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GROUP OF DEGREE ELEVEN

BY
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Introduction

The main purpose of the present paper is to prove the following theorem.

TarorEM B. Let G be a finite group satisfying the following conditions:

(1) @G has no normal subgroup of index 2, and

(2) @G contains an tnwolution zy such that Ce(z0) is isomorphic to the cen-
tralizer of an involution in the center of an S-subgroup of Au, the alternating
group of degree eleven.

Then G s isomorphic to Ay .

Let D be a 2-group of order 2’ which is isomorphic to a wreath product
of a dihedral group of order 8 by a group of order 2. An S,-subgroup of Ay
is isomorphic to D. Further, there are infinitely many simple groups with
an S;-subgroup isomorphic to D, namely LF,(q) (¢ = 3 mod 8) and Ui(q)
(g = 5 mod 8). So the present paper contains detailed discussions of a
finite group with an S.-subgroup isomorphic to D, which are more than neces-
sary for the proof of Theorem B (cf. footnote 2)). The results are sum-
marized in Theorem A of §4.

Notation:
celx(z) a conjugate class in a group X containing x
(--+) a group generated by . ..
b'¢ the commutator subgroup of a group X
[z, ¥] x Yy ay
i vy
z~yin X zis conjugate to y in a group X
J(X) the Thompson subgroup of X (ef. [7])
Cx(z) eX |y "y = &),

A, (Sy) the alternating (symmetric) group of degree n
The other notations are standard.

1. Preliminaries

(1.0) Let X be a finite group and S be an S;-subgroup of X. Let K
be a subset of S which is an intersection of S with a conjugate class of X.
An element x of K is called an extreme element if | Cs(z) | = | Cs(y) | for
any i € K. The following is due to R. Brauer [1, p. 308].

(1.1) Lemma. If x is an extreme element of K, Cs(x) is an Se-subgroup
of Cx(x). Moreover, for every element y of K, there exists an isomorphism 6
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of Cs(y) into Cs(x) with the properties:
(1) 6(y) =z, and
(2) if6(2) = 2 forzeCs(y) and 2’ € Cs(z), 2 is conjugate to z in X.

(1.2) Lemma. Let M be a maximal subgroup of S and x be an involution
of S outside M. If x is not conjugate in X to any element of M, X has a normal
subgroup of index 2.

This is due to J. G. Thompson. The proof is easily obtained by computing
the transfer.

In the present paper, Lemmas (1.1) and (1.2) will be frequently used

(1.3) Lemma.' Let S be isomorphic to a 2-group generated by involutions
1, &2, Y1, Y2 and w subject to the relations

(i, 23] = lys,yil = [2e,9] = 1 =12 j=12)
T =2, YL = Yo.

Then X has a normal subgroup of index 2 with (X1, X2, Y1, Y2) as an Sy-sub-
group.

Proof. Cs(w) = {w, &1 22, 1 y2) is a self-centralizing normal subgroup of
order 8. Put W = Cs(w). We know Cx(W) = W X U and | U| = odd.
Suppose that X has no normal subgroup of index 2. Then (1.2) implies
that w must fuse to an element of (x1, %2, ¥1, ¥2) = V. We claim that w
must fuse to an element of Z(S). Otherwise, Cs(w) would be conjugate
to a subgroup of ¥ by (1.1), which contradiets the fact that Cx(W) = W X U
and |U| = odd. Take an S,-subgroup S; of Cx(w). Then we have
Z(S) € Wand Z(81) = (w, 21 x2), (W, y1 Y2) or {w, T1 T2 Y1 Yo). If Z(S) =
(w, x1 x2), we see that z; is contained in Nx(Z(8S1)) — Cx(Z(8:1)), which is
impossible because Nx(Z(S1))/Cx(Z(81)) is of odd order Similarly, we
get a contradiction also in other cases. Hence we have proved that
X > 0*(X) and w does not fuse to any element of V. Then any element
of 8 — V is not conjugate to an element of V, since an element of S — V
is of order 4 or is conjugate to win S. Then the focal subgroup theorem yields
our lemma.

2. Some properties of a 2-group D

Let D be a 2-group generated by involutions by, ¢, b2, ¢z and u satisfying
the following relations:

bi=cd=bi=d=u=1 (be) =1 (i=1,2),
[bi,b] = [ei, el = [biyei]l =1 (i % j)
b114=b2, Ci‘=62.

