MAPPING CUBES WITH HOLES ONTO CUBES WITH HANDLES

BY
H. W. Lambert

1. Introduction

In connection with some work by W. Haken [4] on the Poincaré conjecture in dimension 3, R. H. Bing raised the following question in [2]. If K_{2} is any cube with 2 holes, does there always exist a continuous map f of K_{2} onto a cube with 2 handles C_{2} such that $f \mid \mathrm{Bd} K_{2}$ is a homeomorphism onto $\mathrm{Bd} C_{2}$? (We call such a map f a boundary preserving map of K_{2} onto C_{2}.) In general, if K_{n} is a cube with n holes, does there always exist a boundary preserving map of K_{n} onto a cube with n handles C_{n} ? For the case $n=1, J$. Hempel in Theorem 5 of [5] answered the question in the affirmative. In Theorem 1 of this paper we show that the question has a negative answer for $n=2$. It then follows, as a corollary to Theorem 1, that the question has a negative answer for $n \geq 2$. Theorem 2 gives a necessary and sufficient condition for the existence of a boundary preserving map of K_{n} onto C_{n}. Theorem 3 gives another sufficient condition for the existence of a boundary preserving map of K_{2} onto C_{2}.

2. Terminology

Throughout this paper all sets which appear can be considered as polyhedral subsets of E^{3}. A cube with n holes K_{n} and a cube with n handles C_{n} are defined as on pages 90 and 95 of [2]. Any cube with holes or handles is to be thought of as a polyhedral subset of E^{3}. In analogy to the definition of 1 -linked simple closed curves (scc's) in E^{3} [9], we define disjoint scc's X, Y to be 1linked in the 3 -manifold M if for each pair of compact orientable 2-manifolds M_{X} and M_{Y} in M such that $\mathrm{Bd} M_{X}=X$ and $\mathrm{Bd} M_{Y}=Y$, it follows that $M_{X} \cap M_{Y} \neq \emptyset$. At the end of Section 4 we note an analogy between the main result of this paper and the example of a boundary link $l_{1} \cup l_{2}$ given in [9].

Suppose g is a map of K_{n} onto C_{n}. Then g is said to be a boundary preserving map of K_{n} onto C_{n} if g is continuous and $g \mid \mathrm{Bd} K_{n}$ is a homeomorphism onto $\mathrm{Bd} C_{n}$. It can be shown that if g is a boundary preserving map of K_{n} onto C_{n}, then there is a piecewise linear map f of K_{n} onto C_{n} and a product neighborhood $\theta_{1}\left(=\operatorname{Bd} K_{n} \times[0,1]\right)$ of $\mathrm{Bd} K_{n}$ in K_{n} and a product neighborhood θ_{2} of $\mathrm{Bd} C_{n}$ in C_{n} such that (1) $f \mid \theta_{1}$ is a homeomorphism onto θ_{2} and (2) $f\left(K_{n}-\theta_{1}\right)=C_{n}-\theta_{2}$. We will assume then that any boundary preserving map f of K_{n} onto C_{n} has been adjusted so that it is piecewise linear and satisfies (1) and (2) above.

Received October 10, 1967.

3. Description of T

In this section we describe a cube with 2 holes T which we show (Theorem 1 of Section 4) has no boundary preserving map of T onto the cube with 2 handles C_{2}. The example we will describe is Zeeman's example $\bar{E}^{3}-C_{1}-C_{2}$ of case 3 of [10] where we take the one point compactification of \bar{E}_{3} and remove the interior of a regular neighborhood of $C_{1} \cup C_{2}$.

Let T^{\prime} be a solid cube in E^{3} containing the two arcs $J_{u}^{\prime}, J_{l}^{\prime}$ and the two disks $D_{u}^{\prime}, D_{l}^{\prime}$ as indicated in Figure 1. The intersection of D_{u}^{\prime} and D_{l}^{\prime} consists of the two disjoint $\operatorname{arcs} A_{u}^{\prime}$ and A_{l}^{\prime}. Let R be a regular neighborhood of J_{u}^{\prime} u J_{l}^{\prime} in T^{\prime}. Then R is the union of two disjoint cubes R_{u} and R_{l}, containing J_{u}^{\prime} and J_{l}^{\prime}, respectively.

Assume R is taken so that $R \cap D_{u}^{\prime}$ is a regular neighborhood in D_{u}^{\prime} of J_{u}^{\prime} u ($D_{u}^{\prime} \cap J_{l}^{\prime}$) and $R \cap D_{l}^{\prime}$ is a regular neighborhood in D_{l}^{\prime} of $J_{l}^{\prime} \cup\left(D_{l}^{\prime} \cap J_{u}^{\prime}\right)$. Assume also that $A_{u}=\mathrm{Cl}\left(A_{u}-R\right)$ and $A_{l}=\mathrm{Cl}\left(A_{l}^{\prime}-R\right)$ are arcs.

