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Introduction

The main purpose of the present paper is to prove the following theorem.
THEOREM B. Let G be a finite group satisfying the following conditions:
(1) G has no normal subgroup of index 2, and
(2) G contains an involution Zo such that Co(zo) is isomorphic to the cen-

tralizer of an involution in the center of an S2-subgroup of All the alternating
group of degree eleven.

Then G is isomorphic to An.
Let D be a 2-group of order 27 which is isomorphic to a wreath product

of a dihedral group of order 8 by a group of order 2. An S.-subgroup of An
is isomorphic to D. Further, there are infinitely many simple groups with
an S2-subgroup isomorphic to D, namely LF4(q) (q 3 mod 8) and U4(q)
(q 5 mod 8). So the present paper contains detailed discussions of a
finite group with an S2-subgroup isomorphic to D, which are more than neces-
sary for the proof of Theorem B (cf. footnote 2)). The results are sum-
marized in Theorem A of 4.

Notation:
cclx(x)

X
Ix, y]
X
y

x--yinX
J(X)
c*(z)

a conjugate class in a group X containing x
a group generated by
the commutator subgroup of a group X
--1 --1xyxy
--1y xy
x is conjugate to y in a group X
the Thompson subgroup of X (cf. [7])
(yeX y-xy
the alternating (symmetric) group of degree n

The other notations are standard.

1. Preliminaries

(1.0) Let X be a finite group and S be an S.-subgroup of X. Let K
be a subset of S which is an intersection of S with conjugate class of X.
An element x of K is called an extreme element if C(x) _>- C,(y) for
ny y e K. The following is due to R. Brauer [1, p. 308].

(1.1) LEMMA. If X is an extreme element of K, C(x) is an S-subgroup
of Cx(x). Moreover, for every element y of K, there exists an isomor?ghism
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of Cs(y) into C(x) with the properties:
(1) O(y) x, and
(2) if O(z) z’ for z e Cs(y) and z’ ze Cs(x), is conjugate to z in X.

(1.2) LEMMA. Let M be a maximal subgroup of S and x be an involution

of S outside M. If x is not conjugate in X to any element of M, X has a normal
subgroup of index 2.

This is due to J. G. Thompson. The proof is easily obtained by computing
the transfer.

In the present paper, Lemmas (1.1) and (1.2) will be frequently used

(1.3) LEMMA. Let S be isomorphic to a 2-group generated by involutions
xl x. yl y. and w subject to the relations

[xi, x] [y,, y.] [x,, y.] 1 (i 1, 2 j 1, 2)

xl x, yl Y2.

Then X has a normal subgroup of index 2 with (x x, yl y2} as an S-sub-
group.

Proof. C(w) (w, x x. y y2} is a self-centralizing normal subgroup of
order 8. PutW Cs(w). We knowCx(W) W X Uandl U] odd.
Suppose that X has no normal subgroup of index 2. Then (1.2) implies
that w must fuse to an element of (x, x, yl, y} V. We claim that w
must fuse to an element of Z(S). Otherwise, Cs(w) would be conjugate
to a subgroup of V by (1.1), which contradicts the fact that Cx(W) W X U
and ]UI odd. Take an S.-subgroup S of Cx(w). Then we have
Z(S) W and Z(S) (w, x x.}, (w, yl y.} or (w, x x y y2}. If Z(S1)
(w, x x}, we see that Xl is contained in Nx(Z(S)) Cx(Z(SI) ), which is
impossible because Nx(Z(S))/Cx(Z(S)) is of odd order Similarly, we
get a contradiction also in other cases. Hence we have proved that
X > 02(X) and w does not fuse to any element of V. Then any element
of S V is not conjugate to an element of V, since an element of S V
is of order 4 or is conjugate to w in S. Then the focal subgroup theorem yields
our lemma.

2. Some properties of a 2-group D
Let D be a 2-group generated by involutions b, c, b, c and u satisfying

the following relations"

= u 1 (i 1, 2),b c b c 1, (bci)

Ibm, b] [c c] [b c] 1 (i j)

b b2, c c2.