1 This is due to K Harada (cf. [4, Lemma 5]). This lemma will be used only in the
proof of Lemma (4.14).
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Put z; = (bic:)’, ai = bic; (¢ = 1,2), 2 = 2 2. Further we define four
elementary abelian subgroups of order 16:

B = <b1,21,b2,22>, ¢ = <C1,21,02,22>, Fl: <bl7zl>c27z2>
and Fy = (b2, 22, &1, 21),

D is a wreath product of a dihedral group of order 8 by a cyclic group of
order 2. The Thompson subgroup J (D) of D is (b1, c1) X (bz, ¢z), which
is generated by all elementary abelian subgroups of order 16, that is, B,
C, F1 and F,, and is isomorphic to a direct product of two copies of a dihedral
group of order 8.

B, C, F;, and F, are normal in J(D) and selfcentralizing in D. B and C
are normal in D. The conjugate classes of involutions of D are as follows:

elements cardinality

2

21, 22

blyblzl,b2’b2z2
b;z,blzz,bzzl,bzz
bybe,bibszr, bibr2y, bibyz
C1,CL21,Cg, C222
C12,C 22 ,C2,C21
€C1C2,CC221,CLC222,CLC22
bicax ,bycix forany z ez, 22
uzur~u for any x e(b1, cr)

00 00 W B xS R DD =

See (3.7) for the conjugate classes of elements of order 4 which are used
only in the proof of lemmas (3.8) and (3.9).

3. General properties of G and D

(3.0) Let G be a finite group with D as an S,-subgroup. Put H = Ce(z).
Throughout the present paper, G, D and H will be used in this meaning.

(3.1) LeMMA. 2z s not conjugate to z; in G.
No(J(D)) = D-Co(J(D)) and No(J(D)) S Nu(B) n Na(C).

Proof. Since J(D) is weakly closed in D with respect to G, any two ele-
ments of Z(J(D)) = (a1, 2») are conjugate in G if and only if they are con-
jugate in Ng(J(D)). On the other hand, from the structure of J(D), the
automorphism group of J(D) is 2-group. Hence we have Ng(J(D)) =
D-Ce(J(D)). From this, our lemma follows.

(3.2) LEMMA. 21 ~biin G if anyonly if 2z ~ bizin G. Similarly,z ~ ¢
n Gif and only if 2z ~ c1z in G.

Proof. Suppose that 21 ~ by in G. Put W = Cp(b) = B(c). Then
we have W' = (z). Denote by D; an S,subgroup of Cg(b) with
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W < Dy C Cg(b). By (3.1), we have | Dy | = 64. Furthermore Z(D1)s 2,
since W' char W and [Dy: W] = 2 and so W < W. Hence we have Z(D;) =
(b1, z2). Since D, is conjugate in G to J(D) by (3, 1), Z(D,) is conjugate to
Z(J(D)) = {21, 22). Sinceby ~ 21 ~ 2z in G, wehave b; 2z, ~ zin G by (3.1).
Since by 2o ~ by zinD, weget by z ~ zinG. Supposethatbz ~2zinG. Then
wehave W = Cp(biz) = B{c). Since W is generated by B and Fy, W is
contained in J(D;), where D, is an S,-subgroup of Ce(by2) with W € D, C
Cs(brz). Furthermore, Z(J(D:)) = (biz, 22). In the same way as above,
we get by ~ 2z in G.

(3.3) LemMma. We may and shall assume by ~ z in G and ¢, ~ z in G.

Proof. This follows from (3.1) and (3.2), by interchanging a pair by b,
(resp. ¢1 ¢2) by by 2by 2 (resp. ¢ zc; 2) if necessary.

(3.4) LemMa. B and C are weakly closed in D with respect to G.

Proof. Suppose that B < D for ¢ ¢ G. Then we have B® < J(D).
Since N¢(B*) D D*, J(D), there exists an element y of N¢(B®) such that
D™ D J(D) D B®. Then we have D™ C Ng(J(D)) € Nu(B) by (3.1).
Hence there exists an element w of Nx(B) such that D® = D". Since

zyw ™ e No(D) © Ng(J(D)) € Nu(B),

we have B = B” = B, and so B = B® = B. Thus we have proved that

B is weakly closed in D. Similarly, C is weakly closed in D with respect to
G

(3.5) Lemma. If X is a 2-subgroup of G conlaining B (resp. C), X nor-
malizes B (resp. C). Furthermore, any two elements of B (resp. C) are con-
Jugate in G if and only if they are conjugate in N o(B) (resp. No(C)).

Proof. This is an immediate consequence of (3.4). This lemma is very
useful for the discussions in §4.

(3.6) LemMma. If z is not conjugate in G to any element of D distinct from
2, G has a normal subgroup of index 2.

