) O. We may even choose K e (P). More-
over, if K* ee(G) and if v(K*) 0, then f(K*) 0 for some K e .(P)
and then, by (3B), D, >_ P. In particular, D, >= P [. This shows that
V0 has the properties (i) and (ii) required in the definition of ms (P) in 1 of
subspaces V of F and hence ],(P) <= mz(P).

Conversely, let V be any subspace of F, with these properties (i), (ii), 1.
Express v e V by the basis {fx} of F. in (3B),

v af; (Ke), aKe.

Here a v(K) for K e . For any K* e a(G), then

(4.1) v(K*) v(K)f(g*); (K e ).

Because of the property 1, (ii) of V, it suffices to let K range over the classes
for which D >= p I.

If v 0, then by 1, (i), we can choose K* with the defect group P such
that v(K*) O. By (3B), f(K*) 0 in (4.1) except when P >_ D. It
follows that there exist K e . with the defect group P for which v(K) O.
Since K e (P) and .(P) ]z P ), this implies that the dimension of
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V is at most equal to ls(P). Hence ms(P) <-_ ks(P). We then have equal-
ity and the proof is complete.

In particular, the numbers s(P) in (3A) do not depend on the choice of
B As a corollary of (4A), we mention

(4B)

(4.2)

The number kB of irreducible characters x of G in the block B is given by

/c e mz(P); P e (P(G).

For each P, the sum

(4.3) m(P); (B e 6trY(G))

represents the number of conjugate classes of G with defect group P.

A re-examination of the proof of (3A) yields

(4C) For any B e 6(G) and any Q e 6)(G)

(4.4) m,(Q) b rob(Q)

where b ranges over the blocks of H Na(Q with ba B.

Proof. It follows from 13.3) that, for each B e (G) and each b e B.,
we can find subsets Yb of Y. and of B with Yi bl such that Ys is
the disjoint union of the Y, that z is the disjoint union of the with b
ranging over B. and that for each b

det ((L)) 0; (eY, L).

We apply (3A) to the group H Na(Q) instead of G. Let (Q) denote the
set of those L e b which have defect group Q in H. Since L" L, we see that
(Q) has the same significance for H and b as s(Q) has for G andB. Hence
by (3A)

(Q) m(Q).

Since s(Q) in 3 is the disjoint union of the sets (Q) with b e B. and since

cf. 3, (4.4) now is evident.

(4D) The defect group D of B (in the sense of [1] ) occurs in
unique maximal element of )s in the partial ordering of 6)(G).

It is the

Proof. The algebra homomorphism os in Fs (cf. 1) vanishes for all
K(G) with IDol <( DI, but not for all K with D D,
[1, I, 8]. HenceDeB.
On the other hand, if P e D, there exist blocks b of H No(P) with

b B. Let d be a defect group of b in the sense of [1]. Since P <:l H, then
P

_
d, [1, I, (9F)] and d is conjugate ia G to a subgroup of D, [1, II (2B)].

Hence D

_
P as stated.

If d P, then D P by [1]. If P d, there exist blocks b0 of N,(d) with
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b b and then b B. Hence we have

(4E) If B and D are as in (4D and if P is a lower defect group of B with
P D, there exists a p-subgroup d of G with

P c d No(P)

and a block bo of N(P n No(d) with b B.

We finally prove an extension of (4A).

(4F) Suppose that for each block B of G we have a subset * of C(G) such
that

(i) each K e C(G) belongs to at least one *(ii)) If] * k* there exists a subset Uz of Fz with V k*l and

(4.5) get(h(K)) 0; (heVB, K e*).
Then lc* k and exactly m(Q) classes of * have defect group Q; (Q e 6)(G) ).

Proof. It follows from (i) that

=>
On the other hand, (ii) implies that

l* dim Fz /..

If we add over B, we conclude that k* k.. Each K e g(G) belongs to
exactly one o*.
For any Q e (P(G), let r(Q) denote the number of K e * with the defect

group Q. Then

(4.6) - r,(Q)

since on both sides, we have the umber of conjugate classes of G with defect
group Q.

