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1. Introduction

In connection with some work by W. Haken [4] on the Poincar conjecture
in dimension 3, R. H. Bing raised the tollowing question in [2]. If Ks is any
cube with 2 holes, does there always exist a continuous map f of Ks onto a
cube with 2 handles C such that f Bd Ks is a homeomorphism onto Bd C?
(We call such a map f a boundary preserving map of Ks onto C .) In gen-
eral, ifK is a cube with n holes, does there always exist a boundary preserving
map of Kn onto a cube with n handles Cn? For the case n 1, J. Hempel
in Theorem 5 of [5] answered the question in the affirmative. In Theorem 1
of this paper we show that the question has a negative answer for n 2.
It then follows, as a corollary to Theorem 1, that the question has a negative
answer for n >_ 2. Theorem 2 gives a necessary and sufficient condition for
the existence of a boundary preserving map of Kn onto C. Theorem 3
gives another sufficient condition for the existence of a boundary preserving
map of Ks onto C..

2. Terminology

Throughout this paper all sets which appear can be considered as polyhedral
subsets of E3. A cube with n holes K, and a cube with n handles C, are defined
as on pages 90 and 95 of [2]. Any cube with holes or handles is to be thought
of as a polyhedral subset of E3. In analogy to the definition of 1-1inked
simple closed curves (scc’s) in E [9], we define disjoint scc’s X, Y to be 1-
linked in the 3-manifold M if for each pair of compact orientable 2-manifolds
Mx and Mr in M such that Bd Mx X and Bd Mr Y, it follows that
Mx n Mr 0. At the end of Section 4 we note an analogy between the
main result of this paper and the example of a boundary link 11 u l given in [9].
Suppose g is a map of K onto C. Then g is said to be a boundary pre-

serving map ofK onto Cn if g is continuous and g BdK is a homeomorphism
onto Bd C. It can be shown that if g is a boundary preserving map of
K onto C, then there is a piecewise linear map f of K onto C and a product
neighborhood 01 (= Bd K X [0, 1]) of Bd Kn in K and u product neighbor-
hood 03 of Bd C in C such that (1) f l01 is a homeomorphism onto 05 and
(2) f(K, 01) C, 0.. We will assume then that any boundary pre-
serving map f of K onto C has been adjusted so that it is piecewise linear
and satisfies (1) and (2) above.
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3. Description of T
In this sectioa we describe a cube with 2 holes T which we show (Theorem

1 of Section 4) has no boundary preserving map of T onto the cube with 2
handles C. The example we will describe is Zeeman’s example 3 Cz C
of case 3 of [10] where we take the one point compactification of/’3 and remove
the interior of a regular neighborhood of C u C.

Let T’ be solid cube in E containing the two rcs J’, J’z nd the two
dsksD, Dz as lndcatedmFgure . The intersection of D’ nd D consists
of the two dsjont arcs A and A. Let R be a regular neighborhood of J
u J in T’. Then R is the union of two disjoint cubes R and R, containing
J’ nd J’, respectively.
Assume R is taken so that R n D is a regulur neighborhood in D of J

J) and R n D is a regular neighborhood in D of J (D J’u). As-
sume also that A, C1(A R) and A C1(A’ R) re arcs.

Let T be the cube with 2 holes obtained by removing Int R (w.r.t. T’) from

FIG. 1
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T’ (see Figure 2). Let

Du D’u-- (IntR), Dz Dz- (IntR), Lu Cl(BdRunIntT’), and

L CI(Bd R n Int T’).

Then Du(D) is a disk with 2 holes and let J(J) be the scc of Bd D(Bd D)
that does not intersect Az(A). Note that Lu, Lz are annuli on Bd T. (See
Figure 2 for a picture of these subsets of T.) Let Du*(D) be the disk ob-
tained from the closure of the component ofD A(D As) not containing
BdD J (Bd D J). Let L*u(L) be the subannulus of Lu(Lz) bounded
by Bd Dt J(Bd Du J).

4. Proof of Theorem
Some necessary parts to the proof of Theorem 1 are contained in the follow-

ing six lemmas. The first three of these lemmas are concerned with some
general topological properties needed for the investigation of our example T,
and the last three lemmas are concerned with some specific properties of T.
Suppose M1, M2 are compact orientable 2-manifolds in E such that

Bd M1 n Bd M. 0. In this paper we use the definition of the linking num-
ber o(Bd M1, Bd M2) of Bd M1, Bd M as given on page 81 of [1] with the
integers as the coefficient domain. The following lemma is proved in [1].