Proof. Assume by way of contradiction that G = 0(G). Put W =
B{u, ¢1 ¢2). Then by (1.2), aninvolution ¢; of D — W must be conjugate to
one of

{21, bl, blz, blbg, C1Cz,u}

which areinvolutions of W. If ¢; ~ 2z in G, we have ¢; z ~ z because of (3.2).
This contradicts the assumption of our lemma. If ¢ ~ b, in G, by (1.1),
Cp(c1) and Cp(b1) are Sp-subgroups of Ce(c1) and Co(by) respectively. Then
C is conjugate to B or F; in G, since B and F are just two elementary sub-
groups of order 16 contained in Cp(b1) = B(c;) and C < Cp(c;). This is
impossible because of (3.4). Similarly we get ¢ ~ bizin G. If ¢1 ~ by by
in @, by (1.1), Cp(c1) and Cp(by be) are S,-subgroups of Ce(c) and Ca(by by)
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respectively. Hence Cp(c1) and Cp(by by) are conjugate in G, which is im-
possible since Cp(c1) and Cp(by by) are not isomorphic. Similarly we get
ca*acinG Ifea ~wuwin @G Cp(u) is conjugate in G to a subgroup of
Co(cr) by (11). Since 2; (resp. 2z) is only one square element of Cp(c1)
(resp. Cp(u)), we must have z; ~ z in G, which is impossible because of (3.1).
Thus we get a contradiction.

(3.7) In the proof of Lemmas (3.8) and (3.9), some properties of elements
of D with order 4 will be used. The conjugacy classes of D with order 4 are
as follows:

representatives a1 a1 23 a az b1 a2 C1 Q2 U2y uby Uucy

cardinality 4 4 4 8 8 8 16 16

squares of rep- 2 2 2 22 29 2 by by ¢1C2
resentatives

We have

Cp(a1as) = (a1, az, w) and Cp(araz) = (byes)-Co(as an).

There are sixteen involutions which invert aia;, and they are contained in
(21,0102, b1 by or (21, a1 Gz, b1 by). We have

Co(uby) = (z, uby) and Cp(uby) = (ba)-Cp(ubs).

The set of all involutions which invert uby is Cp(ubi) — Cp(ub) and so,
Cy(uby) is a “generalized dihedral group” of order 16. Similarly, the set
of all involutions which invert uc; are Cp(uci) — Cp(ucy).

(3.8) Lemma. Ifu~zinG,wehavez~bibyorz ~ cictn G and by by ~
o e in G.

Proof. Consider an isomorphism of Cp(u) = (u) X (b1 bs, a1 az) into D =
Cp(2) definedin (1.1). Sincez ~ 2z in G and 0(u) = 2 = (a1 a)", 0(a1 az)
must be contained in ¢ clp(uby) or ¢ clp(ucy) (ef. the table of (3.7)). Hence
we may assume

0(a1as) = ubtoruc, an 6(Cp(u)) = (&) X (b1, uby) or (z) X {c1, ucy)-

Hence we get 0(z) = 6((a1a2)®) = bib, or ¢1 ¢ , namely, 2 ~ by by or ¢1cy .
Assume that

o(CD(u)) = <z> X (bl ) ubl)r
because, also in case where 8(Cn(u)) = (2) X {1, uci), the argument is simi-
lar. Put

Cy = Co(u) — (U, ;mas) and Cy = (u, ubs, b)) — (u, uby),

which are the sets of all involutions of Cp(u) and 6(Cp(u)) inverting a; ax
and ub; respectively. 6 must map C; onto Cy. If by by ~ ¢1 ¢, in G, we have
2~ b1 by, ~ c ¢ in @, and so, any element of C; is conjugate to z in G. Since
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C1 2 by, this forces to be by ~ z in G, which is impossible because of (3.3).
Thus we get by by ~ ¢; ¢z in G.

(3.9) Lemma. If u ~ 21 9n G, we have 21 ~ by by ~ ¢y ce in G.

Proof. Consider an isomorphism 6 from Cp(u) into Cp(z1) = J(D)
defined in (1.1). Then by (3.7), we may assume

O(ara) = araz and 6(Cp(u)) = {21, a1 0z, biby) or {z1, a1 as, by c).
Put ¢y = Cp(u) — (u, xaz) and C; = 0(Cp(u)) — (21, a1 a3). We have

C; = <b1 b2 , b bz 2,C1C,CLC22, uby bz 5 uby by 2, UC1 C2 4, UCL Co Z),
and

Cy = celp(b by) U e clp(crcy) or celp(br ¢s)

according to whether 0(Cpr(u)) = {21, a1 az,b1b)or {21, a1 az, by cz). Then
the assumption that uw ~ # in @ forces to be z1 ~ b1 by ~ ¢1 ¢ in G, since 6
maps C; onto C, . This completes the proof.

4. Conjugacy classes of involutions of G, where G = O2(G)

(4.0) Throughout this section, we shall assume that G has no normal
subgroup of index 2. The results of this section can be summarized as fol-
lows.