Let T be the cube with 2 holes obtained by removing $\operatorname{Int} R$ (w.r.t. $T^{\prime \prime}$) from

Fig. 1

Fig. 2
$T^{\prime \prime}$ (see Figure 2). Let

$$
\begin{gathered}
D_{u}=D_{u}^{\prime}-(\operatorname{Int} R), \quad D_{l}=D_{l}^{\prime}-(\operatorname{Int} R), \quad L_{u}=\mathrm{Cl}\left(\operatorname{Bd} R_{u} \cap \operatorname{Int} T^{\prime}\right), \quad \text { and } \\
L_{l}=\mathrm{Cl}\left(\operatorname{Bd} R_{l} \cap \operatorname{Int} T^{\prime}\right) .
\end{gathered}
$$

Then $D_{u}\left(D_{l}\right)$ is a disk with 2 holes and let $J_{u}\left(J_{l}\right)$ be the scc of $\mathrm{Bd} D_{u}\left(\operatorname{Bd} D_{l}\right)$ that does not intersect $A_{l}\left(A_{u}\right)$. Note that L_{u}, L_{l} are annuli on Bd T. (See Figure 2 for a picture of these subsets of $T_{\text {. }}$) Let $D_{u}^{*}\left(D_{l}^{*}\right)$ be the disk obtained from the closure of the component of $D_{u}-A_{u}\left(D_{l}-A_{l}\right)$ not containing $\operatorname{Bd} D_{u}-J_{u}\left(\operatorname{Bd} D_{l}-J_{l}\right)$. Let $L_{u}^{*}\left(L_{l}^{*}\right)$ be the subannulus of $L_{u}\left(L_{l}\right)$ bounded by $\operatorname{Bd} D_{l}-J_{l}\left(\operatorname{Bd} D_{u}-J_{u}\right)$.

4. Proof of Theorem 1

Some necessary parts to the proof of Theorem 1 are contained in the following six lemmas. The first three of these lemmas are concerned with some general topological properties needed for the investigation of our example T, and the last three lemmas are concerned with some specific properties of T.

Suppose M_{1}, M_{2} are compact orientable 2 -manifolds in E^{3} such that $\mathrm{Bd} M_{1} \cap \mathrm{Bd} M_{2}=\emptyset$. In this paper we use the definition of the linking number $\mathrm{o}\left(\mathrm{Bd} M_{1}, \mathrm{Bd} M_{2}\right)$ of $\mathrm{Bd} M_{1}, \mathrm{Bd} M_{2}$ as given on page 81 of [1] with the integers as the coefficient domain. The following lemma is proved in [1].

Lemma 1. If $\mathfrak{o}\left(\mathrm{Bd} M_{1}, \mathrm{Bd} M_{2}\right) \neq 0$, then $\mathfrak{o}\left(\mathrm{Bd} M_{2}, \mathrm{Bd} M_{1}\right) \neq 0$ and if $M_{1}^{\prime}, M_{2}^{\prime}$ are compact 2-manifolds such that $\mathrm{Bd} M_{1}^{\prime}=\mathrm{Bd} M_{1}, \mathrm{Bd} M_{2}^{\prime}=\mathrm{Bd} M_{2}$, then

$$
\mathfrak{v}\left(\operatorname{Bd} M_{1}^{\prime}, \operatorname{Bd} M_{2}^{\prime}\right)=\mathfrak{o}\left(\operatorname{Bd} M_{1}, \operatorname{Bd} M_{2}\right)
$$

In [8], A Dehn surface of type (p, r) is defined and in [6], a conservative ε-alteration of a singular disk is defined. We may extend the term conservative ε-alteration to apply to Dehn surfaces of type (p, r). Using this terminology we have the following lemma.

Lemma 2. Let D be a Dehn surface of type ($0, r$) in the 3-manifold M such that a regular neighborhood of $\mathrm{Bd} D$ in M consists of r disjoint solid tori. Then there exists a nonsingular surface of type $(0, r)$ in M which is a conservative ε-alteration of D.

Proof. Let $\left(\Delta_{1}, \cdots, \Delta_{r}\right)$ be the boundary components of D. Since a regular neighborhood of $\mathrm{Bd} D$ in M consists of r disjoint solid tori, it follows that there exist r disjoint solid tori $\Gamma_{1}, \cdots, \Gamma_{r}$ in M such that for $1 \leq i \leq r$, Δ_{i} is a longitude of Γ_{i} on $\mathrm{Bd} \Gamma_{i}$. For $2 \leq i \leq r$, let h_{i} be a homeomorphism of $\operatorname{Bd} \Gamma_{i}$ onto itself which carries the boundary of a meridional disk Ψ_{i} of Γ_{i} onto Δ_{i}. Now add $\bigcup_{i=2}^{r} \Gamma_{i}$ to $M-\bigcup_{i=2}^{r} \operatorname{Int} \Gamma_{i}$ by the identification $x \equiv h_{i}(x)$ for $x \in \operatorname{Bd} \Gamma_{i}$. The resulting manifold M^{\prime} now contains the singular disk $D^{\prime}=D \mathrm{u}\left(\mathrm{U}_{i=2}^{r} \Psi_{i}\right)$. It then follows by Theorem IV. 3 of [6] that there is a nonsingular disk $D^{\prime \prime}$ which is a conservative ε-alteration of D^{\prime} in M^{\prime} and, if
the ε is small enough, $D^{\prime \prime}$ contains $\bigcup_{i=2}^{r} \Psi_{i}$; hence $D^{\prime \prime}-\operatorname{Int}\left(\bigcup_{i=2}^{r} \Psi_{i}\right)$ is a non-singular Dehn surface of type ($0, r$) which is a conservative ε-alteration of D in M.