If r(Q) m.(Q) for some B and Q, choose a Q of maximal order for which
this happens. On account of (4.6), we can then choose B such thut

(4.7) r(Q) <: m(Q).

If {f} has the same significance as in (3B), it follows from the assumption
(ii) and ]* / that

K* *(4.8) det (f(K*))
Consider here the rows for which D >_ Q. By (3B) then f(K*) 0
except when

(4.9) D, D

_
Q.

The number of rows in question is

R e m,(P); (Pe (P(G), P >_ Q).
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As shown by (4.9), the non-zero coefficients in the rows occur in

C p r(P); (Re (G), P >- Q)

columns. Our choice of Q implies that roB(P) rB(P) for lP > ]Q I.
By (4.7), R > C. But this is inconsistent with (4.8) and (4F) is proved.

5. The ideals I of Z(G)
We shall give another characterization of the multiplicity me(Q) of

Q e (p(G) as lower defect groups of the block B. We first note

(SA) Let Q e 6)(G). Let K range over the conjugate classes of G which do
not meet T C(Q ). The corresponding class sums SKform the basis of an ideal
IQ of Z(G).

This is immediate since IQ is the kernel of the homomorphism t* in (2.2) of
Z(G) into Z(H);H No(Q), T Co(Q).

(5B) Let B e 6t(G). IfI is as in (5A),

(5.1) dima (B n I) ’ m,,(P)

where P in the sum ranges over the members of 5)(G) which do not contain a con-
jugate of Q.

Proof. Consider B as an algebra over t. Then I B n I is an ideal of B.
Let R denote the representation of B belonging to the B-module B/I. We
thenhaveR(f) 0forf eI. Conversely, if f eBandR(f) 0, thenBf

_
I.

Since B has a unit element vB, this implies " e I. Hence R has the kernel I.
Choose an ft-basis of B/I and write R in matrix form. Each coefficient of

R considered as a function of a variable element of B can be viewed as an
element of the dual space/) of B. Let W denote the subspace of/) spanned
by the different coefficients of R. Since R has the kernel I, we have

(5.2) dima W dima(B/I) k. dima I.

If w e W

___
/), we can consider w as an element of F. Then

w(r) w(n r)

for e Z. Express w by the basis {fx} in (aB),

(5.3) w w(K)fK (K e ).

If here SK e Ie, then v(gK) e I and

w(K) w(VB(gK) O.

Therefore, it. suffices to let K in (5.3) range over those elements K of ,
which meet T. These are the K for which DK >__ Q. Theft

dima W =< e u,(P); (Pc (P(G), P >__ Q)
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since the sum of the right represents the number of K in (5.3).
and (5.3),

k _,. ms(P) <- dima I; (P e 5)(G), P Q).

By (5.2)

Here the left side is equal to the sum ia (5.1), cf. (4.2). Thus

(5.4) ’ m(P) <= dima I dima(I n B).

Add here over all B e(G). On the left, we obtain the number of
K e e(G) whose defect group does not contain a conjugate of Q, cf. (4.3).
By (5A), this is the dimension of I. Since I is the direct sum of the I n B
for the different blocks, we have equality after adding (5.4) and hence equality
in (5.4), Q.E.D.

It is clear from (5.1) that, for each P e (G), me(P) can be expressed by
the dimensions of the ideals B n I for suitable Q e (P(G) if ks is known.

5. The p-sections of G

The p-sections of a group have been defined in 1. Each e Z Z(G)
has a unique representation

(6.1) a($K); (Ke e(G)).

If is a p-element of G, let "() denote the sum of the terms in (6.1) for which
K belongs to the section () of . Then

(6.2) " . ’(); (r eII).

We note

(6A) If belongs to the block B of G, each (’) in (6.2) does.

Indeed, since *, we have

2 ); ( n).

On account of (2H), each v ’() is finear combinatioa of class sums SK
with K (). On comparing ts with (6.2), we find

We shall say that an element f of 2 is sectial and is associated with the
secti (), iff(K) 0 for all K eg(G) which are not contained in ().

(6B) The functions fir in (3B are sectional.

