CARTER SUBGROUPS AND FITTING HEIGHTS OF FINITE
SOLVABLE GROUPS

BY
E. C. Dapg'

Let G be a finite solvable group having Fitting height % (as defined in [7]
or in §1 below). Let H be a Carter subgroup of G and I be the length of a
composition series of H. We shall establish the correctness of a conjecture
of John Thompson (at the end of [7]) by proving that

(0.1) B <1028 — 1) — 4l

This is the result of Theorem 8.5 below, and the rest of this paper is a proof
of that theorem.

The upper bound for 4 given by (0.1) is almost certainly too large. The
work of Shamash and Shult [6] leads one to conjecture that there is some
constant K such that

(0.2) h < Ki,

for all finite solvable groups G. The methods of this paper unfortunately
cannot give an upper bound whose order of magnitude is less than 2°. This
is caused by our very naive approach. Essentially we choose a normal
subgroup P of prime order in H and a suitable chain A, ---, 4, of H-in-
variant sections of G. Obviously either P centralizes A;, --+, Az or
there exists a subchain Ay, A1, -+, Arimz such that P does not cen-
tralize Ax . In the latter case we construct (and this is the hard part of the
proof) an H-invariant chain Dyy;, Diyjy1, -+, Derpyy of sections of
Apyjy Appiyr, -, Asrm (vespectively) such that 7 is bounded and P
centralizes each D;. In either case we obtain a chain of length “almost”
h/2 of sections of G on which H/P acts, and which satisfies suitable axioms so
that the process can be repeated (using a normal subgroup of prime order in
H/P, etc.) Obviously no method based on this process can give an upper
bound smaller than 2".

There are many technical complications in the proof due to the difficulty
of handling the case |P| = 3 (among other things). But basically it is a
straightforward application of the methods of Hall and Higman [3]. The
few new concepts which are used are grouped together in Sections 1, 2 and 3.
They are the notions of Fitting chains (which are the “correct’” chains of
sections 4, ---, 4, of @), of weak equivalence (which is used in place of
equivalence in Fitting chains because it is impossible to verify the latter after
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a complicated construction), of ample representations (which are just the
ones which are “good” in the Hall-Higman theory ) and of the class @ of groups
(which contains all the useful special groups and is closed under formation
of non-trivial sections). There is also something called an augmented Fitting
chain which was just introduced to handle the case | P | = 3.

The titles of the sections indicate pretty well the outline of the argument.
§1 is the obligatory list of notations. In §2 we introduce Fitting chains and
state the basic theorems we shall prove about them. In §3 we prove some
elementary facts about ample representations. In §4 we study closely a
certain situation of two steps in a chain in which a non-ample representation
appears. From this we conclude (in Theorem 4.20) that ample representa-
tions always appear in our chains after a bounded number of steps. Then we
show in §5 that, knowing we have ample representations in one step of our
chain, we can find “enough’” ample representations at the next step. The

arguments here break down if | P| = 3. But in that case we have an aug-
mented Fitting chain. In §6 we use the additional structure to find “enough”
ample representations when | P| = 3. In §7, we put the results of the pre-

ceding sections together, add a few new ones, and prove the basic theorems of
§2. Finally in §8 we prove (0.1) from the established results of §2.

1. Notation

Let G be any finite group. We denote by

Z (@) the center of G,

@' the derived group of G,

&(@) the Frattini subgroup of G (i.e., the intersection of all maximal subgroups
of @),

F(G) the Fitting subgroup of G (i.c., the largest normal nilpotent subgroup
of @),

Aut(@) the automorphism group of G.

The Fiiting series F,(G),n = 0, 1,2, - - | is defined inductively by

Fo(@) = {1}
F.(Q) 1is the inverse image in G of F(G/F.1(@)), for n > 1.

Evidently each F,(G) is a characteristic subgroup of G. If G is solvable,
then there is some integer h > 0 such that F,(G) = G. We call the least
such integer h the Fitting height of G and denote it by A(G).

If each S;,% = 1, - -- , k, is an element or a subset of G, then {(S;, ---, Si)
will denote the subgroup of G generated by Si, «--, Sk.
If o, 7 € G, then we define
o =1 'or

[o, 7l =0 7 or = P
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For any 71, --+, 7. ¢ @ and any integers a,, *-- , @, , we define
ghnittentn (™) (g™)2 «vv (™)™, forall oeG.
Thus [o, 7] = o 1, for all ¢, 7€G. If p1, -+, pm are also elements of G
and by, -+, b, are integers, then we define
o_(a111+-'~+u,.r,,)(b1p1+m+bmpm) — [o_a111+---+a,,'r,,]b1p1+~~~+bmpm f07' all o €G.
Thus

o_(—l +n(—1 +p)’

lo, 7, 0] = [lo, 7], o] = Jorall o, 7, p e G.

Obviously this definition can be repeated to define ¢’*7*, where each f; has
the form a; 71 + -+ -+ @, 7, for some integers a;, - - - , @, and some ele-
ments 7y, -+, 7, of G.

If A, B are two subgroups of G, then [A, B] will denote the subgroup gen-
erated by all [s, 7], where ¢ e 4, ¢ B. We define [4, B]", for all integers
n > 0, by

[A7B]0 = 4, [A’ B]” = [[A5 B]n—lr B]; for m > 0.

Thus [4, B = [4, B, B] = [[4, B], Bl.

By A < G we mean “4 is a subgroup of G” as opposed to 4 C @G, which
means “A is a subset of G@’. By A < G we mean “4 is a normal subgroup
of G”.

A section of G is a factor group A/B where B <l A < G. The section A/B
equals another section C/D if and only if A = C and B = D. A subgroup E
of G covers the section A/Bif (EnA)B = A and avoids A/Bif EnA = En B.

If @G is solvable, then I(@) is defined to be the length of a composition series
of G. If we write the order | G| as a product of (not necessarily distinet)
primes: |G| = p; - -+ pi, then I(G) = L

If @ is a non-trivial p-group, for some prime p, we write p = p(G).

Let F be any field. We denote by F[G] the group algebra of G over F.
By an “F[G]-module”, we understand a right F[G]-module on which the
identity of F[@] acts as the identity transformation and which is finite-di-
mensional as a vector space over I.

If V is an F[G]-module and H is any subgroup of G, then Vy will denote the
restriction of V to an F[H]-module. If U is any F[H]-module, then U will
denote the F[G]-module induced from U.

An F[G]-module V is trivial if G centralizes it. It is completely reducible
if it is a direct sum of irreducible F[G]-submodules. If | G | is relatively prime
to the characteristic of F, then every F[G]-module is completely reducible.

For any F[G]-module V, there exists some F[G]-composition series {0} =
Vo< Vi < -+ < V, = V. We call the composition factors Vi/Vi;,
i =1, ---, n, the srreducible F|G]-components of V. Of course, these irre-
ducible components are unique up to order and F[G]-isomorphism.
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An F[G]-module V is called prémary if all of its irreducible F[G]-components
are isomorphic to each other.

If Vis an F[G@]-module and H is a subgroup of @, then

[V, H] s the F-subspace spanned by all v(ec — 1),veV, o e H.

v,H’ = V.

v, H\" = [[V, H"", H], for all n. > 0.

Cy(H) is the F-subspace of all v € V such that ve = v for all o € H.

Evidently [V, H], [V, H]" and Cv(H) are all F[H]-submodules of Vy .

For any integer n > 1 and any F[G]-module V, we define the F[G]-module
n X V by:

n

anXV=Vod- -V

If V is any F[G]-module, then the dual F-vector space Homg(V, F) is
made into the dual F[G]-module by

(fo)(v) = f(va™), forallfeHomp(V,F), ceG, veV.

We say that two F[G]-modules V, U are weakly F[(]-equivalent if each non-
trivial irreducible F[G]-component of V is F[G]-isomorphic to an irreducible
F[G]-component of U and vice versa, i.e., V, U have the same non-trivial
irreducible components with possibly different multiplicities. Obviously
weak F[G]-equivalence is an equivalence relation among F[G]-modules.
Furthermore, it satisfies:

(1.1) If U,V are weakly F[G-equivalent F[Gl-modules and H < @, then
Uy , Vu are weakly F[H)-equivalent.

Indeed, any non-trivial irreducible F[H]-component of Un must be F[H]-
isomorphic to an F[H]-component of some non-trivial F[G]-component of U,
and hence to an F[H]-component of V. Statement (1.1) follows immediately
from this.

Another remark about weak equivalence has to do with field extensions:

(1.2) Let E be a finile algebraic exiension field of F and U, V be weakly
E|Gl-equivalent E[Gl-modules. Then U, V, considered as F[G]-modules, are
weakly F|Gl-equivalent.

Indeed, any non-trivial F[G]-component of U must be F[G]-isomorphic to an
F[@]-component of some non-trivial E[G]-component of U, and hence to an
F[G)-component of some E[G]-component of V. The statement follows
directly from this.

An action of a group K on a group G will be a homomorphism of K into
Aut (@). Since we seldom need consider two different actions of K on G,
we usually write “(K on G)” to denote that action of K on G which is being
considered at a given point in the argument. If ¢ ¢ K, then we write 7° for
the image of 7 ¢ @ under the automorphism of G which is the image of ¢ in
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Aut (@). We may always form the semidirect product K@ in which ° be-
comes ¢ ‘7, for all ¢ € K, 7 ¢ G. This enables us to define [G, K] and [G, K]"
as usual. We may also define the centralizers C¢(K) of K in G and Cx(G)
of Gin K. For the latter we usually use the alternative notation Ker (K on
@) = Cx(@), since it is the kernel of the representation of K on @ given by
(K on @).

We denote the image of K in Aut (G) by K. Often we also consider K 4
to be the section K/Ker (K on G) of K. This identification seldom causes
confusion.

If G is an abelian group, we denote by G the group G written additively.
When G is an elementary abelian p-group (i.e., when G is abelian with prime
exponent p), we make G into a vector space over the field Z, of p elements
in the natural way. If another group K acts on G, then G* becomes a Z, [K]-
module.

Suppose a group K acts on a finite solvable group G. Then each K-composi-
tion factor A/B of @ is an elementary abelian p-group, for some prime p.
So [A/B]" is an irreducible Z, [K]-module, which we call an irreducible com-
ponent of (K on @). If K also acts on another finite solvable group H, then
(K on @) and (K on H) are weakly equivalent if each nontrivial irreducible
component of (K on @) is K-isomorphic to an irreducible component of (K on
H) and vice versa. Obviously this is an equivalence relation among K-
groups. Asin (1.1) we have

(1.3) If (K on G) s weakly equivalent to (K on H) and L < K, then (L
on @) is weakly equivalent to (L on H),

where, of course, the actions of L are restricted from those of K.

Suppose that a group K acts on a group G. A section 4/B of G is K-in-
variant if both A and B are K-invariant subgroups of G. We also say that
“K normalizes A/B”. In this case K acts naturally on the factor group 4/B.
To say that a section C/D of K normalizes A/B means that C normalizes A/B
and D < Ker (C on A/B). Then C/D acts naturally on 4/B.

Let a group K act on a group G and another group L act on both K and G.
We say that (K on G) is L-invariant if (¢") = (o°)”,foralle e G, 7 ¢ K, p e L.
In that case we may form the “triple semi-direct product” LKG.