TuroreM A. (i) G has normal subgroups Gi and Gy such that | G/G1 |
| G2 | are odd and Gi/G, is a non-abelian simple group with an Ss-subgroup
isomorphic to D.

(i) @ has two classes of imwolutions. If notation is chosen suitably, the
possibilities for the fusion of involutions of G are

Casel. z~biz~caz~bieg~bb~u|laa~b~c~cec,or

CaseIl. 2 ~biz~caz~bala~b~ca~bb~cc~u

(iii) Ce(2) has a normal subgroup K of index 4 with the follousng properties;

(@) an Ss-subgroup of K is {21, 22, bi b2, c1¢2, w), which is an extraspecial

2-group of order 32.

(B) K has no normal subgroup of index 2.

(iv) Ce(z1) has a normal subgroup K of index 8 with the following proper-
ties:

(a) an Ss-subgroup of Ki is (b2, ¢3), which is a dihedral group of order 8,

and

(8) Ki has no normal subgroup of index 2.

(v) Ng(C)/Ce(C) (resp. Na(C)/Ca(C)) is isomorphic to Ss (resp. Si).
In Case I, No(B)/Co(B) (resp. Nu(B)/Cu(B)) s tsomorphic to a 3-Sylow-
normalizer of As (resp. a dihedral group of order 8), while in Case II, Ng(B)/
Co(B) (resp. Nu(B)/Cu(B)) s isomorphic to Ss (resp. S4).

Remark. We know only two examples of finite simple groups with Case
I for the fusion of involutions, namely A1 or Ay, while there exist infinitely
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many simple groups with Case I, namely LF.(q) (¢ = 3 mod 8) or Ui(q)
(¢ = 5 mod 8).

(4.1) LemMA. 2z s conjugate in G to an element which is distinct from z
and is contained in B or C.

Proof. Suppose false. Then the assumption G = 0°(G@) and (3.6) yields
that z ~uworbic,inG. If 2 ~ u, wehavez ~ by byor ¢1 ¢;in G from (3.8).
Hence we may assume that 2z ~ b; ¢; in G and 2 is not conjugate to any element
of B or C. Denote by D; an S,-subgroup of Cg(b1c) with Cp(bic) =
FiC Dy C Ce(bic). Put W = (J(D), J(D1)). Thenwe have W D> Fy
and z ~ bic; in W. Hence we get [Ng(F1) : H n Nog(F1)] = 5. If zisan
element of Ng(Fy) — Co(Fy) with z° € Co(Fy), 2 acts fixed-point-free on F; .
This forces to be 21 ~ b1 ~ by 2; in G, which is impossible because of (3.2).

(4.2) We may and shall assume that z is conjugate to an element in B
distinet from z, since B and C play symmetric role.

(4.3) LEMMA. 2z ~ biz andzi ~ by in G. More precisely, there exists an
element B in Nog(B) n NG(Fs) of odd order such that 8* ¢ Ce(B), 25 = by,
W =byzs, ? = brar, (0a2)’® = byz,and[8 =] = 1. Wehave [8 b] = 1
or[8 bzl =1,and by by ~ z or 21 in G according to whether b = by or (b 2)? =
biz. Moreover, we have by cy ~ ¢ or c1 2 in G.

Proof. First we shall show that z ~ bz in G. Suppose false. Then,
from (3.1), (3.3) and (4.2), we must have 2 ~ b1 b, in G and so in Ng(B)
because of (3.5). Hence we get [Ne(B) : H n Ng(B)] = 5. If z is an
element of Ng¢(B) — Cg(B) with 2* € C¢(B), z acts fixed-point-free on B.
This forees by ~ 2; in G and so z ~ b; z in G because of (3.2). This is a con-
tradiction. Thus we have proved that z ~ bz in G and so by ~ 2 in G be-
cause of (3.2). Denote by D; an Ss-subgroup of Cg(bs2) with Cp(bez) =
Blc)) © Dy C Cg(bsz). Put U = Cp(byz). Then we have U = (z1) and
Z(U) = {by, 21, 2. Since[J(D) : U] = 2 wehaveZ(J(D1)) = (bs2, 21)
and J(D;) normalizes Z(U) = (bz, 21, z2). Put W = (J(D), J(Dy)).
Then we have Z(W) = (z) and W normalizes B{c;) = U, (bz, 21, 22), B
and F. by (3.5). (Note that B and F. are exactly two elementary subgroups
of order 16 contained in B{c;).) Furthermore, z is conjugate to b,z in W.
W/Cw(B) is not 2-group. Otherwise W would be W = {¢1, ¢;)Cw(B) be-
cause of Z(W) = (z), against the fact that z ~ byz in W. Hence we can
find an element @ of W such that [8, B] ¢ 1. Since C¢(B) = B X Y and
| Y| = odd, we may assume that B8 is of odd order. Then we have
[8, (b, 21, 22)] % 1. From [B, z1] = 1, 2 ~ byz and 2z, ~ by in G, we obtain
=1y, by =1byzs, ? =byz and (by21)® = by 2z by interchanging 8 by g7 if
necessary. This implies that g° centralizes (b, 21, 2) and so B. Since
[8, 1] = 1 and B normalizes B, 8 must fix an element of B — (b;, 21, 22).
If B fixes an element of cclp(by bs) C B — (by, 21, 22), we have (by by)® = by b,