Lemma 3. Suppose f is a boundary preserving map of T (or any cube with 2 holes K_{2}) onto C_{2}. Suppose further that X, Y are disjoint scc's on $\mathrm{Bd} C_{2}$ which are not 1-linked in C_{2}. Then $f^{-1}(X), f^{-1}(Y)$ are not 1-linked in T.

Proof. Let X, Y bound in C_{2} the disjoint compact orientable 2-manifolds M_{X}, M_{Y} respectively.

Let h_{1}, h_{2} be homeomorphisms of $M_{X} \times[0,1], M_{Y} \times[0,1]$ into C_{2} such that
(1) $h_{1}\left(M_{X} \times[0,1]\right) \cap h_{2}\left(M_{Y} \times[0,1]\right)=\emptyset$,
(2) $h_{1}\left(M_{X} \times\{1 / 2\}\right)=M_{X}, h_{2}\left(M_{Y} \times\{1 / 2\}\right)=M_{Y}$, and
(3) $h_{1}(X \times[0,1]) \subseteq \mathrm{Bd} C_{2}, h_{2}(Y \times[0,1]) \subseteq \mathrm{Bd} C_{2}$.

Let R_{X} be a regular neighborhood of $f^{-1}\left(M_{X}\right)$ contained in

$$
f^{-1}\left(h_{1}\left(M_{X} \times[0,1]\right)\right)
$$

and let R_{Y} be a regular neighborhood of $f^{-1}\left(M_{Y}\right)$ contained in

$$
f^{-1}\left(h_{2}\left(M_{Y} \times[0,1]\right)\right)
$$

Let R_{X}^{\prime} be the component of R_{X} containing $f^{-1}(X)$ and let R_{Y}^{\prime} be the component of R_{Y} containing $f^{-1}(Y)$. Let Z be an arc in $\mathrm{Bd} T \cap R_{X}^{\prime}$ which intersects and pierces $f^{-1}(X)$ at just one point. Now if $f^{-1}(X)$ does not separate Bd R_{X}^{\prime}, then we may join the endpoints of Z by an arc Z^{\prime} in $R_{X}^{\prime}-f^{-1}\left(M_{X}\right)$. But then $f\left(Z \cup Z^{\prime}\right)$ can be adjusted slightly to form a scc in $h_{1}\left(M_{X} \times[0,1]\right)$ which intersects and pierces M_{X} at just one point, contradicting that, locally, M_{X} has two sides. Hence $f^{-1}(X)$ separates $\mathrm{Bd} R_{X}^{\prime}$ into two components and, by a similar argument, $f^{-1}(Y)$ separates $\mathrm{Bd} R_{Y}^{\prime}$. The closure of a component of $\operatorname{Bd} R_{X}^{\prime}-f^{-1}(X)$ and a component of $\mathrm{Bd} R_{Y}^{\prime}-f^{-1}(Y)$ form the surfaces required to show $f^{-1}(X), f^{-1}(Y)$ are not 1-linked in T.

Lemma 4. In T, J_{u} and J_{l} are 1 -linked.
Proof. Suppose J_{u}, J_{l} are not 1 -linked in T. Let M_{u}, M_{l} be disjoint compact orientable 2-manifolds in T bounded by J_{u}, J_{l}, respectively. Now J_{u} belongs to the first commutator subgroup $\left(\pi_{1}\left(M_{u}\right)\right)^{\prime}$ of $\pi_{1}\left(M_{u}\right)$. If X is a scc in $T-\left(M_{u} \cup M_{l}\right)$, then $\mathfrak{o}\left(X, J_{u}\right)=0$ and $\mathfrak{o}\left(X, J_{l}\right)=0$; hence $X_{\epsilon}\left(\pi_{1}(T)\right)^{\prime}$. Since each loop in M_{u} is obviously homotopic to a loop in $T-\left(M_{u} \cup M_{\imath}\right)$, it follows that $J_{u} \in\left(\pi_{1}(T)\right)^{\prime \prime}$. By [10],

$$
\pi_{1}(T)=\{c, g, x:[c[g, x]]=x\}
$$

where x can be taken to represent J_{u}. As suggested in [10], we may map $\pi_{1}(T)$ onto the permutation group S_{3} on three elements by sending c, g to (12) and x to (123). Since (123) $\not S_{3}^{\prime \prime}=\{1\}$, it follows that $J_{u} \notin\left(\pi_{1}(T)\right)^{\prime \prime}$, contradiction. Hence J_{u}, J_{l} are 1 -linked in T.