If K acts on G and L acts on K, then (K on G) is weakly L-invariant if the
actions (K on G) and (K on G)°, the latter given by

r— (KonG)(+ ") for rekK,

are weakly equivalent for all ¢ e L. We define weak L-invariance similarly
for F[K]-modules V over any field F, using weak F[K]-equivalence.
We define @ to be the family of all finite groups A satisfying:

(1.4a) A is a non-trivial p-group, for some prime p.
(14b) ®(A) < Z(4).
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(14c¢) d(@(4)) = {1}.
(1.4d) If p is odd, then A has exponent p.

Evidently all special groups 4 (in the sense of [3]) lie in @ provided they are

non-trivial and satisfy (1.4d). However @ obviously has the following
important property which special groups lack:

(1.5) Any non-trivial section B/C of a group A € @ also lies in Q.

If A €@, we define A to be the Z,4-vector space [4/®(4)]. It follows
easily from (1.4b) that the map f4 defined by

(1.6) f4(c®(A), 7®(A)) = [0, 7], foralle, €A,

is an alternating, bilinear map of A X A into ®(4)" (note that ®(4)* is
also a Z,)-vector space by (1.4¢)). It is clear from (1.6) that the radical
of fa (ie., the set of all e A such that f.(é, A) = {0}) is precisely
[Z(4)/®(A)]".

2. Fitting chains

The simplest way of thinking about the Fitting height of a finite solvable
group @G is to consider chains A, --- , A, of sections of G satisfying the fol-
lowing conditions:

(2.1a) Each A:;,t =1, - ,t,1is a non-trivial p:;-group, for some prime p; .
(2.1b) A; normalizes Asya, fori =1, -+« ¢t — 1.

(2.1c) Ker (Adiondipq) ={1},fori=1,---,¢t— 1.

(21d) pi # piafori=1,---,t — 1.

It is easy to verify that the Fitting height 2(@) is merely the maximum of the
lengths ¢ of all such chains of sections of G (see Lemma 8.2 below for part of
the argument).

The basic idea behind our proof of Thompson’s conjecture is that one
should forget about the group G and consider only chains 4,, ---, 4, of
groups, each acting on the next, which satisfy axioms similar to (2.1). From
this point of view the Carter subgroup H of G becomes a group outside the
chain acting on each A; and leaving invariant each action (A4; on A.1).
Under certain conditions, which Carter subgroups and appropriate chains of
sections of G' can be shown to satisfy, we prove that the length ¢ of such a
chain must be bounded as a function of I(H ).

To make this program more explicit, we first consider the axioms which our
chains 4,, ---, 4; must satisfy. Obviously we want the groups 4: to have
as uncomplicated a structure as possible. The Hall-Higman theory suggests
that we take them to be special. However, the class of special groups is not
closed under subgroups and epimorphic images, which makes it awkward to
use in complicated constructions. So we choose the 4 instead from the class
@, which does have the desired closure properties by (1.5) and contains enough
special groups for our purposes.
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A little experimentation soon demonstrates that we cannot allow the ac-
tions (4i-;1 on A4;) and (A4; on 4;41) to be completely independent of each
other. It is tempting to make the representation (A; on A;y;) invariant
under 4;;. However, in practice this condition is much too difficult to
verify after a construction. So we only insist that (4; on A.4;) be weakly
A ;_y-invariant, which turns out to be sufficient in general to establish what we
need.

Another axiom suggested by the Hall-Higman theory is that 4; centralize
®(Ais1). This condition turns out to be vital in many of our proofs.

Combining the above ideas, we define a Fitling chain to consist of groups
Ai, -+ ,A:and actions (A;0on 441), fore =1, --- ;¢ — 1, satisfying:

(2.2a) A;e@,fori=1,----,t

(2.2b) p(4:) = p(Asp), fori =1, -+, ¢ — 1.

(2.2¢) [®(Aip), A = {1}, fori =1, ---,¢— 1.

(22d) Ker(4;onA;y) = {1}, fore=1,---,¢— 1.

(2.2¢) (Aiyson Aiys) is weakly A-invariant, fori =1, -+ , ¢t — 2.

Usually we speak of “the Fitting chain 4,, ---, 4, leaving the actions
(A; on Aiy) to be understood.

Suppose that A;, --- , A, is a Fitting chain and that D; is a section of 4,
for?i =1, ---,¢ If the action of 4; on 441 induces an action of D; on Dsyy
fors =1, ---, ¢ — 1, and if these actions make D, , --- , D, a Fitting chain,
we say that Dy, -+, D;is a Fitting subchain of 4y, ---, A,. Notice that
some of the axioms (2.2) for Dy, - - -, D, are free by

Proposition 2.3. Let A1, -+, A¢ be a Fitting chain. Then sections D; of
Ai, fori =1, --- &t will form a Fitting subchain if and only if they satisfy:

(2.4a) Dy = {1}.

(2.4b) D; normalizes D;yq,for¢ = 1, --- ,t — 1.

(2.4¢) Ker (DionDiyy) = {1} fori =1, -+ ,¢— 1.

(24d) (Diy1on Diys) s weakly Di-invariant, fori = 1, «-+ ;{ — 2.

Proof. If Dy, -+, D, is a Fitting subchain it certainly satisfies (2.4) by
(2.2) and (1.4a).

Conversely, suppose that Dy, ---, D, satisfies (2.4). Then (2.2a) and
(24a) imply Die@, by (1.5). Suppose we know that D; e @, for some
i=1, --,t— 1. Then D; # {1}, by (1.4a). So (2.4b, ¢) imply that
Diy 5 {1}. Since D;y; is a section of A1, this, (1.5), and (2.2a) give
D;y; e @ By induction, (2.2a) holds for Dy, - -+ , Dy

Clearly p(D;) = p(4;) and p(Diy1) = p(dAiq1). Therefore (2.2b) for
A5, ---, A, implies (2.2b) for Dy, ---, D;.

Because A; centralizes ®(A441) (by (2.2¢)), so does D;. If Diyq = E/F,
then it follows that D; centralizes ®(E) < E n ®(A41). Since ®(Diy1) is
the image in Dy, of ®(E), it is centralized by D;. So (2.2¢) holds for Dy,
-, Dy.
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Finally (2.2d, e) for Dy, --- , D, are just (2.4¢,d). Therefore (2.2) holds
for Dy, -+, D,, which proves the proposition.

We say that a group H acts on a Fitting chain 4, ---, 4, if H acts on
each group 4;,¢ = 1, - -+, {, leaving invariant each action (4: on 4,), for
2 =1, ---,¢— 1. A Fitting subchain Dy, ---, D, is then H-invariant if
each D;, 7 = 1, ---, t, is an H-invariant section of 4;. In that case H
clearly acts on the Fitting chain D, , - -+, D, in the natural manner.

The first two of our three basic theorems concern the situation in which

(2.5a) A group H acts on a Fitting chain A1, --+ , A,
(2.5b) H has a normal subgroup P of prime order p,
(2.5¢) [Ay, P] = {1}.

The theorems, whose proofs will follow later (see §7), are:

THEOREM 2.6. If t > 3 and p does not divide [[i—1 | A: |, then there exists
an H-invariant Fitting subchain Dy, Dy, -+- , D: of As, ---, A, such that P
centralizes each D; , 1 = 3, -+ , t.

TuEOREM 2.7. Ift > 4 and p = 5, then there exists an H-invariant Fitting
subchain Dy, D5, ---, D, of As, ---, A; such that P centralizes each D; ,
=4, -t

Assuming these two theorems, we now prove

TurorEM 2.8. Let H be a finite group actmg ona F’zttmg chain Ay, -+ A,
such that no non-trivial section of any A;, ¢ = 1, , 1, 18 centralized by H
Assume further that H is a supersolvable group whose order 18 not diwistble by 6

Proof. We use induction on I(H). If I(H) = 0, then H = {1}. Since
no non-trivial section of any A;,7 = 1, --- , ¢, is centralized by H, each 4;
must be {1}. By (2.2a) and (1.4a), this implies that ¢t = 0 = 3(2° — 1).
So the theorem is true in this case.

Now suppose that I = I[(H) > 0 and that the theorem is true for all smaller
values of [(H). Since H is supersolvable it has a normal subgroup P whose
order is the largest prime p dividing | H | (see Theorem VI, 9.1 of [4]).

Suppose that P centralizes 4;, ---, 4,, for some integer s = 1, -+, &.
Then H/P acts on the Fitting chain 4,, ---, 4,. Obviously H/P, and
Ay, -+, A,, satisfy all the hypotheses of the theorem with I(H/P) =
{ — 1. Soinduction tells us that s < 3(2"’1 - 1).

Ift < 3(2"" — 1) + 3, then

t<32™ —1)+34+32"7—-1)=32"-1)

and the theorem is true. So assume that ¢ > 3(2"" — 1) + 3. The argu-
ment of the preceding paragraph gives us an integer

s=1,2---,32""=1)+1
such that P does not centralize A, . Furthermore, the length ¢ — s + 1 of
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the Fitting chain A, , 441, -+, 4, is at least
BER™—1)+4 -—BER7T—1)+1]+1=4.
If p > 5, then Theorem 2.7 applied to H, P and 4, ---, A, gives us an
H-invariant Fitting subchain D;43, Deys, <+, Dy of Agys, --+, 4, which is
centralized by P. Evidently H/P, and D43, -+, D,, satisfy the hypoth-

eses of the theorem with [(H/P) = I — 1. So induction tells us that

t— (s +3)+1<327 —1).
Hence
t<s+327"—-1)+2
<BERT—-1)+114+3@7"—1)+2=32 —1),

and the theorem is true in this case.
If p = 2 or 3, then H is a p-group. Because H centralizes no non-trivial

section of the p(4:)-group 4., for ¢ = 1, --- , t, the primes p and p(4:)
must be distinet. Hence Theorem 2.6 applies to H, P, and 4,, ---, 4;,
giving us an H-nvariant Fitting subchain D,, D43, -+, D, of
Asy2, -+ , A, which is centralized by P. By induction

t—(s+2)+1<3@™" —1).

Sot < s+ 32" —1) +1 < 3(2" — 1), which finishes the proof of the
theorem.

The second sentence of Theorem 2.8 looks very suspicious. It seems
reasonable to make the

CoNJECTURE 2.9. There is a function g from the non-negative integers into
themselves such that t < g(I(H)) whenever a finite group H acts on a Fitting
chain Ay, - - - , A and centralizes no non-trivial section of any A; , 2 = 1, -+ , L.
One might even hope that ¢ can be chosen so that g(l) = 0(l) asl — .

By an example which is too complicated to give here I can show that
Theorem 2.7 does not hold for p = 3. So we are forced to consider more
complicated chains of groups in order to prove Thompson’s conjecture by
this method when | H | is divisible by 6. The idea is to make the connection
between (A; on A1) and (A1 on A;y,) stronger when p(4:41) = 3 and to
leave everything else alone.

We define an augmented Fitting chain to be a Fitting chain 4,, ---, 4,
together with certain additional groups, actions, and epimorphisms. We
say that anindexs = 1, -+, tisrelevantif 1 <7< ¢ — 2 and p(4it1) = 3.
For each relevant index 7, we have an additional group B;, an action of B;
on A;ye, and an epimorphism 7; of B; onto A; (which defines an action of
B; on A via (A on Aiyq)) satisfying:

(2.10a) B;isa p(4:)-group.
(2.10b) (Aiy10on A.4s) 2s Bi-invariant.
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(2.10c) Ifi <t — 3 then (Aise on Aiyg) is weakly Bi-invariant.