This is due to K Harada (cf. [4, Lemma 5]). This lemma will be used only in the
proof of Lemma (4.14).
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Putzi (bic) , a bc (i 1, 2),z zlz2. Further we define four
elementary abelian subgroups of order 16"

B (bl,z,b2,z.}, C (c,z,c:,z2}, F (bl,z,c.,

F2 (b, z, o,

D is a wreath product of a dihedral group of order 8 by a cyclic group of
order 2. The Thompson subgroup J(D) of D is (b, cl} (b, @, which
is generated by all elementary abelian subgroups of order 16, that is, B,
C, F1 and F., and is isomorphic to a direct product of two copies of a dihedral
group of order 8.

B, C, F and F are normal in J(D) and selfeentralizing in D. B and C
are normal in D. The eoniugate classes of involutions of D are as follows:

elements

Z

Zl Z2
bl, blzl, b2, b.z2
blz,blz2,b.zl,b.z
blb.,bb.z,blb2z2, bb2z
Cl C1 Zl C2 C2 Z2

el Z el Z2 C2 Z C2 Zl

el C2 el C2 Zl el C2 Z2 Cl C2 Z

bc.x, b2cx for any x
uxux-u for any x e(b

cardinality

See (3.7) for the conjugate classes of elements of order 4 which are used
only in the proof of lemmas (3.8) and (3.9).

3. General properties of G and D
(3.0) Let G be a finite group with D as an S2-subgroup. Put H Co(z).

Throughout the present paper, G, D and H will be used in this meaning.

(3.1) LEMMA. Z is not conjugate to z in G.
No(J(D) D.CG(J(D) and No(J(D) cc_= N(B) n N(C).

Proof. Since J(D) is weakly closed in D with respect to G, any two ele-
ments of Z(J(D)) (z, z} are conjugate in G if and only if they are con-
jugate in NG(J(D)). On the other hand, from the structure of J(D), the
automorphism group of J(D) is 2-group. Hence we have No(J(D))
D.Co(J(D)). From this, our lemma follows.

(3.2) IEMMA. Zl b in G if any only if z bl z in G. Similarly, z cl

in G if and only if z c z in G.

Proof. Suppose that zt b in G. Put W C(bt) B(@. Then
we have W’ (z2). Denote by D1 an S2-subgroup of Co(b)with
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W D Co(b). By (3.1), we have D 64. Furthermore Z(D) z,
Wsince W’ char W and [D W] 2 and so <:] W. Hence we have Z(D)

(b, z.}. Since D is coniugate in G to J(D) by (3, 1), Z(D) is coniugate to
Z(J(D)) (z, z}. Sinceb z z in G, wehave b z z in G by (3.1).
Since b z b z inD, we get b z z in G. Suppose that b z z in G. Then
we have W C(b z) B(c). Since W is generated by B and F, W is
contained in J(D), whereD is an S-subgroup of Co(b z) with W D
Co(b z). Furthermore, Z(J(D) <b z, z>. In the same way as above,
we get b z in G.

(3.3) LEMMa. We may and shall assume b z in G and c z in G.

Proof. Ts follows from (3.1) and (3.2), by interchanging a pair b b
(resp. c c) by b, zb z (resp. c zc z) if necessary.

(3.4) LEMMA. B and C are wealcly closed in D with respect to G.

Proof. Suppose that B D for x e G. Then we have B J(D).
Since N(B) D, J(D), there exists an element y of N(B) such that
D J(D) B. ThenwehaveD No(J(D)) N,(B) by (3.1).
Hence there exists an element w of N,(B) such that D D. Since

--1xyw Na(D) Na(J(D)) N,(B),

wehaveB B B, andsoB B B. Thus we have proved that
B is weakly closed in D. Similarly, C is weakly closed in D with respect to
G.

(3.5) LEMMA. If X is a 2-subgroup of G containing B (resp. C), X nor-
malizes B (resp. C). Furthermore, any two elements of B (resp. C) are con-
jugate in G if and only if they are conjugate in N(B) (resp. Na(C) ).

Proof. This is an immediate consequence of (3.4). This lemma is very
useful for the discussions in 4.

(3.6) LEMMA. If Z is not conjugate in G to any element of D distinct from
z, G has a normal subgroup of index 2.