Lemma 5. Suppose f is a boundary preserving map of T onto C_{2} (recall the assumption made on f in Section 2) and X is a scc on $\mathrm{Bd} C_{2}$ such that X does not bound a disk on $\mathrm{Bd} C_{2}$ and either $X \cap f\left(J_{u}\right)=\emptyset$ or $X \cap f\left(J_{l}\right)=\emptyset$. Then X is not null homotopic in C_{2}.

Proof. Suppose X is null homotopic in C_{2} and disjoint from $f\left(J_{u}\right)$. Using Dehn's Lemma, we obtain a disk F such that $\mathrm{Bd} F=X$ and $\operatorname{Int} F \subseteq \operatorname{Int} C_{2}$. Let $R(F)$ be a regular neighborhood of F in $C_{2}-f\left(J_{u}\right)$. Since C_{2} is a cube with 2 handles and X does not bound a disk on $\mathrm{Bd} C_{2}$, it follows that $\mathrm{Cl}\left(C_{2}-R(F)\right)$ is either a cube with 1 handle or two disjoint cubes with 1 handle. Since $f\left(J_{u}\right)$ is null homologous in C_{2} (using integer coefficients), it follows that $f\left(J_{u}\right)$ is null homologous in $\mathrm{Cl}\left(C_{2}-R(F)\right)$ and hence bounds a disk M_{u} in $\mathrm{Cl}\left(C_{2}-R(F)\right)$. Since $f\left(J_{l}\right)$ is null homologous in C_{2}, it bounds a compact orientable 2-manifold M_{l} in C_{2} and, by adjusting M_{l} to be in general position with M_{u}, cutting M_{l} off on M_{u}, and pushing M_{l} to one side of M_{u}, it follows that we may assume $M_{u} \cap M_{l}=\emptyset$. Then $f\left(J_{u}\right), f\left(J_{l}\right)$ are not 1 -linked in C_{2} and hence, by Lemma $3, J_{u}$ and J_{l} are not 1 -linked in T, contradicting Lemma 4. Interchanging $f\left(J_{u}\right)$ and $f\left(J_{l}\right)$ gives a proof for the case $X \cap f\left(J_{l}\right)=\emptyset$.

Under the assumption that there exists a boundary preserving map of T onto C_{2}, the next lemma shows that we may obtain compact 2-manifolds E_{u}, E_{l} in C_{2} with properties enough like those of D_{u}, D_{l} in T to imply (in Theorem 1) the contradiction that C_{2} is not a cube with handles. In the next lemma we choose θ_{1} so that D_{u}^{*} บ $D_{l}^{*} \subseteq \theta_{1}$; hence $f \mid D_{u}^{*}$ u D_{l}^{*} is a homeomorphism (see Section 2 for a description of θ_{1} and Section 3 for D_{u}^{*}, D_{l}^{*}).

Lemma 6. Suppose f is a boundary preserving map of T onto C_{2}. Then, in C_{2}, there exists a copy E_{u} of D_{u} and a compact orientable 2-manifold E_{l} such that
(1) $\quad \operatorname{Bd} E_{u}=f\left(\operatorname{Bd} D_{u}\right), \mathrm{Bd} E_{l}=f\left(J_{l}\right)$,
(2) $\operatorname{Int} E_{u} \cup \operatorname{Int} E_{l} \subseteq \operatorname{Int} C_{2}$,
(3) E_{u} and E_{l} are in relative general position, and
(4) $f\left(D_{u}^{*}\right) \subseteq E_{u}, f\left(D_{l}^{*}\right) \subseteq E_{l}$.

Proof. By Lemma 2, the singular Dehn surfaces $f\left(D_{u}\right), f\left(D_{l}\right)$ of type (0,3) may be replaced, in C_{2}, by nonsingular Dehn surfaces $E_{u},{ }_{0} E_{l}$ of type (0,3) which are conservative ε-alterations of $f\left(D_{u}\right), f\left(D_{l}\right)$, respectively. We may choose the ε of the ε-alteration small enough that $f\left(D_{u}^{*}\right) \subseteq E_{u}$ and $f\left(D_{l}^{*}\right) \subseteq{ }_{0} E_{l}$. Since $f\left(L_{u}^{*}\right)$ intersects ${ }_{0} E_{l}$ on one side of ${ }_{0} E_{l}, E_{l}={ }_{0} E_{l} \cup f\left(L_{u}^{*}\right)$ is a compact orientable 2 -manifold. (See Section 3 for a description of L_{u}^{*}.) By adjusting $E_{l}-f\left(D_{l}^{*}\right)$ slightly, so that $\operatorname{Int} E_{l} \subseteq \operatorname{Int} C_{2}$ and E_{u}, E_{l} are in general position, the required surfaces E_{u} and E_{l} are obtained. Note that $E_{u} \cap E_{l}$ consists of the arc $f\left(A_{l}\right)$ and a finite number of disjoint scc's in $E_{u}-f\left(A_{l}\right)$.