We usually write ‘“the augmented Fitting chain 4,, ---, 4., {Bi}” leaving
the actions and the epimorphisms 7; to be understood.

Suppose that 4,, ---, A., {BJ} is an augmented Fitting chain, that
Dy, ---, D;is a Fitting subchain of 4, .-+, 4;, and that C; is a section of
B;, for each relevant ¢. If #; induces an epimorphism of C; onto D; and C;
normalizes D;y» for each relevant 4, and if Dy, ---, D,, {Ci} with these
epimorphisms and actions form an augmented Fitting chain, then we call
Dy, ---,D,,{C} an augmented Fitting subchain of Ay, -+, A:,{Bi}. Asin
Proposition 2.3, we need not verify all the properties of Dy, ---, D, {Ci}.

ProrosirioN 2.11. Let Ay, ---, A¢, {Bi} be an augmented Fitting chain,
D;be asection of A, ,forg =1, --- ,t, and C; be a section of B; , for all relevant
i. Then Dy, ---, D,, {Cs} form an augmented Fitting subchain if and only if
they satisfy:

(2.12a) Dy = {1}.

(2.12b) D; normalizes Djiq, forj =1, --- ,t — 1.

(2.12¢) n: induces an epimorphism of C; onto D; for all relevant 1.

(2.12d) C; normalizes Do , for all relevant 7.

(2.12¢) Ker (DjonDjy) = {1}, forj=1,---,1— 1.

(2.12f)  (Diya on Diyy) is weakly Di-invariant, if ¢ = 1, --- , t — 2 and
p(Aigr) # 3. _

(2.12g) (Diye on Diy3) is weakly Ci-invariant for oll relevant 1 < ¢ — 3.

Proof. Tt is clear that (2.12) holds whenever Dy, ---, D, {Ci} is an
augmented Fitting subchain.

Suppose that (2.12) holds. We have enough groups, epimorphisms, and
actions to form an augmented Fitting subchain Dy, ---, D;, {C}. So we
need only check the various axioms.

Letz =1, ---,t — 2 with p(4:41) = 3. The B;-invariance of (41 on
Asy2), together with (2.12¢, d), implies that (D, on D;y,) is Cs-invariant.
So (2.10b) holds for our subchain. Sinece D;; centralizes ®(D; ) by (2.2¢),
this clearly implies that (D;41 on D) is weakly D;-invariant. So (2.12f)
is satisfied for all ¢ = 1, .-+, { — 2. This and (2.12a, b, ) are conditions
(2.4). Therefore Dy, ---, D, is a Fitting subchain by Proposition 2.3.
Obviously p(C:) = p(B;) = p(4:) = p(Dy), for all relevant 7. And (2.12g)
is (2.10¢) for the subchain. Hence Dy, ---, D,, {C;} satisfies (2.10) and
the proposition is true.

A group H acts on an augmented Fitting chain 4, ---, 4, { By} if it acts
on each group 4;,7 = 1, -+, ¢, and on B;, for each relevant 7, so that all
the actions and epimorphisms of the chain are H-invariant. An augmented
Fitting subchain Dy, ---, D,, {C)} is then H-invariant if each D;, j =
1, .-+, ¢ and C;, for each relevant ¢, is an H-invariant section. In that case
H acts on the augmented Fitting chain Dy, ---, D;, {Ci} in the natural
manner.
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The third basic theorem, whose proof will follow later (see §7) is

TurorEM 2.13. Let H be a group acting on an augmented Fitting chain

Ay, -, A, {Bi}. Suppose that P is a normal subgroup of order 3 in H such
that [A:1, P] = {1}. Ift > 6, then there is an H-invariant augmented Fitling
subchain Dg , --- , D, , {Ci} of As, -+, A, { B such that P centralizes each
D;and C;.

Assuming the three Theorems 2.6, 2.7 and 2.13, we now prove the following
result from which we shall later derive a proof of Thomson’s conjecture (see

§8).

TaEOREM 2.14. Let a finite group H act on an augmented Fitting chain
Ay, -+, Ay, {Bs} so that H centralizes no non-trivial section of any A;,j =
1, ---, t. Assume further that H is a supersolvable group with & normal 3-
Sylow subgroup M. Then t < 5(2'™ — 1).

Proof. We use induetion on |M|. If |M]| = 1, then H and
Ay, -+, A, satisfy the hypotheses of Theorem 2.8. That theorem tells us
that ¢ < 3(2" — 1) < 5(2"” — 1). So this theorem is true if | M | = 1.

Now we assume that | M | > 1 and that this theorem is true for all smaller
values of | M |. Since H is supersolvable it has a normal subgroup P of prime
order p. We may even choose P to be contained in the normal 3-Sylow sub-
group M of H. Sop = 3.

Suppose that P centralizes Ay, ---, 4, for some integer s = 1, ---, &
If p(Aiy1) = 3, forsome sz = 1, --- , s — 2, then the P-invariance of (B, on
Ais2), together with the fact that P centralizes A, implies that [B;, P]
centralizes A;y,. Furthermore, the facts that P centralizes 5:(B;) = A4;
and leaves n; invariant imply that #;([B:, P]) = {1}. So there is a natural
action of B;/[B;, Pl on A4, and a natural epimorphism of B;/[B; , P] onto A; .
Since P is normal in H, the subgroup [B; , P]is H-invariant. Hence so are the
action (B;/[B:, P] on A;.2) and the epimorphism of B;/[B;, P] onto 4;.
It follows that Ay, ---, 4s, {Bi/[Bi, P}]} is an augmented Fitting chain on
which H/P acts. Since H/P, M/P and A,, ---, A,, {Bi/[B:, P]} satisfy
our hypothesis with | M/P| < |M |, we know by induction that s <
5(2"" — 1), where | = I(H) = I(H/P) + 1.

If ¢t < 5(2"" — 1) + 5, the theorem is certainly true. So assume that
t > 5(2"" — 1) + 5. The preceding paragraph proves that there exists an
s=1,--+,5(2"" — 1) + 1 such that P does not centralize 4, . The length
t — s + 1 of the augmented Fitting chain 4, , As41, -+, 4, {Bi} is at least

B —1)4+61— 527 —1)+1+1=6.

So Theorem 2.13 gives us an augmented Fitting subchain D5 , Dsys , * ++ , D¢,
{Ci} of Asys, - -+, Ay, {Bi} such that P centralizes each D; and C;. Apply-
ing the present theorem by induction to H/P, M/P and Dsys5, --+, Dy,

{Ci}, we see that
t— (s+5)+1< 527 —1).
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Hence
1< (s+5)—1+5027—-1)<5@7=1)+6—-14+52""-1)

= 5(2' — 1).
This completes the proof of the theorem.

3. Ample representations

We begin with some elementary observations about the situation in which

(3.1a) PA s the semi-direct product of a group P of prime order p acting
on a group 4 €@,

(38.1b) F is a field of prime characteristic ¢ = p(A ) which is a splitting field
for all subgroups of PA,

(38.1¢) V is an trreducible F[PA]-module.

The first observation is

ProrositioN 3.2. If (3.1) holds and [Z(Av), P] # {1}, then V s induced
Sfrom an irreducible F[A]-module U.

Proof. Apply Clifford’s theorem (see Theorem V, 17.3 of [4]) to V and
the inverse image B of Z(Ay) in A. Since F is a splitting field for B and
By = Z(Av) is abelian, there is a linear F-character A of B and an irreducible
F[Cpa(N)]-module U such that V is induced from U and any o € B acts on
U as scalar multiplication by A(¢) ¢ F. Because A centralizes By, it fixes
N. By (3.1a), A is maximal in PA. Therefore Cps(N) is either 4 or PA.
The latter possibility implies that U = V and that P centralizes B/Ker A =
By = Z(Av), contradicting our hypotheses. Hence Cps(A) = A and the
proposition is true.

CoroLLARY 3.3. Let C = C4(P). Then both Cv(P) and [V, PI"™ are
non-zero F[C]-submodules of V. Furthermore, both of them are weakly F[C]-
equivalent to V.

Proof. From V = U™ we conclude that Veycis F[P X Cl-isomorphic to
the outer Kronecker product F[P] ® U, of the regular F[P]-module with U .
We always have Crip(P) # {0} and [F[P], P’ # {0}. It follows that both

Cy(P) ~Cpp(P) ® Uc and [V, PP ~[F[P], P ® U,

are non-zero, and that all of V¢, Cy(P), [V, PP~ are multiples of Uq as
F[C}]-modules. So they are weakly F[C]-equivalent to each other, which
proves the corollary.

Another observation which we shall use repeatedly is

ProrositioN 3.4. Suppose that (3.1) holds, that p #= p(4), and that P
centralizes Z(Av) but not Ay. Then [Av, P] is an extra-special group and
®([Av, P]) = ®(Av) is ceniralized by P. The group PAy is the central product
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of its subgroups PlAv , P] and C4,(P), which intersect in ®(4v). Regarding
PAy as the natural image of P[Av, P] X C4,(P), the module V is the outer
Kronecker product W ®r U of an irreducible F[P[Av , P]-module W and an
srreducible F[C 4, (P)}-module U. Furthermore ([Av, P] on W) is faithful.

Proof. Our hypotheses insure that Ay is not abelian. So (1.5) tells us
that Ay e @. Since P centralizes Z(Ay), it centralizes ®(Av) (by 1.4b)),
which is non-trivial since it contains Ay . Therefore ®(Ady) < Z(PAvy).
Because V is an irreducible F[PAy]-module on which ®(4y) is faithfully
represented, this implies that ®(Ay) is cyclic. Hence ®(Ay) has order
p(4) = p(Av) by (l4c).

From p = p(4v) and [Av, P] # {1} we conclude that
Ay = [Ay,P]® C1,(P) and [4dy, P] = {0}.

Since P centralizes ®(4 ) and leaves the form f4, of (1.6) invariant, the two
subspaces [Ay, P] and Cz,(P) of Ay must be f4,-perpendicular. Therefore
A v is the central product of the inverse images L of [Ay, P] and K of Cz,(P)
with Ln K = &(4v).

The radical [Z(Av)/®(Av)]" of fa, is contained in Cz,(P) by hypothesis.
So the restriction of f4,, to [Ay, P] X [Ay, P] is non-singular. Since ®(4 )
is eyclic of order p(4) and [Ay , P] # {0}, we conclude that L is extra-special
with ®(L) = ®(Ay). Obviously L contains [Ay, P]. But [Av, P] covers
L~1[A,,P]. Therefore L = [Ay, P]and the first statement of the proposi-
tion is true.

Since p ## p(A) and P centralizes both ®(Av) and K/®(4v) = Cz,(P),
the group P centralizes K. It follows that K = C,,(P). So 4y is the
central product of [Av, P] and C4,(P). Because P normalizes [4y, P] and
centralizes C4,(P), the second statement of the proposition follows directly
from this.

The third statement of the proposition comes immediately from the second,
since F is a splitting field for all the groups involved. Finally, any
o e[Av, P] — {1} acts non-trivially on W since ¢ X 1 e P[Ay, P] X C4,(P)
has the image o ¢ PAy which acts non-trivislly on V. So the entire propo-
sition is true.