Proof. Assume by way of contradiction that G O(G). Put W
B<u, c, c>. Then by (1.2), an involution c of D W must be conjugate to
one of

{Zl, bl, bl z, bl b2, el c2, u}

which are involutions of W. If Cl z in G, we have c z z because of (3.2).
This contradicts the assumption of our lemma. If Cl b in G, by (1.1),
C(c) and CD(b) are S-subgroups of C(Cl) and C(b) respectively. Then
C is conjugate to B or F in G, since B and F1 are just two elementary sub-
groups of order 16 contained in C(b) B(c) and C C(cl). This is
impossible because of (3.4). Similarly we get c bl z in G. If c b b
in G, by (1.1), C(cl) and C(bl b) are S-subgroups of C(cl) and C(bl b)
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respectively. Hence C)(cl) and C)(bl bs) are conjugate in G, which is im-
possible since C)(cl) and C)(b bs) are not isomorphic. Similarly we get
cl o c. in G. If c u in G. CD(u) is conjugate in G to a subgroup of
C)(c) by (1 1). Since z (resp. z) is only one square element of C)(cl)
(resp. C)(u)), we must have zl z in G, which is impossible because of (3.1).
Thus we get a contradiction.

(3.7) In the proof of Lemmas (3.8) and (3.9), some properties of elements
of D with order 4 will be used. The conjugacy classes of D with order 4 are
as follows"

representatives
cardinality
squares of rep-

resentatives

al al z2
4
Zl

al a2
4
z

UZl
8
z

ub
16
b b.

ucl

16
Cl c2

We have
C)(a as) (a, a., u} and C*(a as) (bc.}.C)(a a.).

There are sixteen involutions which invert aa., and they are contained in
(z, al a., b bs} or (z, a as, b b2}. We have

C)(ubl) (z, ub} and C*(ub) (b}.C)(ub).

The set of all involutions which invert ub is CD(ubl) C)(ub) and so,
C*(ubl) is a "generalized dihedral group" of order 16. Similarly, the set
of all involutions which invert uo are C*(uo) C)(uo).

(3.8) LEMMA.
C in G.

If u z in G, we have z b bs or z cl cs in G and b b2

Proof. Consider an isomorphism of C)(u) (u} X (b bs a as} into D
C,(z) defined in (1.1). Sincez - z in G and O(u) z (al a.)
must be contained in c clD(ub) or c cl,(ucl) (cf. the table of (3.7)). Hence
we may assume

O(aas) ub or uo, an O(C)(u)) (z} X (bl, ub} or(z} X (cl, uc).

Hence we get O(z) O((a a)) b b. or cl c. namely, z b bs or c c.
Assume that

O(C)(u)) (z) X (b, ub},
because, also in case where O(C,(u)) (z} X (o, uc}, the argument is simi-
lar. Put

C C)(u) (u, a as} and C (u, ubl b} (u, ub},
which are the sets of all involutions of C)(u) and O(C,(u)) inverting a a.
and ubl respectively. 0 must map C onto C. If b b. c c. in G, we have
z b bs cl c. in G, and so, any element of C is conjugate to z in G. Since
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C1 bl, this forces to be bl z in G, which is impossible because of (3.3).
Thus we get bl b. cl c. in G.

(3.9) LEMMA. If U zl in G, we have Zl bl b. cl c2 in G.

Proof. Consider an isomorphism 0 from C)(u) into CD(zl) J(D)
defined in (1.1). Then by (3.7), we may assume

0(al a2) al a2 and O(C)(u)) (zl, a a2, b 52) or (zl, al a., 51 c2).

Put C1 C)(u) <u, al a.) und C. O(C)(u) (zl, al a2). We huve

C <bl b bl b. z, cl c. cl c. z, ubl b2 ubl b z, ucl c ucl c. z>,
and

C. ccl(bl b.) (J c cl(cl c.) or ccl(bl c)

according to whether O(C)(u)) (zl, al a. ,bl b.)or (zl, al a, bl c.). Then
the assumption that u zl in G forces to be zl bl b. cl c in G, since 0
maps C onto C. This completes the proof.