THE ALTERNATING GROUP OF DEGREE ELEVEN 535

or (by by z)‘9 = b byz. Intheformer case, by b, = b3 b, 2, and s0 b = by 2, which
is impossible since by ~2; and by 22 ~ zin G. In the second case, by bz =
(b1 by 2)” = b8 22 byz and so B = by 2, , which is impossible. Hence we have
b = byor (b12)® = byz. If 65 = by, wehave (by by)” = by2z ~2inG. If
(b12)? = bizwehaved = by byzandsoz; ~ b1 by in G.  Finally we shall show
that byco ~ ¢1 or c1zinG. The involutions of Fy — (by, 2, ,21)areci ~c121,
aze~crzand bycy~bycizi~bycr1zo~by ey 2. Ifdd = , we have (0122)3 =byc.
Id=aan, (aa)f=baz Hd=an, (a2’ =han. Ifd = az,
(c12)f = bacra. I # e, cie1,cimand ez, wehaved; = bycr, bacra,
b2c1 2, or byerz since 8 normalizes Fo and (b2, 22, 21). Thus, in any
case, we get by ca ~ ¢y or ¢1 2 in G.

(4.4) LeMMA. z 1s conjugate in G to an element which is distinct from z
and 1s contained in C.

Proof. Suppose false. By Lemma (1.2) of Thompson and the assump-
tion G = 0*(G), ¢ must be conjugate in G to an element of B(u, ¢1 ¢;). Since
every element of B fuses to z or 21 by (4.3) and ¢; ~ 2 in G implies ¢12 ~ 2
in G by (3.2), wehavecy ~ ciccoreg ~ uinG. If s ~ c1ce in G, by (1.1),
Cp(cr) and Cp(cic:) are Ss-subgroups of Cg(ci) and Cp(cice) respectively.
Hence Cp(ci) is conjugate to Cp(cyc2), which is impossible since they are
not isomorphic. If ¢z ~ u, Cp(u) must be conjugate in G to a subgroup of
Cp(c) by (1.1). Since z and 2 are only one square elements of Cp(u)
and Cp(z;) respectively, we must have z ~ 2z, in G. This contradicts
(3.1). This completes the proof of the lemma.

(4.5) LemMmA. There exists an element v in Ng(C) n Ne(F1) of odd order
such thaty’ € Co(C), 25 = cs,¢5 = G20 ,2" = a2, (c221) " = zand[y 2] = 1.
Wehavely ¢l = lor[y cz] = 1andcicy~ z or z1 accordingto whether ¢i = c1
or (c12)" = ae.

Proof. This can be proved in the same way as in (4.3).

(4.6) LemMMA. @ has two classes of tnvolutions  If notation vs chosen suita-
bly, the possibilities for the fusion of involutions of G are

Casel. z~biz~caz~bb~ula~bh~a~cec

Casell. z~biz~az|laa~bi~c ~bb~cie~ u.
Moreover, we have b5 = by and (¢c12)” = ¢1 2 in Case I, while we have (by2)® =
bizand (az)” = cazin Case II.

(Remark that whether 2 ~ by ¢, or 21 ~ b1 ¢; has not been determined yet.
In (4.9) we shall show that by ¢; ~ 2z in G in both cases.)

Proof. By (4.3) and (4.5), any involution of J(D) must be conjugate
tozorzinG. By (1.2) and the assumption G = 0*(@), w must be conjugate
to an element of J(D) and so, we get ¥ ~ z or z; in G. Thus @ has two
classes of involutions.
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Ifu~zin@, wehave z ~ by by orci ¢ in G and by by = ¢ ¢2 by (3.8). Be-
cause of the symmetric role of B and C, we may assume z ~ bib. in G and so
z1~ ¢ cin G. Then Case I occurs. If u ~ 2 in G, we have 2z, ~ bib: ~ cice
by (3.9). Then Case II occurs. The third statement follows from (4.3)
and (4.5).

(4.7) LEMMA. Ng(B)/Cu(B) (resp. Nu(C)/Cu(C)) operates faithfully
on celp(by) (resp. celp(er)). Furthermore Ny(F1)/Cu(Fy) is an elementary
subgroup of order 4 and N¢(F1)/Ce(Fy1) has normal 2-complement.