The following fact is well known (see [3] or Theorem (IV.9) of [2]):
(3.5) Under the hypotheses of Proposition 3.4, there is a regular F[P]-

submodule of W unless p is a Fermat prime, p(A) = 2, and [Av , Pl ~ [4y, P
s an irreducible Z, [Pl-module.

We use this to prove the following corollary to Proposition 3.4.

CoRrOLLARY 3.6. Let C = C4(P). Unless p is a Fermat prime, p(4) = 2,
and [Ay , P is an irreducible Z, [P}-module, the subspaces Cv(P) and [V, P}~
are both non-zero F[C-submodules of V and are both weakly F[Cl-equivalent to V.



462 E. C. DADE

Proof. Assume we are not in the exceptional case. Then (3.5) gives us
an F[P]-submodule of Wy isomorphic to F[P]. Clearly Cy < C4,(P). So
the proposition tells us that Veye is F[P X Cl-isomorphic to the outer Kro-
necker product Wr ® U, which contains a submodule isomorphic to F[P] ®
Ue. Since neither Cpp(P) nor [F[P], P”™ is {0}, we conclude that
Cy(P) >~ Cw(P) ® Ugand [V, P’ ~ [W, PP ® Ug are both non-zero.
Furthermore all the modules V¢, Cv(P)c, and ([V, P]” )¢ are isomorphic
to positive multiples of U¢, and hence are weakly F[C]-equivalent to each
other. So the corollary is true.

When p = p(A4), we use a different approach to get a result similar to
Corollary 3.6.

Prorosirion 3.7. Suppose that (3.1) holds with p = p(4) > 3 and
[Av, PI"™ # {1}. Let C = Cu;m»-t(P). Then Cy(P) is a non-zero F[C]-
submodule of V and is weakly F[C]-equivalent to V.

Proof. If [Z(Av), P] == {1}, the result follows immediately from (1.1)
and Corollary 3.3, since ¢ < C4(P). So we may assume that [Z(A4y), P] =
{1}.

Under this assumption we first prove that
(38) [Av, P < Z(l4v, PI).
For this it suffices by (1.6) to show that
fay(lv, P17 [Ay, PI7) = {0}.

But [Ay, P]" = Ay(x — 1)", for all n > 0, where = is any generator of P.
If @, BeAy, weusep > 3 and the fact that P centralizes f4,(4dv, Av) <
Z(Av)* to compute
fayla(r — 1", B(r — 1)"7) = fay(a(r — 1)’ (x! = 1), B(x — 1)"™)
= fAv(_a("r - l)p"r_l’ 6(7'- - l)p—s)'

But Ay is a vector space over a field Z, of characteristic p = p(4). So
a(r — 1)* = a(«” — 1) = 0. Therefore (3.8) holds.

Let U be any non-trivial irreducible F[C]-submodule of V. Since
C < [4, PP, there exists some irreducible F[[4, P]”*]-submodule W of V

containing an F[C]-submodule isomorphic to U. So we may assume that
U < W. Since C is non-trivial on U, it is non-trivial on W. Therefore

Ker ([4, PP on W) < [4, PP
So there must exist some element o € [Ay, PI* and some = ¢ P such that
[o, 7l e[y, P — Ker ([Ay, P on W).

It follows from (3.8) that (s, [Av , P]""") is a P-invariant abelian subgroup of
Ay. Let B be its inverse image in A. Then [4, PP~ < B. So there is
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some irreducible F[PB]-submodule ¥ of V containing an F[[4, P}’ "']-sub-
module isomorphic to W. As before, we may assume that W < Y. Clearly
By is a homomorphic image of By = (c, [Av, P]”") and hence is abelian. If
P centralized By, then [0, 7] would lie in Ker (By on Y'), contradicting the
fact that [o, 7] acts nontrivially on W < Y. Hence [By, P] # {1}. So
Corollary 3.3 applies to PB and Y. It tells us that ¥ and Cv(P) are weakly
F[Cs(P)]-equivalent. Since C < Cp(P), the modules ¥ and Cy(P) are
weakly F[Cl-equivalent (by (1.1)). Hence there is an irreducible F[C]-sub-
module of Cy(P) < Cy(P) which is isomorphic to the non-trivial F[C]-
submodule U of Y.

We have shown that any non-trivial irreducible F[C]-submodule U of V
is F[C]-isomorphic to a submodule of Cy(P). The converse being obvious,
this proves that Cy(P) and V are weakly F[C]-equivalent.

By hypothesis there exists a non-trivial irreducible F[[4, P]*"']-submodule
W of V. Constructing B and Y as above we see from Corollary 3.3 that
Cy(P) % {0}. So Cy(P) 5 {0} and the proposition is proved.

In practice we must consider modules over fields which need not satisfy
(3.1b). A simple ground field extension quickly reduces this more general
case to the one we have been considering.

Suppose that (3.1a) holds, that F is any field of prime characteristic
q # p(4), and that V is any irreducible E[PA]-module. We call V ample if
one of the following conditions holds:

(3.9a) p = p(4) and [Z(Av), P] &= {1}.

(3.9b) p = p(A4), [Z(4Av), P] = {1}, [Av, P] # {1} and we are not in the
exceptional case in which p(A) = 2, p is a Fermat prime, and [Ay , P is an
irreducible Z, [Pl-module.

(39¢) p = p(4) >3and[Ay, PI"™ = {1}.

These are, of course, just the hypotheses of Corollaries 3.3 and 3.6 and Prop-
osition 3.7 made into axioms. From these results we easily prove

ProrositioN 3.10. Let V be an ample irreducible E[PAl-module. Let C
be Cu(P), if p = p(4), or Cra,ms—1(P), if p = p(A). Then Cy(P) is a
non-zero E[C]-submodule of V and is weakly E[C-equivalentio V. Ifp # p(4),
then [V, P*™ is also a non-zero E[C]-submodule of V weakly E[Cl-equivalent to V.

Proof. Since PA has only a finite number of subgroups, we may choose a
finite algebraic extension field F of E so that it is a splitting field for all sub-
groups of PA. Let U be an irreducible F[PA4]-submodule of the extension
F ®5 V of Vto an F[PA]-module. Clearly F ® z V, considered as a module
over E[PA], is isomorphic to [F:E] X V. Since V is an irreducible E[PA]-
module, we conclude that the restriction Uz of U to an E[PA]-module satisfies

(3.11) Ug~n XV (as E[PA]-modules),

for some positive integer n.
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If p # p(A),let Z = Cy(P) or [V, PI"". Ifp = p(4),let Z = Cy(P).
We must prove that Z is a non-zero E[C]-submodule of V weakly E[C]-
equivalent to V. Let ¥ = Cy(P), if Z = Cy(P), and Y = [U, P}*, if
Z = [V, P""'. Evidently the isomorphism (3.11) always carries ¥ onto
n X Z. Therefore it suffices to prove that Y is a non-zero F[C]-submodule of
U weakly E[C]-equivalent to Uz ~n X V.

One conclusion from (3.11) is that Ker (PA on U) = Ker (PA on V).
Hence Ay = Ay, as factor groups of A. Therefore PA, FF, and U satisfy the
hypotheses of Corollary 3.3 or Corollary 3.6 or Proposition 3.7, if (3.9a) or
(3.9b) or (3.9¢), respectively, hold. The fact that V is ample says that one
of (3.9a, b, ¢) is satisfied. So the cited results tell us that ¥ is a non-zero
F[C}-submodule of U which is weakly F[C]-equivalent to U. Since the weak
F[Cl-equivalence of Y and U implies their weak E[C]-equivalence by (1.2),
the proposition is proved.

CoRrOLLARY 3.12. If V is an irreducible E[PAl-module, [Z(Av), P] = {1},
and [Av , P] 5% {1}, then [A v , P] is an extra-special group, ®([4v , P]) = ®(4Av)
is centralized by P, and PAv is the central product of P[Av , P] and C4,(P)
whach intersect in ®(Av).

Proof. Apply the first paragraph of the above argument to V. Then
(8.11) implies that Ay = Ay . Since F, PA and U satisfy (3.1), Proposition
3.4 applies to them, giving this corollary.

The following proposition sometimes helps to prove a module ample. As
before, (3.1a) holds, E is any field of prime characteristic ¢ # p(4), and V
is any irreducible E[PA]-module. Let B be some non-trivial P-invariant
subgroup of A. Then PB also satisfies (3.1a) (by (1.5)).

ProrositioN 3.13.  Suppose there is an ample irreducible E[PB]-component
W of V. Then V is an ample E[PA]-module.

Proof. Since W is a component of V, the factor group By is naturally a
section of 4 .

Suppose that p = p(4). Because p = p(B) and W is ample, (3.9¢) must
hold for P and By . Therefore p > 3 and [Bw, PI"~ # {1}. Since By is
a section of Ay, this implies that [Ay, PI?™ 5 {1}. So (3.9¢) holds for P
and Ay . I.e. V isample.

Suppose that p = p(A4) and that V is not ample. Since W is ample,
[Bw , Plisnot {1}. Because Bw is a section of A v , this implies that [A v , P] #
{1}. Neither (3.92) nor (3.9b) can hold for PAy . So [Ay, P] # {1} forces
PA to lie in the exceptional case of (3.9b).

From (3.9b) and Corollary 3.12 we know that p(A4 ) = 2, that p is a Fermat
prime, that [Av , P] is extra-special with ®([4y, P]) centralized by PAv,
and that [4y, P] =~ [Av, P]is an irreducible Z, [P]-module. It follows that
[Ay, P] is the only non-trivial subgroup D of Ay satisfying D = [D, P].
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But [Bw, P] # {1} implies [By, P] 5 {1}. Since p # p(4) = p(By), we
have [[By, P], P] = [By, P]. Therefore [By, P] = [4v, P].

The subgroup ®([4y, P]) = &([By, P]) is central in P4y and is a non-
trivial subgroup of Ay . Since V is an irreducible E[PAy]-module, this
implies that [V, ®([Av, P])] = V. It follows that [W, ®([Bv, P])] = W.
Because [By, P] = [Ay, P]is extra-special, ®([By , P]) is its center and has
prime order p(B) = 2. It follows that Ker ([Bv, Pl on W) = {1}. I.e,,
[Bw, P] = [By, P] as sections of B. Therefore [Bw , P] is extra-special, with
®([Bw , P]) centralized by P, and [B,,, P] is an irreducible Z; [P]-module.

Since p(Bw) = 2 54 p, we have [Z(By), P, P] = [Z(Bw), P]. But

[Z(Bw), Pl < Z(Bw) n [Bw, P < Z([Bw, P]) = ®([Bw, P]).

The last group is centralized by P. Therefore [Z(Bw), P] = {1}. Now we
know that p(B) = p(4) = 2, that p is a Fermat prime, that P centralizes
Z(Bw) but not By, and that [Bw, P] ~ [B,, P] is an irreducible Z, [P]-
module, i.e. PBy lies in the exceptional case of (3.9b). This contradicts the
hypothesis that W is ample. The contradiction proves that V is ample in
all cases, which is the proposition.