4. Conjugacy classes of involutions of G, where G O(G)
(4.0) Throughout this section, we shll assume that G hs no normal

subgroup of index 2. The results of this section can be summarized as fol-
lows.

THEOREM A. (i) G has normal subgroups G1 and G. such that G/Gll
G:I are odd and G1/G is a non-abelian simple group with an S-subgroup

isomorphic to D.
(ii) G has two classes of involutions. If notation is chosen suitably, the

possibilities for the fusion of involutions of G are
Case I. z bl z cl z bl c. bl b. u zl bl cl cl c or
Case II. z bl z cl z bl c. zl bl c bl b cl c u.
(iii) Cv(z) has a normal subgroup K of index 4 with te following properties;
() an S-subgroup of K is (zl z bl b. c c u), which is an extraspecial

2-group of order 32.
K has no normal subgroup of index 2.
Ca(z1) has a normal subgroup K of index 8 with the following proper-(iv)

ties:
() an S-subgroup of K1 is (b., c}, which is a dihedral group of order 8,

and
() K1 has no normal subgroup of index 2.
(v) N((C)/Ca(C) (resp. N(.C)/C(C)) is isomorphic to S (resp. $4).

In Case I, N(B)/C((B) (resp. N,(B)/C,(B)) is isomorphic to a 3-Sylow-
normalizer of As (resp. a dihedral group of order 8), while in Case II, N(B)/
Ca(B) (resp. N,(B)/C,(B)) is isomorphic to S (resp. S).

Remark. We know only two examples of finite simple groups with Case
I for the fusion of involutions, namely A10 or AI, while there exist infinitely
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many simple groups with Case II, namely LF4(q) (q 3 mod 8) or U4(q)
(q--- 5modS).

(4.1) LEMMA. Z is conjugate in G to an element which is distinct from z
and is contained in B or C.

Proof. Suppose false. Then the assumption G O(G) and (3.6) yields
that z u or bl c2 in G. If z u, we have z bl b2 or cl c. in G from (3.8).
Hencewe may assume that z bl c2 in G and z is not coniugate to any element
of B or C. Denote by D an S-subgroup of Co(b c2)with CD(b c2)
F c D c Co(b c2). Put W (J(D), J(DI)}. Then wehave W [:> F
andz-- bc2inW. Hence we get [No(F) "HnNo(F)] 5. Ifxisan
element of N(FI) Co(F) with x Co(F), x acts fixed-point-free on F
This forces to be z b bl z2 in G, which is impossible because of (3.2).

(4.2) We may and shall assume that z is coniugate to an element in B
distinct from z, since B and C play symmetric role.

(4.3) LEMMA. Z b z and z bl in G. More precisely, there exists an
element in Na(B) NG(F.) of odd order such that 3 e Co(B), z b,
b b z. z b z (b z) b. z, and [ z] 1. We have [ b] 1
or bl z] 1, and b b z or z inG according towhetherb b or (b z)
b z. Moreover, we have b2 cl c or c z in G.

Proof. First we shall show that z b z in G. Suppose false. Then,
from (3.1), (3.3) and (4.2), we must have z b b in G and so in Na(B)
because of (3.5). Hence we get [N(B) H No(B)] 5. If x is an
element of N(B) Co(B) with x e Ca(B), x acts fixed-point-free on B.
This forces bl z in G and so z b z in G because of (3.2). This is a con-
tradiction. Thus we have proved that z bz in G and so b zl in G be-
cause of (3.2). Denote by D an S2-subgroup of C(bz) with CD(b2z)
B(c} D c C(bz). Put U C(bz). Then we haveU’ (z} and
Z(U) (52, zl, z2}. Since[J(D) U] 2 wehaveZ(J(D)) (bz,
and J(D) normalizes Z(U) (b2, z, z}. Put W (J(D), J(D)
Then we have Z(W) (zl} and W normalizes B(c} U, (b, zl, z2}, B
and F by (3.5). (Note that B and F are exactly two elementary subgroups
of order 16 contained in B(c}.) Furthermore, z is coniugate to b. z in W.
WICk(B) is not 2-group. Otherwise W would be W (c, c2}C,(B) be-
cause of Z(W) (z}, against the fact that z b. z in W. Hence we can
find an elemen of W such that [fl, B] 1. Since Co(B) B X Y and
YI odd, we may assume that is of odd order. Then we have