Proof. Assume there exists an element x of Nz(B) such that b = 2 or
biby. If b =21, wehave (b12)° = 212 = 2. Thisis impossible because
of (4.6). If b = biby, we have (b12)° = b byz, again impossible. Then
(4.6) implies the first statement of our lemama.

Similarly we can prove that Nx(F1)/Cu(F1) operates faithfully on the set
{bi,b121,C2,022}. Then Nu(Fy)/Cx (Fy)is isomorphic to the four group or the
alternating group of degree four, since an S,-subgroup of Nz(F1)/Cr(Fy) is
(G, b1) because of (3.4). On the other hand, ¢; and b, ¢; , regarded as linear
transformations on F; , are not conjugate. This implies that Nx(F1)/Cr(F1)
must be isomorphie to the four group and Ng¢(Fy)/Ce(F:1) has normal 2-com-
plement.

(4.8) LemmA. If Nu(B)/Cx(B) is isomorphic to a dihedral group of order
8, we have Case 1 for the fusion of involutions of G and Nxz(C)/Cr(C) = 8,.
If Nu(B)/Ca(B) isomorphic to Sy , we have Case IT and Ng(C)/Cr(C) =2 S,.

(Remark that Nu(B)/Cx(B) (or N&(C)/Cgr(C)) is isomorphic to a di-
hedral group of order 8 or S, by (4.7).)

Proof. Suppose that [Nx(B) : Cx(B)] = 8. If we have Case II, we get
[N¢(B) : C4(B)] = 8-5 from (4.6) and (3.5). This is impossible since
Ne(B)/Ce(B) is a subgroup of As =~ GL(4, 2) with a dihedral group of order
8 as an S;-subgroup. Thus we have Case I. If [Ngz(C) : Ca(C)] = 8, we
get [Ng(C) : Ce(C)] = 8-5 from (4.6) and (3.5), again impossible. Simi-
larly the second statement can be proved.

(4.9) LemMmA. b, ¢ 18 conjugate to z in G in both Cases I and 11. Further-
more, we have ¢ = ¢y and by = by , where B and v are elements defined in (4.3)
and (4.5).

Proof. Firstly we note that F; = Ng(Fs)/Ca(Fs) is of order 4-3 or 4-37
since F, has normal 2-complement by (4.7) and is isomorphic to a subgroup
of As with the four group as an S;-subgroup, and 8 € No(F2) — Cg¢(F,) by
(4.3). Assume by way of contradiction that by¢; ~ 2 in G and so by ey ~ 21
in G. Then we have

| Fy| = [No(Fs) : Na(F2)]-[Nu(Fs) : Ca(F2)] = 3-4
by (4.3) and so Ng(F2) = {c2, b1, B, Co(F2)) and z1 € Z(Ng(F2)). Denote
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by T: an S;-subgroup of C¢(bs ci) with F;, € Ty. Then we have | T1| = 64
and Ty C Ng(F.). Hence we get Z(T1) = (bycr, 2z1). Since by ~ 21 by
the assumption, we must haveb, ¢; 2 ~ 2. Thisisimpossiblesincebs 1 ~ by ;21
in D.

We have proved that by c; ~ 2z in G. Since, by (4.3), 8 is of odd order and
normalizes Fy , (by , 22, z1) and 2§ = 21, 8 must centralize an element of Fy —
(bs, 22, z1). If B centralizes one of

{bzcl,bzclzl,bzthzz,bzc12, 613,0122},

we have (bg C1)ﬁ = bz C1 Or (bz C1 22)6 = bz C1220r (01 Zz)ﬂ = (1 22. If (b2 01)'3 = b2 C,
we get ¢} = ¢12, by (4.3). Thisisimpossible becauseof (4.6). If (byciz)® =
b 122, We get ¢ = by ¢; which is impossible because of (4.6) and the fact that
bron~zinG. If (c122)® = c125, we get & = ba ¢y 20 , whichis impossible. Hence
8 must centralize ¢; . Analogously, by using (4.5) and (4.6), we get by = by .