Let I and PA be as above. Now, however, we take V to be an arbitrary
finite-dimensional E[PA]-module. Since the characteristic of E is different
from p(A ), the restriction V4 of V to an E[A4]-module is completely reducible.
Let & = & (V') be the family of all kernels Ker (A on W), where W runs over
all irreducible E[A]-components of V,. For each K e X, let V,(K) be the
sum of all those irreducible E[A]-submodules W of V such that Ker (4 on
W) = K. Then the complete reducibility of V, implies that

(3.14a) V(K) is a non-trivial E[A]-submodule of V, for each K ¢ X,
(3.14b) V4= @ Qg Va(K).

If K is any normal subgroup of 4, let K(P) = N, K. Then K(P) is
the largest normal subgroup of PA contained in K. We define Xampie =

Kample( V') to be the set of all K ¢ X such that (3.9) holds with A/K(P) in
place of Ay . Finally, we set

(315) Vample =@ ZKeﬂcampm VA(K)
Then we have

ProprosiTION 3.16.  Vample 28 an E[PAl-submodule of V whose irreducible
E[PA]-components are precisely the ample irreducible E[PA]-components of V.

Proof. Since V is an E[PA]-module we have
(3.17) Va(K™) = Vu(K)-w forall KeX, weP.

In particular, X is a P-invariant family of subgroups of A. From the defini-
tion of Kampie it is clear that it is a P-invariant subfamily of . So (3.15)
and (3.17) imply that Vampie is an E[PA]-submodule of V.
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Let U be any irreducible E[PA]-component of V, and W be an irreducible
E[A]-component of U. If K = Ker (4 on W), then Clifford’s theory (see
Theorem V, 17.3 of [4]) says that

Ker (AonU) = N,r K™ = K(P).

Since K € &, we conclude that U is ample if and only if K € Kamp1e -

If U is a component of Vampie, then (3.15) implies that K e Xampio. S0
U is ample. If U is a component of V/Vamp1e , then (3.14) and (3.15) imply
that K ¢ X — XKamp1e . S0 U is not ample. Therefore the ample irreducible
E[PA]-components of V are precisely the irreducible E[PA]-components of
Vample , which proves the proposition.

4. Finding one ample representation

The following situation occurs repeatedly in Fitting chains on which our
group P acts:

(4.1a) PB 1s the semi-direct product of a group P of prime order p acting
on a group B € G.

(4.1b) PBA 1is the semi-direct product of PB acting on a group A € Q.

(4.1¢) V is an irreducible Z,[PA]-module, for some prime q.

(4.1d) p, p(B) and q are all different from p(A).

(4.1e) XKer (®#(4)on V) = {1}.

We shall prove the following consequence of (4.1) under weaker hypotheses
because of future applications.

ProrosrTioN 4.2. Let the semi-direct PA of a group P acting on a group
A €@ dtself act on a group V. If Ker (®(4) on V) = {1}, then the natural
epimorphism of A/Z(A) onto Av/Z(Av) is a P-isomorphism.

Proof. Obviously this epimorphism preserves the actions of P. So we
need only show it to be an isomorphism, i.e., that Z(4 ) is the inverse image
of Z(Av). Suppose that o e A — Z(A). Then there exists 7 ¢ A such that
[s, 7] 5% 1. Since [0, 7] e®(4 ), our hypotheses say that the image of [0, 7]
in Ay isnot 1. Hence the image of ¢ does not liein Z(A ). It follows that
Z(A) contains the inverse image of Z(Av). The opposite inclusion is obvious.
So the proposition is true.

In our case the value of Proposition 4.2 is that [A/Z(A4)]" is a Z,[PB]-
module, while [4v/Z(Av)]" is only a Zp,[P]-module. We exploit this fact
to prove

ProrositioN 4.3. Suppose that (4.1) holds and V s not an ample Z,[PA]-
module. Then [B,P] centralizes A/Z(A) unless the following exceptional
conditions all occur:

(44a) p(4d) = 2.

(4.4b) p is a Fermat prime.
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(4.4¢) |®(4)]| = 2.

(44d) U = [[A/Z(A)]Y, [B, P]] is an irreducible Z, [PB]l-module.

(4.4e) [U, P] is an irreducible Z;[P)-module.

(4.4f) The function g: oZ(A) X 7Z(A) — [0, 7] is a well-defined, PB-
invariant, non-singular, alternating bilinear map of U X U into ®(4)*.

Proof. Since p 5 p(A) (by (4.1d)) and V is not ample, both (3.9a)
and (3.9b) must fail. So there are two possibilities: either P centralizes
A v or the exceptional case in (3.9b) occurs.

If P centralizes Ay , then it centralizes Av/Z(Av) and hence centralizes
AJZ(A), by Proposition 4.2. But A/Z(A) is a PB-group. So [B, P]
must centralize it, and the proposition is true in this case.

Assume that we are in the exceptional case of (3.9b) and that [B, P] does
not centralize A/Z(A). Then (4.4a, b) hold and [Ay, P] is an irreducible
Z,[P]-module. Since Ay/Z(Ay) is a natural epimorphic image of Ay (by
(1.4b)), we conclude that [[Ay/Z(Ay)]*, P] is either {0} or an irreducible
Z,[P]-module. By Proposition 4.2 the same holds for [[4/Z(4)]", P].
Therefore [U, P) is either {0} or an irreducible Z,[P]-module. But [U, P]
cannot be {0}, since U = {0} by assumption and

(4.5) U, B, P]] = U,

which follows from the definition of U and the fact that p(B) # p(4) (by
(4.1d)). Therefore (4.4e) holds.

Hypothesis (4.1d) says that p(4) does not divide | PB|. Therefore U
is a completely reducible Z,[PB]-module. If U is reducible, then
U= U; ® U;, where U, U, are non-trivial Z, [PB]-submodules. Clearly
(4.5) implies [U;, [B, P]] = U; and hence [U;, P] 5 {0}, forz = 1, 2. So
[U, P] = [Uy, P] ® [U., P] is reducible, contradicting (4.4e). Therefore
(4.4d) holds.

Since we are in a case of (3.9b), Corollary 3.12 tells us that [Av, P] is
extra special with ®([Ay, P]) = ®(4v). Because p(4) = 2, this implies
that | ®#(Av) | = 2. By (4.1e) the natural epimorphism of ®(4 ) onto ®(A4y)
is an isomorphism. Therefore (4.4¢) holds.

By (1.4b), the function g of (4.4f) is a well-defined, non-singular, alter-
nating bilinear map of [A/Z(A)]* X [4/Z(A)]" into ®(A)™. It is obviously
PB-invariant. From (4.4c) we conclude that PB centralizes ®(A4). Since
p(B) # 2, this implies that

[4/Z(A)NY = U ® Craszun+(IB, P)),

where these two subspaces are g-perpendicular. It follows that the restric-
tion of g to U X U is non-singular, which proves (4.4f) and completes the
proof of the proposition.

Now we investigate the exceptional case in Proposition 4.3. IL.e., we as-
sume that (4.1) and (4.4) hold. We choose a finite algebraic extension F
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of Z, so that F is a splitting field for all subgroups of PB. Then the exten-
sion F ® z, U of U to an F[PB}-module has the decomposition

(4.6) FU=U;® --- ® Uy,

where Uy, ---, U, are absolutely irreducible F[PB]-submodules. From
(4.5) and the equation corresponding to (3.11), we know that

(4.7a) [Us, [B,P]] = Uifori =1, ---,4,
(4.7b) [U;, Pl = {0}, fori=1,---,t,
(4.7¢) By, = By,fori =1, --- ,t(as factor groups of B).

The first step in the investigation is
LEmMmA 4.8. p = p(B).

Proof. Suppose that p = p(B). Let< =1, ---,¢ By (4.7a), P does
not centralize By,. If it does not centralize Z(By;), then U; is induced
from some F[B]-module by Proposition 3.2. Hence U; contains a regular
F[P]-submodule. If P does centralize Z(By;), then Proposition 3.4 says
that U, is isomorphic to an outer Kronecker product W ®r Y of an
F[P[By;, P]]-module W and an F(Cg,,(P))-module Y. The exceptional case
in (3.5) does not hold here, since p(B) # 2. Therefore W contains a regu-
lar F[P]-submodule, which implies that U; does also.

The above argument shows that each U;,7 = 1, - - , ¢, contains a regular
F[P]-submodule. It follows from (4.6) that the multiplicity of any non-
trivial irreducible F[P]-module Z as a component of F# ® U is at least ¢.
But condition (4.4e) forces the multiplicity of Z as a component of [ ® U, P]
to be at most one. Since Z is non-trivial, these two multiplicities are equal.
Therefore ¢ = 1.

The function ¢ of (4.4f) has a natural extension to a PB-invariant, non-
singular, alternating, F-bilinear map ¢ of (F ® U) X (F ® U) into
F® ®(A)*. By (4.4c), F ® &(A)" is F-isomorphic to F as a trivial F[PB]-
module. So the non-singularity of ¢’ gives us an F[PB]-isomorphism of
F ® U = U, onto its dual module Homz(F ® U, F) = Homg(U,, F).
This is impossible sinee U; is a non-trivial irreducible F[PB]-module and
| PB|is odd (by (4.1d) and (4.4a)). This contradiction proves the lemma.

Let e be the smallest positive integer such that 2° = 1 (mod p). Then we
have

LemMMa 4.9. t=eanddime[U;, Pl =1,fori=1,--- ,e.

Proof. Since P is cyclic of order p, every non-trivial irreducible Z, [P]-
module has dimension e. So (4.4e) and (4.7b) imply

e = dimy [F ® U, P] = dimg [Uy, P] + -+ + dimgs [U., P] > ¢

Furthermore, equality holds if and only if the lemma is true. Hence we need
only show that ¢ > e.
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Lemma 4.8 tells us that PBy is a p-group. Its normal subgroup By is
non-trivial by (4.5). So there must exist a subgroup P; of order p satisfying
P, < By n Z(PBy). The group P; acts faithfully on U. Hence there is
some non-trivial irreduecible Z; [P;]-submodule W of U. Since P; is also cyclic
of order p, the F[P]-submodule F ® W is the direct sum W, @ --- @ W, of
e distinct irreducible F[P,]-submodules W;. Because P; is central in PBy ,
distinet W, must be submodules of distinet absolutely irreducible F[BP]-
modules U;. Therefore ¢ > e, which proves the lemma.

The condition that dims[U;, P] = 1 is very stringent. E.g., it implies

LEmMA 4.10. P centralizes every P-invariant abelian subgroup of By .

Proof. Let D be a P-invariant abelian subgroup of By such that
[D, P] = {1}. By (4.7¢), [D, P] acts faithfully on U;. So there must be
some irreducible F[PD]-submodule W of U; such that [Dw, P] # {1}. Be-
cause D = Z(D) is abelian, Proposition 3.2 tells us that W is induced from an
irreducible F[D]-module. Hence W contains a regular F[P]-submodule.
By Lemma 4.9 this implies

1 = dimg [Uy, P] > dimg [W, P] 2> dimg [F[P], P] = p — 1.

Therefore p = 2, which contradicts (4.1d) and (4.4a). This proves the
lemma.

Some judicious choices of abelian subgroups of By give us a string of
consequences from Lemma 4.10.

LemMma 4.11. By is extra-special, with [®(By), P] = {1}.