Theorem 1. There does not exist a boundary preserving map of T onto C_{2}.
Proof. Suppose f is a boundary preserving map of T onto C_{2}. Let E_{u} and E_{l} be as given in Lemma 5. Since C_{2} is a cube with 2 handles, there is a disk F in C_{2} such that $\mathrm{Bd} F \subseteq \mathrm{Bd} C_{2}, \operatorname{Int} F \subseteq \operatorname{Int} C_{2}, \mathrm{Bd} F$ does not bound a disk on $\mathrm{Bd} C_{2}$, and F is in general position relative to E_{u}.

If $F \cap E_{u}$ contains a scc S which separates the two components of $\operatorname{Bd} E_{u}-f\left(J_{v}\right)$ in E_{u}, then $\mathfrak{o}\left(S, f\left(J_{l}\right)\right)=0$ using the disk S bounds in F. But, after a slight adjustment, S intersects and pierces E_{l} an odd number of times, hence $\mathfrak{o}\left(S, f\left(J_{l}\right)\right) \neq 0$ using E_{l}, and we have a contradiction to Lemma 1. If $F \cap E_{u}$ contains a sce S which separates $f\left(J_{u}\right)$ from $\operatorname{Bd} E_{u}-f\left(J_{u}\right)$ in E_{u}, then $f\left(J_{u}\right)$ bounds a disk in C, contradicting Lemma 5. If $F \cap E_{u}$ contains any scc's which bound disks in E_{u}, they may be removed by cutting F off on E_{u} and pushing to one side of E_{u}. Hence we may assume $F \cap E_{u}$ consists of a finite collection of disjoint arcs with interiors in Int E_{u} and endpoints in $\operatorname{Bd} E_{u}$.

Suppose an arc X in $F \cap E_{u}$ together with an arc Y in $\mathrm{Bd} E_{u}$ form a scc which bounds a disk F^{\prime} in E_{u} such that Int $F^{\prime} \cap F=\emptyset$. Now Y plus one of the two open arcs of $\operatorname{Bd} F-\mathrm{Bd} Y$ form a scc Z which does not bound a disk on $\mathrm{Bd} C_{2}$. But Z bounds a disk E in C_{2} formed by the sum of the disk F^{\prime} and the disk on F bounded by $(Z \cap \mathrm{Bd} F)$ u X. Then E may be adjusted slightly so that E is in general position relative to $E_{u}, E \cap E_{u} \subseteq F \cap E_{u}$ and the number of $\operatorname{arcs} E \cap E_{u}$ which together with an arc in $\mathrm{Bd} E_{u}$ bound a disk in E_{u} is less than those of $F \cap E_{u}$. By applying the previous argument a finite number of times (and denoting the result by F again), it follows that we may assume F satisfies the following condition, which we refer to as Condition A: The intersection of F with E_{u} contains no arc that together with an arc in $\mathrm{Bd} E_{u}$ form a sce which bounds a disk in E_{u}.

Let \mathbb{a} be the collection of arcs in $F \cap E_{u}$ which intersect $f\left(J_{u}\right)$. Then each $\operatorname{arc} X$ of \mathbb{Q} is one of the following two types:
(1) $\quad X$ has both endpoints in $f\left(J_{u}\right)$ and separates one component of Bd $E_{u}-f\left(J_{u}\right)$ from the other in E_{u}.
(2) $\quad X$ has one endpoint in $f\left(J_{u}\right)$ and the other in $\operatorname{Bd} E_{u}-f\left(J_{u}\right)$.

Now assume $X_{0} \in \mathbb{Q}$ is minimal in the sense that X_{0} together with an arc Y_{0} in Bd F form a sce which bounds a disk F_{0} in F such that no element of a is contained in $F_{0}-X_{0}$. It follows from the proof of Lemma 6 that $f\left(L_{l}^{*}\right)$ intersects just one side of E_{u}. Let the side of E_{u} which intersects $f\left(L_{l}^{*}\right)$ be called its positive side. We now have the following two cases:
(a) $\quad F_{0}$ lies on the positive side of E_{u} near X_{0}.
(b) $\quad F_{0}$ lies on the negative side of E_{u} near X_{0}.

Call the minimal arc X_{0} of \mathfrak{Q} an ix arc if X_{0} satisfies conditions (i) and (x)
above, where $\mathrm{i}=1,2$ and $\mathrm{x}=a, b$. Each of the four possible cases ix is now shown to lead to a contradiction.