[fl,(b,z,z2}] 1. From[fl, z] 1, zblzandzbinG, weobtain
z b, b b z, z b z and (b z) b. z by interchanging/ by - if
necessary. This implies that centralizes (b, zl, z and so B. Since
[, z] 1 and/ normalizes B, must fix an element of B
If t fixes an element of ccl(b b.) B (b, z, z}, we have (bl b) b b
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or (bl bz) bl bz. Intheformer case, bl b. b b z and so b bl z. which
is impossible since bl zl and bl z z ia G. In the second case, bl b2z
(bl b2 z) b x b z and so b bl z, which is impossible. Hence we have
b blor (blz) blz. Ifb bl,wehave(51b.) blz2--zinG. If
(bl z) bl z ve have b bl b z and so z bl b in G. Finally we shall show
that bl c cl or cl z in G. The involutions of F. (b., z, zl) are c cl z,
cl z.-- c z and bc- bcl zl-- b cl z.b, c z. If c c, we have (cl z.) b. c.

z,
(cz) bclz. Ifc cl,clzl,cz2andcz,wehavec bcl,b.clzl,
bcz or b.cz since normalizes F. and (b2, z, z). Thus, in any
case, we get bl c. c or c z in G.

(4.4) LEMMA. Z is conjugate in G to an element which is distinct from z
and is contained in C.

Proof. Suppose false. By Lemma (1.2) of Thompson and the assump-
tion G 02(G), cl must be coniugate in G to an element of B(u, cl c.). Since
every element of B fuses to z or zl by (4.3) and c z ia G implies cl z z
in G by (3.2), we have c c c2 or cl u in G. If c c c. in G, by (1.1),
C)(c) and C)(clc) are S-subgroups of C(c) and C)(clc) respectively.
Hence C)(c) is coniugate to C)(cl c.), which is impossible since they are
not isomorphic. If c u, C(u) must be coniugate in G to a subgroup of
C)(c) by (1.1). Since z aad z. are only one square elements of C)(u)
and C)(z) respectively, we must have z z. in G. This contradicts
(3.1). This completes the proof of the lemma.

(4.5) LEMMA. There exists an element in N((C) N(F) of odd order
suc that . z c zl)C((C), z. c., c. c z, c zl, c z and [. z] 1.
We have [. c] i or [f c z] I and cl c. z or zl according to whether c c
or (cl z) c z.

Proof. This can be proved in the same way as in (4.3).

(4.6) IEMMA. G has two classes of involutions If notation is chosen suita-
bly, the possibilities for the fusion of involutions of G are

Case I. z b z cl z b b. u z b c cl c
Case II. z b z c z zl bl c bl b2 cl c u.

Moreover, we have b bl and (c z) c z in Case I, while we have (b z)
bl z and cl z) cz in Case II.

(Remark that whether z bl c or zl bl c. has not been determined yet.
In (4.9) we shall show that b c. z in G in both cases.)

Proof. By (4.3) and (4.5), any involution of J(D) must be conjugate
to z or zl in G. By (1.2) and the assumption G O(G), u must be conjugate
to an element of J(D) and so, we get u z or zl in G. Thus G has two
classes of involutions.
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If u z in G, we have z bl b. or cl c2 in G and bl b c c. by (3.8). Be-
cause of the symmetric role of B and C, we may assume z bb. in G and so
z c c2 in G. Then Case I occurs. If u zl in G, we have z bb ClC
by (3.9). Then Case II occurs. The third statement follows from (4.3)
and (4.5).

(4.7) LEMMA. N,(B)/C,(B) (reap. N,(C)/C,(C)) operates faithfully
on cclD(b) (resp. cclD(c)). Furthermore NH(FI)/C,(F) is an elementary
subgroup of order 4 and Na(F1)/Ca(F) has normal 2-complement.