Proof. Lemma 4.10 forces P to centralize Z(By). So Z(By) < Z(PBy).
Because Z(By) acts faithfully on the irreducible Z,[PBy]-module U, this
implies that Z(By) is cyclic. We know from (4.1d) and (4.4a) that p(B)
is odd. Hence (4.1a) and (1.4d) say that By has exponent p(B). There-
fore | Z(By) | = p(B).

Since (4.4d) holds, P cannot centralize By. So Lemma 4.10 says that
By # {1}. From the inclusion
{1} < By < ®(By) < Z(Bv)
(by (1.4b)) and the fact that | Z(By)| = p(B), we conclude that
By = ®(By) = Z(By) is cyclic of order p(B). Il.e., By is extra-special.
Furthermore, P centralizes ®(By) = Z(By). So the lemma is true.
Fix a generator = of the cyclic group P.

Lemva 4.12. [By, P] = By(r — 1) s fs,-perpendicular to Cg,(P).
Hence [By , P] centralizes Cgy(P).

Proof. Sipce P = (r) is cyclic and By is a vector space, we know that
[By, P] = By(w — 1). Suppose that ¢ ¢ By and 7 € C5,(P). Then

.fBU(".("r - 1)7 T) = fBU(0'7 T(ﬂ:‘l - 1))1
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since P centralizes ®(By) (by Lemma 4.11) and leaves fz, invariant. But
7 ¢ C3,(P) implies 7(7 " — 1) = 0 and hence fz (s, (x> — 1)) = 0.
Therefore By(w — 1) and C3,(P) are f,-perpendicular.

The images in By of [By , P] and Cj,(P) are certainly contained in [B,, , P]
and Cs,(P), respectively. So the above facts and (1.6) imply that [By , P)
centralizes Cp,(P). This proves the lemma.

Lemva 4.13. [By, P, P] = {1}.

Proof. By Lermama 4.8 there must be some positive integer n such that
[By, P]" = {1}. Let n be the least such integer. Assume that n > 3.
Then we may choose an element o in [By , P]"™* — C5,(P). We have

PAN é[BU,P]n—2 < I[By,P] for i=1,---,p,
and o
[o™', 7'l € [By, PI"™ < Cpy(P) for 4, =1,---,p.
So Lemma 4.12 tells us that cr".z commutes with [e™,«'),foralld,j, =1, -+ ,p.
Hence ¢" commutes with ¢™ = ¢" [¢", ' '], for all 4, j= 1, ---, p. We
conclude that (¢", ¢™, --+, ¢™) is a P-invariant abelian subgroup of By .

Lemma 4.10 says that it is centralized by P. But P does not centralize the
element ¢™ = o of this subgroup. Therefore n < 2, which is the lemma.

Lemma 4.14. dimg[By, P] < 2.

Proof. 'The endomorphism ¢ — (7 — 1) of By defines a Z,-isomorphism
of W = By/C3,(P) onto [By, P]. It follows from Lemma 4.12 that the
function g given by

g(o + C§U<P)’ T+ OBU(P)) = fBu(U: T(W - 1)) Jor o, 7€ BU,

is a Well-defined, Z ,-bilinear map of W X W into ®(By)™.
If ¢, 7 ¢ By , we compute

g(o + Csy(P), 7 + C3y(P)) = fay(o, r(m — 1))
= fop(o(xt = 1), 7) (by Lemma 4.11)
= —fup(r,o(x" — 1)) (fs, is allernating)
= fop(r,0(L = 7)) (fsp is bilinear)
= fop(7, (en7")(x — 1))

g(r + Csy(P), (ox7') + C5y(P))

g(r + C3y(P), 0 + C3y(P)),

since o' — ¢ € [By, P] < C5,(P) by Lemma 4.13. So ¢ is symmetric.
But ®(By)" is Z,-isomorphic to Z, by Lemma 4.11. Therefore ¢ is just an
ordinary quadratic form on the vector space W over Z, .
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Suppose that dimz,(W) > 3. Since Z, is a finite field of odd character-
istic, there must exist some element w 5 0 in W so that g(w, w) = 0 (see
page 144 of [1]). Let ¢ ¢ By satisfy w = o 4+ C3,(P). Then
Zpo + Zpo(w — 1) is totally isotropic with respect to fz,, since
foyle, o(r — 1)) = g(w, w) = 0. This subspace is P-invariant by Lemma
4.13 and is not centralized by P since ¢ + C5,(P) = w 5 0. Therefore its
inverse image is a P-invariant abelian subgroup of By which is not centralized
by P. This contradicts Lemma 4.10. Hence dimz (W) < 2, which is
equivalent to the lemma by the first line of the proof.

We must reach back to Lemma 4.9 to prove

Lemma 4.15. p = 3.

Proof. Since (4.4d) holds, P does not centralize By . So we may choose
o € By such that [, o] % 1. If o centralizes [m, o], then Lemma 4.13 implies
that (o, [7, ¢]) is a P-invariant abelian subgroup of By . It is not centralized
by P since [, o] % 1. This contradicts Lemma 4.10. Therefore [[r, o], ] =
[, ¢ ,0] # 1. From Lemmas 4.11 and 4.13 we now conclude that
D = (g, [, o)) is a P-invariant extra-special subgroup of order p® in By with
®(D) = ®(By).

The group P centralizes ®(D) = {[r, o, ¢]) by Lemma 4.11 and centralizes
[7, o] by Lemma 4.13. If follows that E = (=, [, ¢, [, o, ¢]) is an abelian
subgroup of order p®in PD. Since | PD | = p*, E is normal in PD.

The group ®(D) = ([, o, ¢]) is clearly the center of PD. Since ®(D)
acts faithfully on U; (by (4.7¢)), there must be an irreducible F[PD]-sub-
module W of U; on which &(D) acts non-trivially. From Lemma 4.9 we know
that dimgz [W, P]is 0 or 1. So the restriction ¥» to P of the modular char-
acter Y(see [5] for definitions) of the F[PD]-module W has the form:

(4.16) Yr =N+ (Y(1) — 1)-1,
for some linear character \ of P.
Because | PD | = p* is odd, the modular character ¢ is an ordinary ir-

reducible character of PD (see [5]). The non-triviality of ®(D) on W im-
plies that Yewy = ¢(1)-», for some non-trivial ordinary linear character »
of ®(D). Since v is faithful and ®(D) = ([r, o, o)) < [E, (¢)], no extension
u of » to a linear character of E can be fixed by (¢). It follows that ¢ = u*?,
for some such extension u. Therefore

Y=+ u 4+ u
But P < E. Hence

Ve =wr+ W)e+ -+ W k.

Comparing this with (4.16), we see that (u"i )p must be trivial for all but
onet=0,1, ---,p — 1. We may assume that the exceptional value of ¢



472 E. C. DADE

(if any exists) is 7 = 0, so that u”i(w) =1,for¢t =1, ---,p — 1. Hence

1= '(x) = w(n" ") = w(nlr, o] *[r, o, ]°“?)

= w(m)u([r, o) ([ry 0, 6])°C? for i=1,---,p—1,

where, of course, C(7, 2) is the binomial symbol (¢ — 1)/2. Takingz = 1
in this we get u([7, ¢]) = u(w). Taking? = 2, we then get u([r, 7, 0]) = u(7).
If p > 3, we may take ¢ = 3, getting 1 = u(x) " = u(x) = w([n, o, o).
This contradicts the fact that u([, o, g]) = »([m, 0, ¢]) # 1. So the lemma
is true.

We coliect the results of the last eight lemmas and one further consequence
in

ProrosirioN 4.17. If both (4.1) and (4.4) hold, then

(4.18a) p = p(B) = 3,

(4.18b) U 1is not an ample Z, [PB]-module,

(4.18¢) By is extra-special,

(4.18d) dimg,[By, P] < 2,

(4:.183) dinflz2 CU(P) Z 4.

Proof. Conclusion (4.18a) is Lemmas 4.8 and 4.15.

Conclusion (4.18b) is Lemma 4.13, since (4.18a) holds (compare (3.9¢)).

Conclusion (4.18¢) is Lemma 4.11.

Conclusion (4.18d) is Lemma 4.14, since p = 3.

By (4.18¢) and (4.7¢), each U; has dimension at least p(B) = 3. Since
U; = [U;, Pl ® Cy,(P) and dimy [U;, P] = 1, by Lemma 4.9, each Cy,(P)
has dimension at least 2. So (4.6) gives

dimz,Cy(P) = dimp Creu(P) = 2 ia dimeCy,(P) > 2t.
But ¢ = ¢ = 2 by Lemma 4.9, since p = 3. Therefore (4.18¢) holds and the
proposition is true.

We shall apply the above propositions to the situation in which our group
P of arbitrary prime order p acts on a Fitting chain 4., ---, 4,
with [4,, P] # {1}. We wish to show that some representation (P4; on

Aiy) has an ample irreducible component, provided the Fitting chain is
long enough. To specify the necessary length, we define an integer 4, by

(4.19a) 40 = 24f p does not divide [[i=1 | A: |,
(4.19b) 4 = 3 if p divides [ [i=1 | Ai | and p = 3,
(4.19¢) 4o = 5 if p divides [[i=1| Ai| and p = 3.

Then we have

Tueorem 4.20. If t > 4y, then there is some i =1, .-+, 7 such
that p(A;) # p and (PA; on Ai1) has an ample irreducible component.

Proof. Define the groups By, --- , B; inductively by
Bl=Aly Bi+1=[Ai+17[Bi,P]]7 f07' 7:=1"">t—1'
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We first prove that

(4.21a) B; s a P-invariant subgroup of A:,forti =1, -+ |,
(4.21b) B; is PBy-tnvariant, for ¢ = 2, -+ | i,

(4.21e¢) [B:,P)={1},fori=1,---,1,

(4.21d) BieQ,fori=1,---,t.

Statement (4.21a) is obvious from the definition of the B;. It implies that
[Bi-1, P] is a normal subgroup of PB; 4, for¢ = 2, ---, ¢ Therefore

B; = [4:, [Bia, P

is PB; j-invariant, which is statement (4.21b).

Statement (4.21¢) is proved by induction on <. For ¢ = 1 it is true since
[41, P] # {1} by hypothesis. Suppose that ¢ > 1 and that [B._;, P] = {1}.
By (2.2d), [Bi_1, P) acts faithfully on A;. Therefore

B; = [A., [Bia, P]] # {1}.

Since p([Bia, P]) = p(4:4) = p(4:) (by (2.2b)), we have {1} = B; =
[Bs, [Bizy, Pl]. If P centralizes B;, then so does [Biy, P], (by (4.21b))
which contradicts the preceding statement. Therefore [B:, P] # {1} and
(4.21¢) holds. This implies that B; # {1}, for7z = 1, --- , ¢ So (4.21d)
follows from (1.5) and (2.2a).

Suppose we can prove that

_(4.22) there is some © = 1, ---, 4o such that p ¥ p(A4:) and (PB;: on
As41) has an ample irreducible component.

Then the theorem will be true. To see this, let W be an ample irreducible
component of (PB; on A;4;). Then there must be some irreducible compo-
nent V of (PA; on Asy) such that W is PBi-isomorphic to an irreducible
component of (PB; on V). Proposition 3.13, applied to Z,,.p, P, 4¢,
B;, V and W, tells us that V is ample. So the theorem will follow from
(4.22).

From now on we assume that (4.22) is false, i.e., that no irreducible com-
ponent of any (PB; on A;4;) is ample, for any 4 = 1, ---, 4 such that
p(4:) # p.