LEMMA 1. Tf o(Bd M, Bd M) # 0, then o(Bd M, Bd M) # 0 and if
Bd M’ Bd M2M M’ are compact 2-manifolds such that Bd M Bd M,

then

o(Bd M’, Bd M) o(Bd M, Bd M2).

In [8], A Dehn surface of type (p, r) is defined and in [6], a conservative
e-alteration of a singular disk is defined. We may extend the term conserva-
tive e-alteration to apply to Dehn surfaces of type (p, r). Using this terminol-
ogy we have the following lemm.

LEMMA 2. Let D be a Dehn surface of type (0, r) in the 3-manifold M such
that a regular neighborhood of Bd D in M consists of r disjoint solid tori. Then
there exists a nonsingular surface of type (0, r) in M which is a conservative
e-alteration of D.

Proof. Let (A1,..., At) be the boundary components of D. Since a
regular neighborhood of Bd D in M consists of r disjoint solid tori, it follows
that there exist r disjoint solid tori F1, .-., F, in M such that for 1 <_ i _< r,
Ai is a longitude of r on Bd F. For 2 _< i _< r, let h be a homeomorphism
of Bd ri onto itself which carries the boundary of a meridionl disk of F
onto A Now add U"= F to M U=. Int F by the identification x h(x)
for x e Bd F. The resulting manifold M’ now contains the singular disk
D’ D (U= ). It then follows by Theorem IV. 3 of [6] that there is a
nonsingulr disk D" which is a conservative e-alteration of D’ in M and, if
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the is small enough, D" contains U=2 I, hence D" Int(U=2 ) is a
non-singular Dehn surface of type (0, r) which is a conservative -alteration
of D in M.

LEMMA 3. Suppose f is a boundary preserving map of T (or any cube with
2 holes K) onto C. Suppose further that X, Y are disjoint scc’s on Bd C2
which are not 1-1intced in C Then f-l(X), f-l( y) are not 1-1inked in T.

Proof. Let X, Y bound in C the disjoint compact orientable 2-manifolds
Mx, Mr respectively.

Let hi, h be homeomorphisms of Mx X [0, 1], Mr X [0, 1] into C2 such that

(1) h(Mx X [0, 1]) n h.(M, X [0, 1]) t,
(2) h(M: X {1/2}) Mx, h(M. X {1/2}) Mr, and
(3) h(X X [0, 1]) Bd C2, h2(Y X [0, 1]) Bd C..

Let R be a regular neighborhood of f-(M:) contained in

f-(h(M: X [0, 1]))

and let R y be a regular neighborhood of f-l(M,) contained in

f-l(h(M. X [0, 1])).

LetR be the component of Rx containing f-l(X) and let R be the component
of Rr containing f-l(y). Let Z be an arc in Bd T n R which intersects and
pierces f-(X) at just one point. Now if f-l(X) does not separate Bd R,
then we may join the endpoints of Z by an arc Z’ in R f-(Mx). But
then f(Z u Z’) can be adjusted slightly to form a scc in hl(M: X [0, 1]) which
intersects and pierces M at just one point, contradicting that, locally, Mx
has two sides. Hence f-(X) separates Bd R into two components and, by
a similar argument, f-(Y) separates Bd R. The closure of a component of
Bd R f-(X) and a component of Bd R f-l(y) form the surfaces
required to show f-l(x), f-(Y) are not 1-1inked in T.

LEMMA 4. In T, J and J are 1-linlced.

Proof. Suppose J, J are not 1-1inked in T. Let M, M be disjoint
compact orientable 2-manifolds in T bounded by J, J, respectively. Now
J belongs to the first commutator subgroup (I(M))’ of (M). If X is a
scc in T (M u M), then(X, J) 0 ands(X, J) 0; hence Xe ((T))’.
Since each loop in M, is obviously homotopic to a loop in T (M u M),
it follows that J e ((T))". By [10],

-(T) {c, g, x [c[g, x]] x},

where x can be taken to represent J,. As suggested ia [10], we my map
(T) onto the permutation group Sa on three elements by sending c, g to
(12) and x to (123). Since (123) e S’ {1}, it follows that J e ((T))",
contradiction. Hence J, J are 1-1inked in T.
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LEMMA 5. Suppose f is a boundary preserving map of T onto C2 (recall the
assumption made on f in Section 2) and X is a scc on Bd C. such that X does
not bound a disk on Bd C2 and either X n f J,) 0 or X f J) 0. Then
X is not null homotopic in

Proof. Suppose X is null homotopic in C2 and disjoint from f(Ju). Using
Dehn’s Lemma, we obtain a disk F such that Bd F X and Int F

_
Int C.