(4.10) Proof of (iv) of Theorem A. Put Q@ = Cg(z1). In order to apply
Griin’s first theorem, we shall compute

W = (T n No(J), 70 J" |z Q)

where J = J(D). Since the automorphism group of J is 2-group, we have
No(J) = JCo(J) and so J n No(J) = J' = (21 ). J has fifteen con-
jugate classes of involutions with the representatives b1, ¢1, 21, b2, ¢z, 22,
biza, C12a, b1ba, C1Ca, bica, bacr, baz1, 221 and 2. Then it is easy to see
that, if 2° ¢ J for some z ¢ @, we must have

3
4 G{bzzl,bzz, C221, C2%, 2}

by using (4.6) and (4.9). From this, it follows that W C (&1, 22, b2, c).
On the other hand, by (4.3) and (4.5) we have 8, v ¢ Q and 73 = by and 25 =
¢, . This yields that W D (21,22, ba, ¢2) and so, W = (21, 22, by, ¢2). Hence
by Griin’s first theorem [3] there exists a normal subgroup M of @ with W
as an S,-subgroup. Since W = (z1) X (b2, ¢z, a theorem of Gaschiitz [2]
yields that there exists a normal subgroup K; of M such that M = (1) X K, .
Since 8 and v are of odd order, we have 8, v ¢ Ky . Moreover, the fact that
23 = by and 25 = ¢, yields that K3 D (bs, ¢2) and K; has one class of involu-
tions, since [@ : Ki] = 8 and so (b2 ¢z) is an Sz-subgroup of K;. This com-
pletes the proof.

(4.11)* Proof of (i) of Theorem A. We may assume that G' has no normal
subgroup of odd order. Let Gy be a minimal normal subgroup of G. Then
G:is of evenorder and z is containedinG; . Sincez ~ by zin G, weget by 2 € Gy
and 8o by e G . Since by ~ 21 in G, we get 21 € G1. Hence all involutions of
@ are contained in Gy . This implies that [G : Gi] is odd, since D is generated

2 For the purpose of the proof of Theorem B, Lemmas (4.11)-(4.14) are not necessary.
So the reader who is interested only in the characterization of 4;; may omit the subse-
quent lemmas in §4.
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by involutions. The minimality of G; yields that Gy has no normal subgroup
of odd index.

Moreover, G has no normal subgroup of index 2, because otherwise G
would have a normal subgroup of index 2. The same argument applied to
G yields that G; is a simple group.

(4.12) Proof of (v) of Theorem A For an element x of Ne¢(B) (resp.
N4(C)), we denote by % the image by the ecanonical homomorphism of N¢(B)
(resp. Ng(C)) onto Ng(B)/Ce(B) (resp. No(C)/Ce(C)). From (4.8), it
follows that there exists an element v in Nz(C) such that
=z, (a2’ =c, bby =14, @=ubb’ and 7 =7"N
Let v be an element defined in (4.5). From the actions of 21 = b1, ¥ =
biy', 23 = by, and x4 = vb, on C, it follows that a1, 22 , x5 and x4 satisfy the
relations

=z =23 =23 = 1, (Tizip)® =1 (z=1,23),
and
(i) =1 (le—J1>1.
This implies that N¢(C)/Ce(C) is isomorphic to S;, since
[Ne(C) : Co(C)] = 120

by (4.6), (3.5) and (4.8).
If we have Case II, from (4.8) it follows that there exists an element 8
in Ny(B) such that

’ ’ —3 o 161 =/—1
b? =b121, (b121)ﬁ =b2; 6162’3 =’U,,’ll, —’U/C102andﬂc =8 "

By using an element 8 defined in (4.3), it follows that N¢(B)/Ce(B) in Case
II is isomorphic to S;. If we have Case I, from (4.6), (3.5) and (4.8) it
follows that [Ne(B) : Co(B)] = 8-9. An element (8 defined in (4.3) satisfies
the relations b = by, 2} = 21, 25 = by and bj = byz.. In the same way as
the construction of 8, we get that there exists an element 8’ in N¢(B) such
that 8° € Co(B), b = by, b =z, 25 = biandbf = bizi. (Remark that
we must use z ~ b1 by in G.). Then from the action of u, ¢; ¢, ¢, B and
B on B, it follows that [8, '] = 1 and (u, ¢ ¢s, ¢1) normalizes (3, ). This
implies that Ng¢(B)/Cs(B) in Case I is isomorphic to a 3-Sylow normalizer
Of Ag

(4 13) LLMMA There exists an element v of N G(C) such that v* € Cg(C),
7 =z =an, (@a)” =c,bby = uanduw” = ubs b, .

Proof. We know that D splits over C. It is easy to see that the comple-
ment of D over C is conjugate to (u, by bs, by) or {u, b1 by ,b12) inD. A theorem
of Gaschiitz [2] yields that the extension of Ng(C) over C splits. Let N be
a complement of Ng(C) over C. We may assume that

N D (u, by by, by) or {u, by ba, by 2).
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In particular, we have N DO (u, b1 by) in any case. On the other hand, we
know that Ce(C) = C X Uand | U| = odd. Then we have N > U. From
(4.7, it follows that there exists an element v” of N such that v"* ¢ C¢(C),

14 yn 14 14 14
2" =2,¢ =calan)” =c,bib)” = umodU and 4" = ub b, mod

U. Frattini argument yields
(7,’7 u, b, b2> U= NN((’“', by b2>) -U.
Then an element v’ of " U n Ny({u, by bs)) satisfies the required properties.