Case I. $\quad X_{0}$ is of type 1a. Since $\operatorname{Bd} X_{0} \subseteq f\left(J_{u}\right)$, if $\operatorname{Bd} F_{0} \cap f\left(L_{l}^{*}\right) \neq \emptyset$, then $\operatorname{Bd} F_{0} \cap \operatorname{Bd} f\left(L_{l}^{*}\right) \neq \emptyset$, and it follows by the general position of F_{0} with E_{u} that there is an arc X in $F_{0} \cap E_{u}$ with both endpoints in $\operatorname{Bd} E_{u}-f\left(J_{u}\right)$. Since $X \cap X_{0}=\emptyset, F_{0} \subseteq F$, and X_{0} separates the two components of $\operatorname{Bd} E_{u}-f\left(J_{u}\right)$, it follows that X together with an arc in $\operatorname{Bd} E_{u}-f\left(J_{u}\right)$ form a scc which bounds a disk in E_{u}, violating Condition A. Hence $\operatorname{Bd} F_{0} \cap$ $f\left(L_{l}^{*}\right)=\emptyset$ and it follows that $F_{0} \cap E_{u}=X_{0}$. We may adjust X_{0} in E_{u} so that X_{0} is in general position relative to E_{l}. Let $E_{l}^{*}=\mathrm{Cl}\left(E_{l}-f\left(D_{l}^{*}\right)\right)$. Now by pulling F_{0} off E_{u} along X_{0} (that is X_{0} is moved into the positive side of E_{u}), it follows that $\mathrm{o}\left(\mathrm{Bd} F_{0}, \mathrm{Bd} E_{l}^{*}\right)=0$ using $F_{0}\left(\right.$ since $\left.F_{0} \cap \mathrm{Bd} E_{l}^{*}=\emptyset\right)$ but

$$
\mathfrak{o}\left(\operatorname{Bd} F_{0}, \operatorname{Bd} E_{l}^{*}\right)=+1 \text { or }-1
$$

using E_{l}^{*}, contradicting Lemma 1.
Case II. $\quad X_{0}$ is of type 2a. In this case, by pulling F_{0} off E_{u} along X_{0} (and into the positive side of E_{u}), it follows that the endpoints of X_{0} are separated in $\mathrm{Bd} C_{2}$ by $\mathrm{Bd} E_{u}-f\left(J_{u}\right)$. Hence $\mathrm{Bd} F_{0}$ intersects and pierces $\mathrm{Bd} E_{u}-f\left(J_{u}\right)$ an odd number of times. By pushing F_{0} slightly into Int C_{2}, it follows that $\mathfrak{d}\left(\operatorname{Bd} F_{0}, \mathrm{Bd} E_{u}\right)=0$ using F_{0} but $\mathfrak{d}\left(\mathrm{Bd} F_{0}, \mathrm{Bd} E_{u}\right) \neq 0$ using E_{u}, contradicting Lemma 1

Case III. X_{0} is of type 1 b . We may adjust F_{0} slightly so that it is in general position with respect to $f\left(D_{l}^{*}\right)$ and $\operatorname{Bd} F_{0}$ intersects $f\left(A_{l}\right)$ at just one point. Since $\operatorname{Bd} F_{0} \cap f\left(L_{l}^{*}\right)=\emptyset$, as shown in Case I, it follows by the general position of F_{0} with $f\left(D_{l}^{*}\right)$ that there is an arc X in $F_{0} \cap f\left(D_{l}^{*}\right)$ with one endpoint $\operatorname{Bd} F_{0} \cap f\left(A_{l}\right)$ and the other $\operatorname{in} f\left(J_{l}\right)$. Since $X \subseteq f\left(D_{l}^{*}\right), X \cap \operatorname{Int} E_{l}^{*}=\emptyset$ and there is a homeomorphism h of C_{2} onto itself fixed on $\operatorname{Bd} C_{2}, \operatorname{Bd} E_{l}^{*}$ and X such that $h\left(E_{l}^{*}\right) \cap X_{0}=\emptyset$. Let $E_{l}^{* *}=h\left(E_{l}^{*}\right)$. It follows that

$$
\operatorname{Int} E_{l}^{* *} \cap E_{u} \subseteq E_{u}-\left(f\left(A_{l}\right) \cup X_{0}\right)
$$

and hence we may cut $E_{l}^{* *}$ off on E_{u} and then off $f\left(D_{l}^{*}\right)$, so that $M_{l}=f\left(D_{l}^{*}\right)$ u $E_{l}^{* *}$ forms a compact orientable 2 -manifold with boundary $f\left(J_{l}\right)$ such that $M_{l} \cap E_{u}=f\left(A_{l}\right)$. Let R be a regular neighborhood of $M_{l} \cup f\left(L_{l}\right)$ in C_{2} such that $R \cap E_{u}$ is a regular neighborhood of

$$
f\left(A_{l}\right) \mathbf{u}\left(\operatorname{Bd} E_{u}-f\left(J_{u}\right)\right)
$$

in E_{u}. Let M_{u} be $\mathrm{Cl}\left(E_{u}-R\right)$ together with the component of $\mathrm{Bd} R-E_{u}$ not containing $f\left(L_{l}\right)$. It then follows that M_{u} and M_{l} are disjoint compact orientable 2 -manifolds with boundaries $f\left(J_{u}\right)$ and $f\left(J_{l}\right)$, respectively. By Lemma $3, J_{u}$ and J_{l} are not 1-linked in T, contradicting Lemma 4.