Let R(F) be a regular neighborhood of F in C. f(Ju). Since C is a cube
with 2 handles and X does not bound a disk on Bd C, it follows
that C1 (C R(F)) is either a cube with i handle or two disjoint cubes with
1 handle. Since f(J,) is null homologous in C2 (using integer coefficients),
it follows that f(J,) is null homologous in C1 (C. R(F)) and hence bounds
a disk M, in C1 (C. R(F) ). Sincef(J) is null homologous in C, it bounds
a compact orientable 2-manifoldM in C and, by adjustingM to be in general
position with M, cutting M off on M, and pushing M to one side of M,
it follows that we may assume M a M 0. Then f(J), f(J) are not
1-1inked in C. and hence, by Lemma 3, J and J are not 1-1inked in T, con-
tradicting Lemma 4. Interchanging f(J) and f(J) gives a proof for the
case X f(J) 0.
Under the assumption that there exists a boundary preserving map of T

onto C2, the next lemma shows that we may obtain compact 2-manifolds
E, E in C with properties enough like those of D, D in T to imply (in
Theorem 1) the contradiction that C. is not a cube with handles. In the
next lemmawe choose 01 so that D* u n

_
1 hence f[ D* u n is a homeo-

morphism (see Section 2 for a description of and Section 3 for D* D)U

LEMMA 6. Suppose f is a boundary preserving map of T onto C. Then,
in C there exists a copy E, ofD and a compact orientable 2-manifold E such
that

(1)
(2)
(3)

BdE f(Bd D), BdE f(J),
Int E t Int E

_
Int C,

E and E are in relative general position, and
f(D*) E, f(n) E

Proof. By Lemma 2, the singular Dehn surfaces f(Du), f(D) of type (0, 3)
may be replaced, in C., by nonsingular Dehn surfaces E, 0E of type (0, 3)
which are conservative -alterations of f(D), f(D), respectively. We may
choose the of the -alteration small enough that f(D*)

_
E and

f(D) oE Since f(L*) intersects 0E on one side of oE E oE t f(L*)
is a compact orientable 2-manifold. (See Section 3 for a description of L*.)
By adjusting E f(D) slightly, so that Int E Int C2 and E, E are in
general position, the required surfaces E and E are obtained. Note that
E n E consists of the arc f(A) and a finite number of disjoint scc’s
in E f(A).
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THEOREM 1. There does not exist a boundary preserving map of T onto C2

Proof. Suppose f is a boundary preserving map of T onto C2. Let E
and E be as given in Lemma 5. Since C is a cube with 2 handles, there is a
disk F in C such that Bd F

___
Bd C, Int F Int C., Bd F does not bound

a disk on Bd C2, and F is in general position relative to E.
If F n E contains a scc S which separates the two components of

Bd E f(J,) in E, then (S, f(J)) 0 using the disk S bounds in F.
But, after a slight adjustment, S intersects and pierces E an odd number of
times, hence (S, f(J) 0 using E, and we have a contradiction to Lemma
1. If F n E contains a scc S which separates f(J,) from Bd E f(J.) in
E, then f(J) bounds a disk in C, contradicting Lemma 5. If F E con-
tains any scc’s which bound disks in E, they may be removed by cutting F
off on Eu and pushing to one side of E. Hence we may assume F Eu
consists of a finite collection of disjoint arcs with interiors in Int E, and end-
points in Bd Eu.
Suppose an arc X in F E, together with an arc Y in Bd E form a scc

which bounds a disk F’ in E such that Int F F 0 Now Y plus one of
the two open arcs of Bd F-Bd Y form a scc Z which does not bound a disk on
Bd C. But Z bounds a disk E in C formed by the sum of the disk F and
the disk on F bounded by (Z n Bd F) u X. Then E may be adjusted slightly
so that E is in general position relative to E, E nE

___
F E and the number

of arcs E E which together with an arc in Bd E bound a disk in E is less
than those of F n E. By applying the previous argument a finite number of
times (and denoting the result by F again), it follows that we may assume F
satisfies the following condition, which we refer to as Condition A: The inter-
section of F with E contains no arc that together with an arc in Bd E form
a scc which bounds a disk in E.