Proof. Assume there exists an element x of N,(B) such that b z or
b b.. If b zl, we have (b z) zl z z.. This is impossible because
of (4.6). If b bl b., we have (b z) b b z, again impossible. Then
(4.6) implies the first statement of our lemma.

Similarly we can prove that N,(F)/C,(F) operates faithfully on the set
bl, bl z, c, c z}. Then N,(F)/CH (F) is isomorphic to the four group or the
alternating group of degree four, since an S.-subgroup of Nn(F)/C,(F) is
(5, } because of (3.4). On the other hand, cl and b c, regarded as linear
transformations on F1, are not conjugate. This implies that N,(F)/C,(F)
must be isomorphic to the four group and No(F)/Ca(F) has normal 2-com-
plement.

(4.8) IEMMA. If N,(B)/Cr(B) is isomorphic to a dihedral group of order
8, we have Case I for the fusion of involutions of G and N,(C)/C,(C)
If N,(B)/CH(B) isomorphic to S we have Case II and N,(C)/C,(C) S

(Remark that N,(B)/C,(B) (or N,(C) /C,(C) is isomorphic to a di-
hedral group of order 8 or $4 by (4.7).)

Proof. Suppose that [N,(B) C.(B)] 8. If we huve Case II, we get
[No(B) :Co(B)] 8.5 from (4.6) and (3.5). This is impossible since
No(B)/Ca(B) is a subgroup of As GL(4, 2) with a dihedral group of order
8 as an S-subgroup. Thus we have Case I. If [N.(C) C,(C)] 8, we
get [No(C) :Ca(C)] 8.5 from (4.6) and (3.5), again impossible. Simi-
larly the second statement can be proved.

(4.9) LEMMA. bl c. is conjugate to z in G in both Cases I and II. Further-
more, we have c c and b b where and f are elements defined in (4.3)
and (4.5).

Proof. Firstly we note that . No(F.)/Co(F) is of order 4.3 or 4.3,
since/, has normal 2-complement by (4.7) and is isomorphic to a subgroup
of As with the four group as an S-subgroup, and Na(F) Ca(F.) by
(4.3). Assume by way of contradiction that b c z in G and so b. c z
in G. Then we have. [Na(F) N,(F)]. [N,(F.) C,(F)] 3.4

by (4.3) and so No(F) (c, b fl, Ca(F.) ) and zl e Z(Na(F) ). Denote
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by T1 an S2-subgroup of C(b. cl) with F2 T. Then we have TI 64
and T No(F.). Hence we get Z(T) (b cl, z}. Since b c zl by
the assumption, we must have b. c z z. This is impossible since b. c b cl zl

in D.
We have proved that b c z in G. Since, by (4.3), is of odd order and

normalizes F., (b2, z2, z} and z zl, fl must centralize an element of F
(b2, z2, zl}. If fl centralizes one of

{b c, b. c z, b. c z., b. cl z, cl z, c z},

we have (b:c) bcl or (b. c z.) bcl z or (c z) c z. If (bc) bc
we get c1 c z by (4.3). This is impossible becauseof (4.6). If (b. cl z2)
b cl z, we get c b,c which is impossible because of (4.6) and the fact that
b c z in G. If (c z.) c z, we get c b. c z, whichis impossible. Hence
must centralize c. Analogously, by using (4.5) and (4.6), we get b b.

(4.10) Proof of (iv) of Theorem A. Put Q C(zl).
Grtin’s first theorem, we shall compute

W (J N(J)’, J J’[x e Q},

In order to apply

where J J(D). Since the automorphism group of J is 2-group, we have
N(J) JC(J) and so J N(J)’ J’ (z z.}. J has fifteen con-
jugate classes of involutions with the representatives b, c, z, b, c., z,
bz, cz2, bibs, clc, bc, bc, bzl, c.z andz. Then it is easy to see
that, if z e J for some x e Q, we must have

Z e {b2z b2z c2zl, c2z z}

by using (4.6) and (4.9). From this, it follows that W (z, z, b, c).
On the other hand, by (4.3) and (4.5) we have , , e Q and z b and z.
c:. This yields that W D (z, z., b., c.) and so, W (z, z., b., c.). Hence
by Grtin’s first theorem [3] there exists a normal subgroup M of Q with W
as an S-subgroup. Since W (z) X (b., c.), a theorem of Gaschiitz [2]
yields that there exists a normal subgroup K of M such that M (zl) X K.
Since and v are of odd order, we have , 3’ e K. Moreover, the fact that
z b and z: c. yields that K1 D (b., c) and K has one class of involu-
tions, since [Q K] 8 and so (b c.) is an S.-subgroup of K. This com-
pletes the proof.