Remark. The complement N of Ng(C) over C must have a subgroup
conjugate in G to (u, b1 ba, by) as an S,-subgroup. In fact, we may assume
that

N D (u, by by, bi) or {u, by by, by 2).

If N abyz, the action of (by2) (b 2)” on C is trivial and so (bi2) " (b12)" € U,
where v is an element defined in (4.5) (Remark that v can be taken in N.)
and U is the complement in Ce(C) of C. However, wehave (b1 2) " (b12)” =
¢z z € U, which is impossiblebecauseof | U | = odd. Similarly, thecomplement
of N¢(B) over B has a subgroup conjugate in ¢ to {u, ¢1 ¢z, ¢1) as an Se-sub-
group.

(4.14) Proof of (iii) of Theorem A. Put
W = (DnaNg(D),DnD"|zeH),
where H = Cg(2). Then it is easy to see from (4.6) that W is contained in
U={(1,2,bb,ccs,u bicy.

Griin’s first theorem yields that H has a normal subgroup M of index 2 with
U as an Sy-subgroup. Put M = M/{z). Then an S,-subgroup of M is iso-
morphic to a 2-group of (1.3) by a mapping defined by

Tr > biby, T, Yr1<>bbyz, Yaouma and w<bic,

where «; , y; and w are as in (1.3). Hence M has a normal subgroup of in-
dex 2 with

(B, biby, o1 0o, W)
as an Sy-subgroup and so M has a normal subgroup K of index 2 with
(21,20, b1ba, CrCo, u)

as an Sy-subgroup. The existence of an element v in (4.13) yields that K
has no normal subgroup of index 2.

5. A characterization of Ay

(5.0) In §5, we assume that G satisfies the following conditions:

(i) @ has no normal subgroup of index 2, and
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(ii) @ contains an involution z, such that Cg(2y) is isomorphic to the
centralizer of an involution in the center of an S,-subgroup of Ay .

Then G has an S,-subgroup isomorphic to D. We may assume that G O D
and identify z, with 2. Then H = Cq(z) is generated by D, v’ and v subject
to the following relations:

C1

P = "Y,3 = 17 [7), <B> C1C2, U, 'YI>] = 17 v = v—l

kA v _ 2] r—1 v ,
bi =w, w =bb, y'=v, o =aa, (au)’ =oa.

Then we have Ng(B) = D-Cx(B) and Cx(B) = B X (). Hence we have
Case I for the fusion of involutions of G by (4.8).

(5.1) LEMMA.
Ce(z1) = ({b1,21) X K1) {cr) Ki = (b2, ¢, 8,7 0) = Aq

and Kilc)) = Sy, where Ky is a subgroup of Ce(21) defined in (4.10), and 3
and v are elements defined in (4.3) and (4.5).

Proof. Put Q@ = Ce(21) and W = (b2, ¢z, B, v, v). From the structure
of H, it follows that Co(2:) = Cu(2:) = (J(D), v). This yields Cg,(22) =
Cw(z:) = (b2, ¢2, v) which is isomorphic to C,(1 2)(3 4)). K;and W
have no normal subgroup of index 2 because of 23 = b, and 23 = ¢;. Then
a theorem of Suzuki [6] yields that K; and W are isomorphic to 47 respec-
tively. Hence we get K1 = (b;, ¢z, B8, v, v). Then it is clear that (b:, 21)
centralizes K; because of (4.6) and (4.9). We shall show that Ky{c;) = Sr.
Suppose false. Then ¢; induces an inner automorphism of K; =2 A, and so,
there exists an element z of K; of order 2 such that [ax, Ki] = 1. Since
c1 centralize (2:, ¢z), so does xz. Hence weget x ez ¢ andso [x v] = 1.
On the other hand, we have »* = v and so v° = v~. This is a contradic-
tion. Thus we have proved that Ki{c:) =2 Sy.

(5.2) Now the proof of Theorem B can be accomplished by using a theorem
in [5], which is a generalization of W. J. Wong’s theorem [8]. Let p be a
mapping from

Ce(2) UCg(z1) onto
Cay,((1 2)(3 4)(5 6)(7 8)) UC4,((1 2)(38 4))
defined as follows:

bies (1 3)(2 4), a< (1 2)(9 10),
boe> (5 7)(6 8), e (5 6)(9 10),
ue (1 5)(2 6)(3 7)(4 8), B> (5 6 7)),
vy (5 9 7)(6 10 8), ve (9 10 11),
¥ (1 3 5)(2 4 6).

Then from Lemma (5.1) it follows that p satisfies the condition of a theorem
in [5]. Hence @ is isomorphic to A .
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