Suppose that 2 < 7 < 4 and p(4:) # p. Since [B:, P] acts faithfully on
Aiia (by (2.2d)) and p(Aiy) #= p(4:) = p([B., P]) (by (2.2b)), it acts
faithfully on A1 (see Theorem III, 3.18 of [4]). So (4.21c¢) implies that
Yiy = [Aig1, [Bi, P]]is a non-zero Z,,,[PB:]-submodule of 4;;;. Fur-
thermore, [Yiy1, [Bi, P]] = Yy, since p([Bi, P]) & p(Aiwa). Therefore
there is some irreducible component Wiy of (PB; on Y1) and any such
Wi satisfies [Wiga, [Bi, P]] = Wip -

Let K; = Ker(®(B;) on Wiy). Since K: < ®(B;) < ®(4,), it is cen-
tralized by Biy < A;; (by (2.2¢)). Therefore PB;; acts on B;/K;.
Now we see that P, B = B;y, 4 = B;/K;, Wi and ¢ = p(A:) satisfy
(4.1).
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Suppose that (B:)w,,, is abelian. Since [Wii, [Bi, P]] = Wi, we have
[Z((Bdwisi)y Pl = [(Bdwisy, Pl 5 {1}. But p(B:) = p(4:) = p. So
(3.92) holds and W, is ample, contradicting our assumptions. Therefore
Z((B)w;41) < (Bi)wgy, - By Proposition 4.2 this implies that Z(4) < 4.

By construction [B,, [Bi—y, Pl]] = Bi. Therefore [4/Z(4), [B, P]] =
A/Z(A). Since A/Z(A) 5% {1} and W44 is not ample, Proposition 4.3 says
that (4.4) holds. So Proposition 4.17 tells us that (4.18) holds. In par-
ticular, 3 = p = p(B) = p(4iz1).

Suppose that (4.192) holds. Then p(A4,) ¥ p. The above argument
shows that p(4:) = p, contradicting (4.19a). So (4.22) cannot be false,
and the theorem is true in this case.

Suppose that (4.19b) holds. By (2.2b) there is some ¢ = 2, 3 such that
p(A;) # p. The above argument shows that p = 3, contradicting (4.19b).
So the theorem is true in this case.

We must be in the case (4.19¢). There is some ¢z = 4, 5 such
that p(4,) ¥ p. The above argument shows that p(4.1) = p = 3 and
p(4;) = 2. Furthermore, since (4.18) holds, we have an irreducible

Zs [PB;_j]-module U; so that (Bi_1)v, is extra-special and dimz, [(Bi-1)v,, P] < 2.
Let
K; i = Ker(®(Biy) on U,).

By (2.2¢), Bi_» centralizes K,.;. Therefore PB;, acts on B, /K. ;.
Evidently P, Bi—s, Bi-1i/K:1, and U; satisfy (4.1a, b, ¢, e). So Proposition
4.2 says that

[(Biet/Ki1)/Z(Bio/Kia)]" = Yia

is Z; [Pl-isomorphic to [(Bi_l)t,,./Z((Bi_l)U,.)]J'. The latter group is just
(Bi1)v,,since (Bi—pv, is extra-special. Hence Yy # {0} and dimgz, [Y:1, P]
< 2.

Because PB;_, acts on B;3/K._;, it acts on Y,;. By (2.2b) and the
definition of B;_;, we have [Bi_y, [Bi—2, P]] = Bi_1. It follows that

[Yia, [Biz, Pl = Yi.

Since Y1 {0}, there is some irreducible component W;_; of (PBi_; on
Yii). Clearly [Yia, [Bie, P]] = Yy and dimg, [Y:y, P] < 2 imply that

(4.233) [Wiy, [Bis, P]] = Wi,
(4.23b) dimg, [Wiy, P] < 2.

Since W,_; is a section of 4. ;, it follows from (2.2¢) and (4.23a) that it is
isomorphic to some irreducible component of (PB;; on A;). So (PBi
on W) is not ample.

Now we repeat our earlier argument with ¢ — 2 in place of 7. It tells us
that P, Bi_s, Bi_s/Ki s and Wi satisfy (4.1), (4.4), and (4.18), where
K;; = Ker(®(Bis) on Wi;). The definition (4.4d) of the Z;[PB; ]
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module U;_; , the definition of B;_,, and (2.2b) imply that
Uiy = [(Bis/Kizs)/Z(Bis/Kioa)]™.

From Proposition 4.2 we conclude that U, is P-isomorphic to
[(Bio)w;_/Z((Big)w;_)]" = Bis.

Therefore (4.18e) gives

(4.24) dimz,Cs,; ,(P) = 4.

Let F be a finite algebraic extension field of Z; which is a splitting field
for every subgroup of PB;_». Let X be a irreducible F[PB;_;]-submodule of
the extension ' ® W, of W, to an F[PB;_]-module. Then (B;_3)x =
(Bi—2)w,_, asin (4.7¢). Because (PB;_, on W,_y) lies in the exceptional case
of (3.9b), Proposition 3.4 applies to P, B;», F and X. It tells us that X
is the outer Kronecker product X = S ® T of an irreducible F[P[(B;_s)x , PlI-
module S and an irreducible F[C (z,_,)x(P)]-module T. Since Z((Bi-2)x) <
C = Cw,_nx(P), and (Bi_s)x is the central product of [(Bi_s)x, P] and
C, we know that Z((Bi_s)x) = Z(C). This acts faithfully on T since it aects
faithfully on X. It follows from (4.24) and Theorem (III.2) of [2] that

dime T = [C:Z(C)]'? = | C3,_,(P) |'* > (2")'* = 2* = 4.

Since P acts faithfully on [(Bi_s)x , P] and the latter acts faithfully on S, we
know that P acts faithfully on S. So dimg[S, P] > 1. It follows from
(4.23b) that

2 > dimg [F ® Wii, P] > dimp [X, P] = dimy [S, P]-dimz T > 4.
This contradiction proves the theorem.

5. Finding enough ample representations

We now turn to the problem of going from the ample components of (P4
on A;) to those of (PA;on A;) in our P-invariant Fitting chain 4,, --- , 4..
The critical case is the following situation:

(5.1a) PB is the semi-direct product of a group P of prime order p acting
on a group B € Q.

(5.1b) D s a subgroup of Cp(P).

(5.1¢) PBA is the semi-direct product of PB acting on a group 4 € Q.

(5.1d) V is a finite-dimensional Z, [PA]-module, for some prime q.

(5.1e) p, p(B) and q are all different from p(4).

(5.1f) [2(4), B] = {1}. )

(5.1g) Each irreducible component of (PB on A) is ample.

(5.1h) The representation (A on V') is faithful and weakly B-invariant.

(5.1i) Ifp = p(B) then D < [B, P]"™.

One immediate consequence of these hypotheses is
ProrosiTion 5.2. A’ = ®(A).
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Proof. By (5.1g) and (3.9), B acts non-trivially on each irreducible com-
ponent U of (PB on A). Hence [U, B] = U. It follows that [A, B] = A.
Since A is naturally isomorphic to (A4/A’)/®(A/A’), we conclude that
[A/A’, B] = A/A’. The map ¢ — ¢"** is a B-invariant epimorphism of the
abelian group A/A’ onto ®(4/A’) = ®(A)/A’. Therefore [#(A4)/A’, B] =
$(4)/A’. By (5.1f), this implies that ®(4)/A’ = {1}. So the proposition
holds.

Welet X = R(V) and Kample = Kampie V') be the families of (3.14) and
(3.15). Define £ to be the subfamily of all K ¢ & such that K > ®(4).

ProrosimioN 5.3. Both & and £ are PB-invariant families of mormal
subgroups of A. Furthermore, X-£ C Kample -

Proof. Since V is a PA-module, X is P-invariant by (3.17). The weak
B-invariance of (A on V) (by (5.1h)) clearly implies that X is B-invariant.
So & is PB-invariant. Because ®(4) is a characteristic subgroup of A4,
it is PB-invariant. So £ is a PB-invariant subfamily of X, which finishes
the proof of the first statement of the proposition.

Suppose that K ¢ X-£. Then there exists some irreducible component
W of (A on V) such that K = Ker(A4 on W). There must be some irre-
ducible component X of (PA on V) such that W is isomorphic to a com-
ponent of (4 on X). Clifford’s theory (see Theorem V, 17.3 of [4]) tells
us that

Ker(4A on X) = N, K™ = K(P).

Therefore K € Kampie if and only if P and Ax = A/K(P) satisfy (3.9), i.e.,
if and only if (PA on X)) is ample.

Let N = Ker(®(A4) on X). Then N is a P-invariant normal subgroup
of A. By (5.1f) it is also B-invariant. So (5.1e) implies that P, B, A/N
and X satisfy (4.1).

Proposition 4.2 says that ¥ = [(A/N)/Z(A/N)]" is isomorphic to
[Ax/Z(Ax)]*. Since K ¢ £, we have K n®(4) < &(4). By Proposition
5.2, this implies that K n 4’ < A’. Therefore

K(P) nA’ <KnA’' <A’ and Arx~A"/K(P)nA’ = {1}.

So Ax is non-abelian. Hence [Ax/Z(Ax)]" # {0}. We conclude from this
and (1.4b) that Y is a non-trivial Z,»[PB]-factor module of A. In par-
ticular, (PB on Y') has at least one irreducible component and, by (5.1g),
each such component is ample.

Suppose that (PA on X) is not ample. Then neither is (P(4/N) on X).
By Proposition 4.3, either [B, P] centralizes Y or (4.4) holds. But (PBonY)
has an ample irreducible component, which, by (3.9), cannot be centralized
by [B, P]. Hence (4.4) holds. In particular, (4.4d) says that U is an
irreducible component of (PB on Y'). So (PB on U) is ample. This con-
tradicts (4.18b). Therefore X is ample and the proposition is true.
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Let L be the subgroup of A defined by
(5.5) L = Ngex_g K.
If K-£ is empty, this intersection is taken to be 4.

ProrosiTioN 5.6. L is PB-invariant normael subgroup of A such that
L n®(A) = {1}. Hence L is elementary abelian and the natural Z,.[PB}-
homomorphism ¢ of L into A is a monomorphism.

Proof. By the definition of X, each K ¢ & is a normal subgroup of 4.
Proposition 5.3 implies that X-£ is a PB-invariant subfamily of X. So L
is a PB-invariant normal subgroup of 4 by (5.5).

Let ¢ be a non-trivial element of ®(A). By (5.1h) o acts non-trivially on
V. Since ¢ % p(A4) (by (5.1e)), the representation (4 on V') is completely
reducible. So ¢ must act non-trivially on some irreducible component
W of (AonV). Hence K = Ker(4A on W) e X and ¢ ¢ K. It follows that
®(A) £ K, ie., that K ¢ X-&. Therefore ¢ ¢ L < K (by (5.5)). This
proves that L n®(A4) = {1}. The other statements follow directly from this.

Define families 9, 9 of subgroups of L and a subgroup N of L by

(572) M ={KnL|Kee L £K},
(5.7b) 9 = {M e | [L, P] < M},
(57¢) N = nuey M.

Let Vample be the Z, [PA]-submodule of V defined by (3.15) and @ be the
subgroup Ker(A4 on Vampie) of 4.