(4.11) Proof of (i) of Theorem A. We may assume that G has no normal
subgroup of odd order. Let G be a minimal normal subgroup of G. Then
G is of even order and z is contained inG. Since z b z in G, we get b z e G
and so b e G. Since bl z in G, we get z e G. Hence all involutions of
G are contained in G1. This implies that [G G1] is odd, since D is generated

For the purpose of the proof of Theorem B, Lemmas (4.11)-(4.14) are not necessary.
So the reader who is interested only in the characterization of A muy omit the subse-
quent lemmas in 4.
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by involutions. The minimality of G1 yields that G1 has no normal subgroup
of odd index.

Moreover, G has no normal subgroup of index 2, because otherwise G
would have a normal subgroup of index 2. The same argument applied to
G yields that G is a simple group.

(4.12) Proof of (v) of Theorem A For an element x of No(B) (resp.
No(C) ), we denote by the image by the canonical homomorphism of No(B)
(resp. No(C)) onto No(B)/Co(B) (resp. No(C)/Co(C)). From (4.8), it
follows that there exists an element 7’ in N,(C) such that

"’ (c z) "’ bl b----’ %, % ub b2’ andel Cl Zl C2 /

Let 7 be an element defined in (4.5). From the actions of x , x.

b 7’, x3 b2 and x4 7b on C, it follows that Xl, x., x3 and x4 satisfy the
relations

1 (i 1,2,3),x x x3 x 1, (xx+)
and

(x x) 1 [i J > 1).

This implies that Ne(C) is isomorphic to S, since

[No(C) C(C) 20

by (4.6), (3.5) and (4.8).
If we have Case II, from (4.8) it follows that there exists an element

in N,(B) such that

b’ bl z (b z)’ 52, c c2 , ’ Ucl c2 and t’ t’-.
By using an element defined in (4.3), it follows that No(B)/Co(B) in Case
II is isomorphic to S. If we have Case I, from (4.6), (3.5) and (4.8) it
follows that [No(B) Ce(B)] 8.9. An element defined in (4.3) satisfies
the relationsb bl,z{ z,z{ b2 andb bz2. In the same way as
the construction of t, we get that there exists an element/ in No(B) such
that ’e Co(B), b’ b2, b’ z2, z’ b and b’ bz. (Remark that
we must use z b b2 in G.). Then from the action of u, cl c2, c, / and
t on B, it follows that [t, t’] 1 and (u, c c2,5)normalizes (t, t’). This
implies that No(B)/C(B) in Case I is isomorphic to a 3-Sylow normalizer
of As.

(4.13) ]EMMA. There exists an element 7’ of No(C) such that 7
’3

e Co(C),
’ c, uandu" ub52.

Proof. We know that D splits over C. It is easy to see that the comple-
ment of D over C is conjugate to (u, b b2, b} or (u, b b2, bl z} inD. A theorem
of Gaschiitz [2] yields that the extension of No(C) over C splits. Let N be
a complement of No(C) over C. We may assume that

N ::D (u, bl b2, b} or (u, b b2, b z}.
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In particular, we have N (u, bl b2) in any case. On the other hand, we
know hat Co C) CX Uandl U odd. Then we haven >U. From
(4.7), it follows that there exists an element ," of N such that /-3 e Co(C),
Z Z, Cl Cl Zl (el Zl) ,),t! Vt!

c2, (b b2) u mod U and ubl b mod
U. Frattini argument yields

<o/", u, b, b2> U Nv(<u, 51 b>). U.

Then an element ,’ of "U n Nv(u, b b)) satisfies the required properties.

Remar]c. The complement N of No(C) over C must have a subgroup
conjugate in G to (u, bl b, b) as an S-subgroup. In fact, we may assume
that

N (u, bl b, bi} or (u, bi b., bi z}.