Case IV. X_{0} is of type 2 b . Let F_{0}^{\prime} be the closure of the component of $\left(F_{0}-E_{u}\right)$ u X_{0} containing X_{0}. Note that F_{0}^{\prime} is a disk which intersects E_{u} on the negative side only and $F_{0}^{\prime} \cap E_{u}$ consists of X_{0} and a finite collection of
disjoint $\operatorname{arcs} \operatorname{in} E_{u}-X_{0}$ each with endpoints in $\operatorname{Bd} E_{u}-f\left(J_{u}\right)$. Since $E_{l}^{*} \cap E_{u}$ consists of $f\left(A_{l}\right)$ and disjoint scc's in $E_{u}-f\left(A_{l}\right)$, it follows that we may adjust Int E_{l}^{*} near $E_{u}-f\left(A_{l}\right)$ so that

$$
\left(E_{l}^{*} \cap E_{u}\right)-f\left(A_{l}\right) \subseteq\left(E_{u}-F_{0}^{\prime}\right) \cup X_{0}
$$

By pulling F_{0}^{\prime} off E_{u} (into the negative side of E_{u}) away from the arcs in $F_{0}^{\prime} \cap E_{\imath}-X_{0}$, we may assume

$$
F_{0}^{\prime} \cap E_{u}=X_{0}
$$

as well as

$$
F_{0}^{\prime} \cap E_{l}^{*} \subseteq \operatorname{Int} F_{0}^{\prime} \mathrm{u} X_{0}
$$

(since $E_{l}^{*} \cap E_{u}-f\left(A_{l}\right) \subseteq\left(E_{u}-F_{0}^{\prime}\right)$ u X_{0} and E_{l}^{*} intersects E_{u} on the positive side near $f\left(A_{l}\right)$); We may adjust F_{0}^{\prime} near E_{u} so that $X_{0} \cap f\left(A_{l}\right)=\emptyset$. Since $F_{0}^{\prime} \cap E_{l}^{*} \subseteq \operatorname{Int} F_{0}^{\prime} \cup X_{0}$ and $\operatorname{Bd} E_{l}^{*} \cap F_{0}^{\prime}=\emptyset$, there exists a homeomorphism h of C_{2} onto itself which is fixed on $\operatorname{Bd} C_{2}$ and $\operatorname{Bd} E_{l}^{*}$ such that $h\left(E_{l}^{*}\right) \cap X_{\theta}=\emptyset$. Letting $E_{l}^{* *}=h\left(E_{l}^{*}\right)$, the rest of the proof is the same as Case III.

These four cases now imply $F \cap f\left(J_{u}\right)=\emptyset$, and the existence of F contradicts Lemma 5 (where the X of Lemma 5 is taken to be $\operatorname{Bd} F$). Hence there is no boundary preserving map f of T onto C_{2} and the proof of Theorem 1 is complete.

Corollary. For each $n \geq 2$ there is a cube with n holes T_{n} with no boundary preserving map onto the cube with n handles C_{n}.

Proof. For $n \geq 2$, let T_{n} be the T of Section 3 together with $n-2$ disjoint cubes with 1 handle $H_{1}, H_{2}, \cdots, H_{n-2}$ such that for each i,

$$
H_{i} \cap T=\operatorname{Bd} H_{i} \cap \operatorname{Bd} T=\operatorname{adisk} D_{i}
$$

Suppose f is a boundary preserving map of T_{n} onto C_{n}. Using Dehn's Lemma, replace each $f\left(D_{i}\right)$ by a nonsingular disk D_{i}^{\prime} in C_{n} such that $D_{i}^{\prime} \cap D_{j}^{\prime}=\emptyset$ for $i \neq j$. It follows that each $f\left(\operatorname{Bd} H_{i}-D_{i}\right)$ u D_{i}^{\prime} bounds a cube with one handle H_{i}^{\prime} in C_{n} such that $H_{i}^{\prime} \cap H_{j}^{\prime}=\emptyset$ for $i \neq j$. Then, filling in the hole of each H_{i} and H_{i}^{\prime} by a cube (see [2] for a discussion of this process), we obtain from T_{n} a T_{n}^{\prime} homeomorphic to T and from C_{n} a C_{n}^{\prime} homeomorphic to C_{2}. It now follows that f may be extended across the filled in holes to a boundary preserving map of $T_{n}^{\prime}=T$ onto $C_{n}^{\prime}=C_{2}$, contradicting Theorem 1.