Proof. Let Ko be a fixed conjugate class, say K0

___
(ro). Apply (2F)

with and with F consisting of the f with K e z. It follows that
for K e there exists elements c e 2 such that, for every f e Fs,

f(Ko) , c f(K); (Ke )
and that c 0 if K is contained in a section () (0). Taking f f
with K

___
(v), we see that f(K0) 0 as we wished to show.
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We shall denote by F() the subset of FB consisting of the functions f e FB,
which are sectional and are associated with (v). As a corollary of (6B),
we have

(6C) The space F is the direct sum of the subspaces F(" with r ranging
over II.

Indeed, the functions fK wiht K e B form a basis of FB. Here fK is sec-
tional and, if K

_
(), then as f(K) 1,f is associated with () and

hence f e F(,.
We now replace FB by F() in the definition of mz(P) in 1. For given

B e (G), P e ((G) and e II, we consider subspaces V of F() such that
every f 0 in V has the following properties"

(i) There exist coniugate classes K with the defect group P such that
f(K) O.

(ii) We have f(K) 0 for every g e G(G) for which D < p l.
Of course, it will suffice here to consider only classes K (r).
We denote by m(,) (P) the maximal dimension of a space V with the

properties (i), (ii). Let )(, be the system of groups consisting of the groups
P e ((G) with each P taken with the multiplicity m("(P). Now a proof
quite analogous to that of (4A) yields

(6D) Let zbeasin (3A) andlet( bethesubsetconsisting ofthe K e

whicharecontainedin the section (), r e II. Then )( consists exactly of
the defect group DK of the K e

We shall say that ( is the system of lower defect groups of B associated
with the section (). Now (6D) yields the following"

(6E) The system ) is the union of the systems )( for all e II. In
other words

(6.3) mz(P) m()(P); (r eII)

for each P e 5)(G). If we set () l(), we have

(6.4) l() Ee m()(P); (Pe ((G)).
The number of conjugate classes K

_
(r) with a given defect group P is given

by

(6.5) __, mY)(P); (B e 5(G)).

We can also extend (4F).

(6F) Suppose that for each B (G) and each II, we have a set
of conjugate classes K

_
(r) such that each K (G) contained in the sec-

tion (r) belongs to * for some B. Suppose further that for each B, we have



DEFECT GROUPS 69

a subset U of F(,) with U. * such that

det (h(K)) 0; (heU, K e*).
Then l*[ l() and exactly m()(Q) classes g e * have defect group Q;
(Qe (G)).
This is shown by the same method as (4F) considering only classes con-

tained in the section (r) and replacing mz(Q) by m()(Q) and Fz by F().
Our next result shows that the numbers m()(P) can be expressed by the

analogous numbers with G replaced by Ca(v) and B replaced by blocks of
Co(-).

(6G) Let reII and set C Co(r). For each Be(G) and each
P e(G), we have

(6.6) m(’)(P) bm()(Q)
where Q ranges over those groups in 5)(C) which are conjugate to P in G and
where b ranges over the set B c of blocks b of C with ba B.

Proof. We apply here the method of 2, 1 with Q r }, T H C.
Let c(r) denote the p-section of r in C. If K e e(G) and K

___
(r), set

(6.7) K n c(Tr) L.

Then L is not empty and L consists of elements of the form rp with p-regular
p e C. Any two elements of L are conjugate in G. It follows from their
form that they are conjugate in C. It is now evident that L is a conjugate
class of C; L c(r). Conversely, if L e ((C) and L

_
c(r), the con-

jugate class K La of G containing L belongs to (r) and satisfies (6.7).
Hence we have a one-to-one correspondence between the set of K e (G)
with K

___
(r) and the set of L e (C) with L c(r). Moreover, if

Q e ((C) is the defect group of L in C, the defect group P of K L in G
is conjugate to Q.

We now use a method similar to that used in the proof of (3A).
If b e 5(C), let Fb be the subspace of the dual space 2(C) of Z(C) defined
in a manner analogous to the definition of F. in 2(G). Let Yb denote a
basis of Fb consisting of sectional functions, (cf. (6C)). Let Y be the union
of all Y with ba B and let Y be the union of Y, for all B e (g(G). Then
Y is a basis of 2(C) and hence

det ((L)) 0; (Y, Lee(C)).