If N a bl z, the action of (h z) -1 (bi z) on C is trivial and so (bi z) -1 (bl z) e U,
where v is an element defined in (4.5) (Remark that , can be taken in N.)
nd U is the complemen in Co(C) of C. However, we have (bl z) -1 (bl z)
c z e U, which is impossiblebecauseof U[ odd. Similarly, thecomplement
of No(B) over B has a subgroup conjugate in G to (u, cl c2, ci) as an S2-sub-
group.

(4.14) Proof of (iii) of Theorem A. Put

W <D n N(D)’ D n D’Xlx e H>
where H Co(z). Then it is easy to see from (4.6) that W is contained in

U (zl, z, b 52, cl c,., u, bl

Grfin’s first theorem yields that H has a normal subgroup M of index 2 with
U as an S-subgroup. Put 1 M/(z). Then an S2-subgroup of/r is iso-
morphic to a 2-group of (1.3) by a mapping defined by

xl e- bi b x 4, y bi b2 zl y +- ual as and w+-blc,

where x, y,: and w are s in (1.3). Hence/ has a normal subgroup of in-
dex 2 with

<i, bi b2, ci c, }

as an S.-subgroup and so M has a normal subgroup K of index 2 with

(zi, z, bi b, ci c, u}

as an S2-subgroup. The existence of an element "r’ in (4.13) yields that K
has no normal subgroup of index 2.

5. A characterization of A
(5.0) In 5, we assume that G satisfies the following conditions"

(i) G has no normal subgroup of index 2, and
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(ii) G contains an involution z0 such that Ca(zo) is isomorphic to the
centralizer of an involution in the center of an S-subgroup of All.

Then G has an S.-subgroup isomorphic to D. We may assume that G D D
and identify z0 with z. Then H Co(z) is generated by D, ,’ and v subject
to the following relations"

,yt Vc --1v =’’ 1, [v,(B, clc.,u, )] 1, =v

b u, u" b b 7
’1

5" c.

Then we have N,(B) D.C,(B) and C,(B) B X (v). Hence we have
Case I for the fusion of involutions of G by (4.8).

(5.1) LEMMA.

C(z) ((b z) X KI) (c) g (b., c, , % v)
__
A

and K(c) S, where KI is a subgroup of Ca(z) defined in (4.10), and
and " are elements defined in (4.3) and (4.5).

Proof. Put Q Ca(z) and W (b, c, /, , v). From the structure
of H, it follows that C(z) C,(z:) (J(D), v). This yields C:(z)
C(z:) (b., c, v) which is isomorphic to C(1 2) (3 4) ). K and W
have no normal subgroup of index 2 because of z b and z. c. Then
u theorem of Suzuki [6] yields that K and W are isomorphic to A respec-
tively. Hence we get K (b, c2, fl, ", v}. Then it is clear that (b,
centralizes K because of (4.6) and (4.9). We shall show that K(cl} ---Suppose flse. Then cl induces an inner automorphism of K A7 and so,
there exists an element x of K of order 2 such that [cx, K1] 1. Since
ccentralize(z,c},sodoesx. Hence we getx e(z c}andso [x v] 1.
On the other hand, we have vc v-1 and so v v-1. This is a contradic-
tion. Thus we have proved that Kl(cl} S.

(5.2) Now the proof of Theorem B can be accomplished by using a theorem
in [5], which is a generalization of W. J. Wong’s theorem [8]. Let p be a
mapping from

Ca(z) (J Ca(z1) onto

C,,((1 2)(3 4)(5 6)(7 8))(JC,I((1 2)(3 4))

defined as follows"

51e- (1 3) (2 4), c1-(1 2) (9 10),
b.+- (5 7) (6 8), c (5 6)(9 10),

u e- (1 5)(2 6)(3 7)(4 8), /e-(5 6 7),
.e-(5 9 7)(6 10 8), v-(9 10 11),, -,(1 3 5)(2 4 6).

Then from Lemma (5.1) it follows that p satisfies the condition of a theorem
in [5]. Hence G is isomorphic to
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