Let a be the collection of arcs in F a E, which intersect f(J). Then each
arc X of a is one of the following two types.

(1) x has both endpoints in f(J) and separates one component of Bd
E f(J,) from the other in

(2) X has one endpoint in f(J,) and the other in Bd Eu f(J).

Now assume X0 e a is minimal in the sense that X0 together with an arc Y0
in Bd F form a scc which bounds a disk F0 in F such that no element of
is contained in F0 X0. It follows from the proof of Lemma 6 that f(L)
intersects just one side of E,. Let the side of E which intersects f(L) be
called its positive side. We now have the following two cases"

(a) F0 lies on the positive side of E near X0.
(b) F0 lies on the negative side of E, near X0.

Call the minimal arc X0 of a an ix arc if X0 satisfies conditions (i) and (x)
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above, where 1, 2 and x a, b. Each of the four possible cases ix is
now shown to lead to a contradiction.

Case I. Xo is of type la. SinceBd Xo

_
f(J), if BdFonf(L) ,

then Bd F0 n Bd f(L) 0, and it follows by the general position of F0 with
E that there is an arc X in Fo E with both endpoints in Bd E f(J).
Since X X0 0, Fo

_
F, and Xo separates the two components of

Bd E f(J), it follows that X together with an arc in BdE f(J) form
a scc which bounds a disk in E, violating Condition A. Hence Bd Fo
f(L’) 0 and it follows that Fo E X0. We may adiust Xo in E so
that X0 is in general position relative to E. Let E C1 (E f(D)).
Now by pulling F0 off E along X0 (that is X0 is moved into the positive side
of E), it follows that o(Bd Fo, Bd E’) 0 using Fo (since Fo n Bd E 0)
but

o(BdFo,BdE) +lor-1

using E*, contradicting Lemma 1.
Case II. X0 is of type 2a. In this case, by pulling Fo off E along X0 (and

into the positive side of E), it follows that the endpoints of X0 are separated
in Bd C by Bd E f(J). Hence Bd F0 intersects and pierces
Bd E f(J) an odd number of times. By pushing F0 slightly into Int C,
it follows that (Bd F0, Bd E) 0 using F0 but (Bd Fo, Bd E) # 0 using
E, contradicting Lemma 1

Case III. Xo is of type lb. We may adjust Fo slightly so that it is in
general position with respect to f(D) and Bd Fo intersects f(A) at just one
point. Since Bd Fo f(L) , as shown in Case I, it follows by the general
position of Fo with f(D) that there is an arc X in Fo f(D) with one end-
point Bd Fo f(A) and the other inf(J). Since X

_
f(D), X IntE 0

and there is a homeomorphism h of C2 onto itself fixed on Bd C2, BdE and X
such that h(E) Xo 0. Let E* h(E’). It follows that

Int E’* n E,,

_
E (f(A) u Xo),

and hence we may cut E* off on E and then off f(D), so that
Ms f(D) u E* forms a compact orientable 2-manifold with boundury
f(J) such that M n E f(A). Let R be a regular neighborhood
of Mz u f(L) in C. such that R n E is a regular neighborhood of

f(A) u (Bd E f(J))

in E. Let M be C1 (E R) together with the component of Bd R E
not containing f(L). It then follows that M and M are disjoint compact
orientable 2-manifolds with boundaries f(J,) and f(J), respectively. By
Lemma 3, J and J are not 1-1inked in T, contradicting Lemma 4.