It follows that, for each B, we can select a subset of e(C), such that
(C) is the disjoint union of the sets , that Ya I I, and that

det(+(L)) 0; (+,Y,, L e.).

Let () denote the set of 11 L e such that L

_
e(r). We can then
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find a subset Y() with] Y(’ () such that

(6.8) det ((L)) 0; (e Y() L e ).

Since all e Y are sectional, it follows from (6.8) that they are associated
with the section c(). Let X denote the system of functions with

e Y and defined by (2.3) with T H C. Each f belongs to
F, cf. (2A). If K e (G), by (2.2) and (2.3)

f(K) (8(K C)).

If K is not contained in (), then K does not meet c() and hencef(K)
0. If K (v), K C is the uon of L in (6.7) and of conjugate classes
L* e(C) contained in sections of C derent from c(). Since (L*)
0 for these L*, we find f(K) (L).

If is the set of classes L with L e we then have

get(f(g)) 0; (feX*, K e).
Since every L e e(C) with L c() belongs to * for some B e (G),
every K e e(G) with K (r) belongs to some . We can now apply
(6F) and see that exactly m* (P) classes K e have defect group P.
It follows that exactly m* (P) of the classes L e have defect groups Q
in C th Q conjugate to P. On the other hand, if we set

for b e Be, it follows from (6.8) that we ca break up ’) into subsets
) with be Bc such that rl L$) and

det ((L)) 0; ( e Y), L e )).
Applying (6F) to C and b, we see that m) (Q) of the classes L e) have
defect group Q e (C). It is now clear that (6.6) holds.

7. The section of the unit element
(7A) Assume that r is a p-element in the center Z(G) of G. Let B be a

block of G. Let have the same significance as in (3A). As before, let
denote the set of classes K with K

_
() and set () l(). We

can find a set Xz of l() irreducible characters x in B such that

(7.1) det (x,(a)) 0 (mod ); (x, eXs, K ()).
Here, has the same meaning as in 2, 2. Moreover, l(’ coincides with the
number l, of modular irreducible characters in B. Finally, )() )().

Proof. As shown in [1, I (SA)] there exists a se Xz of ls irreducible charac-
ters x, e B and a set () of 1. conjugate classes K

_
(1) such that each

eoniugate class in ( 1 belongs to () for exactly one B, and that for every B

det (x(K)) 0 (mod ); (x,Xs, K e()).



The section (1) consists of the p-regular elements of G. If K ranges
over the classes in (R)(1), rK ranges over the classes in (r). Let
denote the set of classes rK with K e (1). Since

X(o’g) x(cr-:) (mod p)
we have

(7.2) det (x(ag)) 0 (mod ); (x eX K e

Let r() (P) denote the number of classes in () with the given defect
group P e (P(G). Then

(7.3) _, r(*)(P) ., m(*)(B); (B e (G))

since both sides represent the number of classes K

_
(r) with defect group

P, cf. (6.5).
If some class K e () does not belong to (), we try to replace it by u

class in () with the same defect group such that the condition (7.2) is
preserved after the replacement. We continue ia this manner as long as
possible.
Assume first that, for every r e Z(G) and for every B e (g(G), this process

only comes to an end when all classes ia (,) have been replaced by classes
in(). Then, obviously,

() (p) <r, m, (P)

and (7.3) implies that we have equality. This means that we have replaced
() by () and hence (7.1) holds. Also,

I V)
() (p)Since the classes K and rK have the same defect group, we have rs

r) (P). Since our result above can be applied for 1, we find

m.()(P) r.()(P) r()(P) m()(P)
Hence )() )(1), and (7A) holds in the case under discussion.
Assume then that for some e Z(G) our exchange comes to an end before

all classes in () have been replaced. Let H denote the set obtained from
() when the process terminates. All classes in H, lie in @(r). Exactly
()r (P) classes in Hz have defect group P, we have [H l, and

(7.4) A det (x()) fi 0 (mod ); (x eX,, K

Finally, for some B, there exist classes K0 e H. which do not belong to
and which cannot be exchanged with a class in () with the same defect
group such that (7.4) is preserved. Choose here B and K0 such that the de-
feet group Q of K0 has maximal order.