By $[10], \pi_{1}(T)=\{c, g, x:[c[g, x]]=x\}$ and it follows that there is a homomorphism of $\pi_{1}(T)$ onto the free group on two generators, $\pi_{1}\left(C_{2}\right)$. In [9], N . Smythe gives an example of 1 -linked scc's l_{1}, l_{2} in S^{3} that form a homology boundary link. Let $0 l_{1},{ }_{0} l_{2}$ be disjoint scc's in the $x y$-plane and let $R\left(l_{1}\right)$, $R\left(l_{2}\right), R\left({ }_{o l}\right)$, and $R\left({ }_{0} l_{2}\right)$ be regular neighborhoods in S^{3} of l_{1}, l_{2}, l_{1}, and ${ }_{o l} l_{2}$, respectively. Assume

$$
R\left(l_{1}\right) \cap R\left(l_{2}\right)=\emptyset \quad \text { and } \quad R\left({ }_{0} l_{1}\right) \cap R\left(o l_{2}\right)=\emptyset
$$

Then it follows that there is no boundary preserving map of the connected
elementary figure (see [3])

$$
S^{3}-\left(\operatorname{Int} R\left(l_{1}\right) \cup \operatorname{Int} R\left(l_{2}\right)\right)
$$

onto the connected elementary figure

$$
S^{3}-\left(\operatorname{Int} R\left(o l_{1}\right) \cup \operatorname{Int} R\left(o l_{2}\right)\right)
$$

but there is a homomorphism of

$$
\pi_{1}\left(S^{3}-\left(\operatorname{Int} R\left(l_{1}\right) \cup R\left(l_{2}\right)\right)\right)
$$

onto the free group on two generators

$$
\pi_{1}\left(S^{3}-\left(\operatorname{Int} R\left({ }_{0} l_{1}\right) \mathrm{u} \operatorname{Int} R\left({ }_{0} l_{2}\right)\right)\right)
$$

We have obtained in Theorem 1 the analogous result for the connected elementary figure T with connected boundary.

5. The existence of boundary preserving maps

In this section we give some conditions which imply the existence of a boundary preserving map of K_{n} onto C_{n}. We say the disjoint scc's l_{1}, \cdots, l_{n} in K_{n} form a boundary link [9] in K_{n} if they bound disjoint compact orientable 2 -manifolds M_{1}, \cdots, M_{n}, respectively, in K_{n}. In Theorem 5 of [5], J. Hempel shows that there is a boundary preserving map of any K_{1} onto C_{1}, and, to prove this, Hempel observes that any K_{1} has a sce l_{1} which is a boundary link in K_{1} and $\mathrm{Bd} K_{1}-l_{1}$ is connected. The "if" portion of the next theorem is a straightforward generalization of Hempel's Theorem 5; the "only if" portion is a straightforward generalization of our Lemma 3.

Theorem 2. There exists a boundary preserving map of K_{n} onto C_{n} if and only if there exists a boundary link l_{1}, \cdots, l_{n} in K_{n} such that $\mathrm{Bd} K_{n}-\bigcup_{i=1}^{n} l_{i}$ is connected.

Note that Theorem 2 together with Theorem 1 imply that if l_{1}, l_{2} are scc's on $\mathrm{Bd} T$ such that $\mathrm{Bd} T-l_{1} \cup l_{2}$ is connected, then l_{1}, l_{2} are 1 -linked (not a boundary link) in T.

We say K_{n} is reducible [7] if there is a disk D in K_{n} such that $\operatorname{Bd} D \subseteq K_{n}$ and $\mathrm{Bd} D$ does not bound a disk on $\mathrm{Bd} K_{n}$. It follows that if K_{2} is reducible, then there is a boundary link l_{1}, l_{2} in K_{2} such that $\mathrm{Bd} K_{2}-l_{1} \cup l_{2}$ is connected. Hence we have the next theorem.

Theorem 3. If K_{2} is reducible, then there is a boundary preserving map of K_{2} onto C_{2}.

Figure 3 illustrates a cube with 2 holes T_{0} that provides a counterexample to the converse of Theorem 3. It is easy to show that T_{0} satisfies the hypothesis of the "if portion" of Theorem 2, but it can be shown (by a long geometric proof similar to that of Theorem 1) that T_{0} is not reducible.

References

1. P. S. Aleksandrov, Combinatorial topology, vol. 3, Graylock Press, Albany, N. Y., 1960.
2. R. H. Bing, Mapping a 3-sphere onto a homotopy 3-sphere, Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, no. 60, Princeton, 1966, pp. 89-99.
3. R. H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math., vol. 49 (1948), pp. 462-470.
4. W. Haken, On homotopy 3-spheres, Illinois J. Math., vol. 10 (1966), pp. 159-178.
5. J. Hempel, A surface in S^{3} is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc., vol. 111 (1964), pp. 273-287.
6. D. W. Henderson, Extensions of Dehn's Lemma and the Loop Theorem, Trans. Amer. Math. Soc., vol. 120 (1965), pp. 448-469.
7. D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 510-514.
8. A. Shapiro and J. H. C. Whitehead, A proof and extension of Dehn's Lemma, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 174-178.
9. N. Smythe, Boundary links, Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, no. 60, Princeton, 1966, pp. 69-72.
10. E. C. Zeeman, Linking spheres, Abh. Math. Sem. Univ. Hamburg, vol. 24 (1960), pp. 149-153.

University of Iowa

Iowa City, Iowa