Case IV. X0 is of type 2b. Let F be the closure of the component of
(Fo E) X0 containing X0. Note that F is a disk which intersects E
on the negative side only and F’o E consists of X0 and a finite collection of
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disjoint arcs in Eu X0 each with endpoints in Bd Eu f(Ju). SinceE nE
consists off(Az) and disioint scc’s in Eu f(A), it follows that we my diust
Int E near E f(A) so that

(E n E,) f(A) (E F’o) u Xo.
By pulling F’o off E (into the negative side of E) awy from the arcs in
F n E. Xo, we muy assume

n E X0
as well as

F’o *nE IntF0uX0

(since E n E f(A) (E F’0) u X0 and E intersects E on the posi-
tive side near f(A)). We may adjust F’0 near E so that Xo n f(A) O.
SinceF nE IntF u X0 and BdE n F’o 0, there exists homeomorphism
h of C onto itself which is fixed on Bd C and BdE such that h(E) n Xo O.
Letting E* h(E), the rest of the proof is the same as Case III.
These four cases now imply F n f(J) 0, and the existence of F contra-

dicts Lemma 5 (where the X of Lemmu 5 is taken to be Bd F). Hence there
is no boundary preserving map f of T onto C and the proof of Theorem 1 is
complete.

Coonv. For each n 2 there is a cube with n holes T with no boundary
preserving map onto the cube with n handles C,

Proof. For n 2, let T be the T of Section 3 together with n-2 disjoint
cubes with 1 handle H, H2, ..., H_2 such that for each i,

HinT BdHnBdT adiskD.

Supposef is u boundary preserving map of T onto C. Using Dehn’s Lemma,
replace each f(D) by a nonsingular disk Di in C such that D; n D 0 for
i j. It follows that eachf(BdH D) u D bounds cube with one handle
H; in C. such that H n H for i j. Then, filling in the hole of each
H and H; by a cube (see [2] for a discussion of this process), we obtain from
T a T’ homeomorphic to T and from C u C’. homeomorpMc to C. It now
follows that f may be extended across the filled in holes to boundary pre-
serving map of T’ T onto C’ C2, contradicting Theorem 1.
By [10], r(T) {c, g, x [c, x]] x} and it follows that there is homo-

morpMsm of (T) onto the free group on two generators, (C2). In [9],
N. Smythe gives an example of 1-1inked scc’s l, 12 in S that form a homology
boundary li. Let 01, 012 be disjoint scc’s in the xy-plane and let R(/),
R(12), R(0/), and R(ol2) be regular neighborhoods in S of l, 12,0/t, and 0h,
respectively. Assume

R(l) n R(12) 0 and R(ol) n R(0h) .
Then it follows that there is no boundary preserving mup of the connected
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elementary figure (see [3])

S (Int R(ll) u Int R(12))

onto the connected elementary figure

S (Int R(oll) u Int R(ol.))

but there is a homomorphism of

(S (Int R(l) u R(l)))

onto the free group on two generators

r (S (Int R(ol) Int R(ol))).

We have obtained in Theorem 1 the analogous result for the connected ele-
mentary figure T with connected boundary.

5. The existence of boundary preserving maps
In this section we give some conditions which imply the existence of a

boundary preserving map of K, onto C. We say the disjoint scc’s l, ..., l,
in K form a boundary link [9] in K, if they bound disjoint compact orientable
2-manifolds M1,..’, Mn, respectively, in Kn. In Theorem 5 of [5], J.
Hempel shows that there is a boundary preserving map of any K onto C1,
and, to prove this, Hempel observes that any K has a scc l which is a bound-
ary link in K and Bd K1 l is connected. The "if" portion of the next
theorem is a straightforward generalization of Hempel’s Theorem 5; the
"only if" portion is a straightforward generalization of our Lemma 3.

THEOREM 2. There exists a boundary preserving map of K, onto C, if and
only if there exists a boundary linlc Ii ..., 1, in K, such that Bd K, Ui= li
is connected.

Note that Theorem 2 together with Theorem 1 imply that if l, 12 are scc’s
on Bd T such that Bd T l u l is connected, then l, l are 1-1inked (not
boundary link) in T.

F. 3
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We say Kn is reducible [7] if there is a disk D in Kn such that Bd D

___
K

and Bd D does not bound a disk on Bd K. It follows that if K2 is reducible,
then there is a boundary link 11,12 in K. such that Bd K2 11 u 12 is connected.
Hence we have the next theorem.

THEOREM 3. f K2 is reducible, then there is a boundary preserving map of
K2 onto C

Figure 3 illustrates a cube with 2 holes To that provides a counterexample
to the converse of Theorem 3. It is easy to show that To satisfies the hypothe-
sis of the "if portion" of Theorem 2, but it can be shown (by a long geometric
proof similar to that of Theorem 1) that To is not reducible.
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