If P e (P(G) and PI > Q [, our choice implies that, for every block
B and every K e Hm with D P, we have K e (). This implies that
r(*) (P) < (*) (P). On account of (7.3) we have equality. This showsB HbB1



72 RICHARD BRAUER

that, for ]PI > Q [, the same classes of defect group P occur in HB1 and
in OB

We shall now derive a contradiction. It follows from (2F) that there exist
elements cK e 0 for K e (,) such that

(7.5) 0.(K0) Kct o.(K); (Ke i"))
for each j associated with B. Then, by (1.4)

(7.6) x(zto) -’tct(Igl/]go])x(zK); (g , (’)).
Let At1 denote the determinant obtained form A in (7.4) by replacing the
column x(t0) by x(tl) with K_ e (). On account of (7.6), then

(7.7) A t ct( K / go )at (Ke

If here K has a defect groupD with Dt > Q [, then as remarked, K
and hence At 0 since two columns are equal. It will therefore suffice to
let K range over the classes with Dt =< Q I. Since Dto Q, then
K0[ e o. It then follows from (7.7) that there exist classes K e () for

which

(7.8) ct, 0, At, 0 (mod ), [Dt [Q [.
In the notation of 2, 2, the equation (7.5) remains valid if we replace

by an element of M,. Then (2F) shows that

f(go) cf(K); (Ke Y))
for uny f e F.. For f f, this yields

c, f(Ko)

By (7.8), then f, (K0) 0 and by (3B) Q D. Now (7.8) shows that
D Q and that we could have exchanged K0 th K e) since both
have the same defect group and since (7.4) would be preserved. Ts is a
contradiction and the proof is complete.

If v is an arbitrary p-element of the group G, we can apply (TA) to the group
C Co(). If b e(C) nd if Q e (C), then ) ) and hence
m) (Q) m) (Q). Now (6G) becomes

(7B) Let be a p-element of G and set C Ca(). For each B e g(G)
and each P e G

(7.9) mY)(P) E E (Q)

where Q ranges over the groups in 5)(C) which are conjugate to P and where b
ranges over the blocks of C with ba B.

By (7A), l() l is the number of modular irreducible characters in b.
If we add (7.9) over all P e (P(G), (6E) yields the corollary:

(7C) If the notation is as in (7B ), we have
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(7.10) l() ’ l

where b ranges over the blocls of C with b( B.

On comparing (7.10) with [1, II, 7] we have

(7D) The number l(’) of lower defect groups of B associated with the section
’(r) is equal to the number of modular irreducible characters of Ca(’) which
belong to B in the sense of [1, II, 7].

Ia particular, there are l lower defect groups of B associated with the
section S(1). On account of (6E), we have

(7E) The number l, of modular irreducible characters in the blocl B is
qiven by

(7.11) 1. l() em()(P); (Pe (P(G)).

The proposition (7A) can be applied for r 1 for any G. Hence

(7F) For every B 6(G), we have

det (x(a)) 0 (rood ); (x eX. K (’)).
Since every p-regular class of G belongs to () for exactly one B, we can

apply the method in (1, I, 5) and obtai

(7G) Let B be a block. Let r 0 be a rationa integer. The multiplicity
of p as an elementary divisor of the Cartan matrix of B is given by

" m() (p
where P ranges over all groups in (P(G) of order p.

This is a refinement of a result stated without proof in [2].
As a consequence of (7G), we have

(7H) If B has defect group D (in the sense of [1] with D chosen in (G) ),
then D occurs exactly once in )().

The results of [3] show that D occurs in 55(") for II, if and only if
is conjugate to an element of Z(D); hey also allow us to characterize the
multiplicity m(") (D). For arbitrary r II, we can determine the maximal
elements of lI)().
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