ProposiTION 5.8. 9 4s a PB-invariant family of maximal subgroups of L
satisfying

(59) nMegm,M = {1}

The subfamily 9 and the subgroups N and Q are P X D-invariant. Further-
more,

(5.10) Q <N<LL

Proof. Proposition 5.3 says that £ is PB-invariant. Proposition 5.6 says
that L is PB-invariant. This and (5.7a) imply that 91T is PB-invariant.

Suppose that M e 9. Then there exists K ¢ £ such that L £ K and
M = K n L. Since £ C X, there is some irreducible component W of
(A on V) such that K = Ker(4 on W). Because K ¢ £, we have (4) < K.
So the elementary abelian group A/®(4) acts irreducibly on W. This
implies that Aw = [4/®(4)]w is cyclic, and hence has order 1 or p(4).
Therefore

[L:M] = [L:KnL] < [4:K] < p(4).

But L is a p(4)-group and L £ K. So [L:K n L] = p(4). Hence any
M e 9 is a maximal subgroup of L.
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Since ¢ # p(4) (by (5.1e)), the representation (A on V) is fully decom-
posable. It follows that

1 = Ker(4 on V) (by (5.1h))
= nKesc K = [nxe£~sc K]n [nxe,e K]
= L n [Ngeg K] (by (5.5))
= Ngee [L n K]
= Nger.z2x[L n K]
= Nyreg M (by (5.7a))

So (5.9) holds.

By (5.1a,b), PD = P X D < PB. Since 9, L and P are P X D-invariant,
so are 9 and N (by (5.7b, ¢)). It follows from the definition of Kample
that it is P X D-invariant. Since @ is the intersection of the members of
Kampte (by (3.15)), it is P X D-invariant.

Supposethat K € £-Kampio - ThenK > &(A). Hence K(P) = N, K™ >
®(A). So A/K(P) is abelian. Since K ¢ Xampio, P and A/K(P) cannot
satisfy (3.9). Therefore (5.1e) and (3.9a) imply that

[4/K(P), P] = [Z(A/K(P)), P] = {1}.

Hence [A/K, P] = {1}. It follows that [L, P] < [4, PlnL < K n L.
From this and (5.7b) we conclude that K n L ¢ . So we have

fﬂ,g{KﬂLIKéeanample}-
This implies

N = Ny M (by (5.7¢))
> nxe,enscmpxe(K nL)
2 [Nxeentomps K1 0 [Nre—g K] (by (5.5))
= Nregtampie K (by Proposition 5.3)
=Q (by (3.15)).

Therefore (5.10) holds, which completes the proof of the proposition.
Define the section C of 4 by

(5.11) C = [Ca(P)lvompe = Ca(P)/Ca(P) n Q.

Since D centralizes P (by (5.1b)), the subgroup C.(P) is D-invariant.
By Proposition 5.8, @ is D-invariant. Hence

(5.12) C is D-invariant.
We are interested in conditions which will guarantee the following property:

(5.13) C = {1} and (D on A) is weakly equivalent to (D on C).
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One set of such conditions is given by

ProrosirioN 5.14. If L = {1}, then (5.13) holds. If CL(P) > Cx(P)
and (D on CL(P)*") is weakly equivalent to (D on CL(P)*/Cx(P)*), then
(5.13) holds.

Proof. It follows from (5.1g) and Proposition 3.10 that C,(P) #= {1}
(see Theorem I, 18.6 of [4]). Therefore L = {1} gives @ = {1} (by (5.10))
and C # {1} (by (5.11)).

If CL(P) > Cy(P), then (5.10) implies that C(P) > Co(P). By (5.11),
CL(P)/Co(P) is isomorphic to a subgroup of C. Hence C 5 {1} in both
cases.

Because L = {1} trivially implies the condition “(D on C(P)") is weakly
equivalent to (D on C(P)*/Cx(P)*)” we are reduced to deducing from this
condition that (D on A4) is weakly equivalent to (D on ().

Since @ is P X D-invariant (by Proposition 5.8), so are 4/@Q and the natu-
ral eplmorphlsm ¥ of A onto 4/Q. It follows that ¢ induces a Z,w[P X D]-
epimorphism ¢ of A onto (A /Q). From Proposition 5.6 and (5.10) we
conclude that ¢(Q*) = Ker ¢. Hence

(5.15) (D on $(Cz(P))) is equivalent to (D on Cz(P)/Cz(P) ne(Q")).

We know from (5.1e) that p(A4) does not divide | P|. It follows (see
Theorem I, 18.6 of [4]) that Cz(P) is the natural image in A of C4(P).
By (5.11), this implies that ¢(Cz(P)) is the natural image of C in (4/Q).
The kernel of the natural map of € onto $(Cz(P)) is

[(C n (I’(A Vample) )/Q(C)]_’-’
which D centralizes by (5.1f). From this we conclude that (D on C) is
weakly equivalent to (D on¢(Cz(P))). In view of (5.15), this gives
(5.16) (D on C) is weakly equivalent to (D on C:(P)/Cz(P) n o(Q™)).

Since p(4) does not divide | PB| (by (5.1e)), there are irreducible
Zp[PB)-submodules Uy, -+, U, of A such that A = @ DL Us. By
(5.1g), each U;is an ample Z,,(A>[PB] module. If p # p(B), then D < Cp(P)
by (5.1b). If p = p(B), then D < (i3 p]p—l(P) by (5.1b,1). So Proposi-
tion 3.10 and (1.3) tell us that (D on U;) is weakly equivalent to (D on
Cy,(P)), for i = 1, ---, 7. Since 4 = @ >iU: and Cz(P) =
® 2 51Cy (P), it follows that
(5.17) (D on A) is weakly equivalent to (D on Cz(P)).
By assumption (D on Cr(P)") is weakly equivalent to
(D on C(P)*/Cx(P)™).
It follows from this and (5.10) that (D on C(P)") is weakly equivalent to
(D on Co(P)"/Co(P)™).
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Since ¢ is an isomorphism, this says that (D on Cz(P) n o(L")) is weakly
equivalent to

(D on [Ca(P) n o(LM))/IC2(P) n o(Q)]).
Clearly this implies that (D on Cz(P)) is weakly equivalent to
(D on C(P)/[Ca(P) n o(QM)]).

Combined with (5.16) and (5.17), this shows that (D on A ) is weakly equiv-
alent to (D on ('), which completes the proof of the proposition.

To establish the hypotheses of Proposition 5.14 it is convenient to pass to
the dual Z,[PB]-module U = Homg, A)(L+, Zpay) the family g of all
perpendicular subspaces M* = {u ¢ U |u(M*) = {0}} to the members M
of the family 91, the subfamily g of all M*, M e %, and the subgroup J = N*.
These satisfy

ProrositioN 5.18. Every irreducible component of (PB on U) is ample.
9 1s a PB-invariant family of non-trivial Z,4y-subspaces of U. Furthermore

(5.192) U = D 11,

(5.19b) g = {Les|I[I, Pl = {0}},
(5.19¢) J = gl

IfU = {0} or of

(5.20) C,;(P) == {0} and (D on Cy(P)) is weakly equivalent to (D on
Ci(P)),

then (5.13) holds.

Proof. Any irreducible component W of (PB on U) is obviously Z,,[PB]-
isomorphic to the dual of an irreducible component ¥ of (PB on L™). By
Proposition 5.6, Y is Z,[PB]-isomorphic to an irreducible component of
(PBon A). So (5.1g) implies that (PB on Y) is ample. Since By = By,
it follows from this and (3.9) that (PB on W) is ample, which proves the
first statement of the proposition.

The second statement and (5.19a) come directly from the first statement
of Proposition 5.8 and (5.9) by duality. Equations (5.19b, ¢) come from
(5.7b, ¢) by duality.

Since p(4) # p (by (5.1e)) we have
U = Cy(P) ® [U, P],
where [U, P] = C,(P)*. Similarly
J = CyP) @ [J,P]

with [J, P] = J n[U, P] = (CL(P)N)* = (C.(P) X [N, P])*. SinceJ =
N* = (Cx(P)) X [N, P]*, it follows that
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(56.21a) (D on Cy(P)) is equivalent to the dual of (D on C(P)"),
(5.21b) (D on Cs(P)) 3s equivalent to the dual of (D on Cr(P)"/Cy(P)Y).

If U = {0}, then L = {1} and (5.13) holds by Proposition 5.14. If U = {0}
and (5.20) is true, then (5.21) gives C.(P) > Cx (P) and the weak equivalence
of (D on C.(P)") with (D on C.(P)"/Cx(P)"). So Proposition 5.14 also
gives (5.13) in this case, and the proof is complete.

When L 5 {1}, Proposition 5.18 and (5.1) say that P, B, D, U, d satisfy:

(5.22a) PB is the semi-direct product of a group P of prime order p acting on
a group B € G.

(5.22b) D s a subgroup of Cz(P).

(5.22¢) U s a non-zero finite-dimensional Z, [PB]-module, for some prime
r ¥ p, p(B).

(5.22d) 9 is a PB-invariant family of non-zero Z,-subspaces of U.

(5.228) U = D> res 1.

Now we consider arbitrary P, B, D, U, d satisfying (5.22). We define g and
J by (5.19b, ¢). From (5.22b, d) it is clear that

(5.232) g s a P X D-invariant subfamily of 9,
(5.23b) J wsa Z, [P X D]-submodule of U.

Of course, we are looking for situations in which (5.20) holds.
By (5.22a, ¢), U is a completely reducible Z, [PB]-module. Let Ui,---, U,
be irreducible Z, [PB]-submodules of U so that

(5.24) U= 21U,

Fixt =1, ---,s. Then the projection =; of U onto U; determined by the
decomposition (5.24) is a Z, [BP]-epimorphism. Define J; to be the family

{mi(I) | I 9, m:(1) # {0}}.

Then we have

Lemma 5.25. P, B, D, U,, 9; satisfy (5.22), for each t = 1, ---,s. If
P, B, D, U,, 9; satisfy (6.20), for allt = 1, ---, s, then P, B, D, U, 9 satisfy
(5.20).

Proor. Fix 7z = 1, ---, s. Conditions (5.22a, b, ¢) are satisfied by
P, B, D, U;, 9; by hypothesis. Condition (5.22d) for them comes from the
original (5.22d) and the PB-invariance of =;. The original (5.22¢e) gives:

U;=mU) = Z;eg () = ZIGQ,W;(I)#(O) m:([) = Zrme I;.
So the first statement of the proposition holds.

Foreach? = 1, - - - , s, we define g; and J; by (5.19b, ¢) with 4;in place of 4.
If I, ¢ gi then I; ¢ 9; and [I;, P] # {0}. By definition of J;, there is some
Iedsuchthat I, = w:(I). Because 7;is P-invariant we have {0} = [I;, P] =
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w:([I, P]). Therefore [I, P] 5 {0},ie.Ie¢g. It follows that
(5.26) Ji=2reg [i < 2orgmi(I) = mi(J ), Jori =1, -+ 5.

Suppose that P, B, D, U,, J; satisfy (56.20), for allz = 1, ---, s. By
(5.22¢) wemust haves > 1. So Cy, (P) 5 {0}. Since (P onJ ) is completely
reducible (by (5.22¢)), it follows from this and (5.26) that C;(P) = {0}.

Let W be any non-trivial irreducible component of (D on Cy(P)). By
(5.24) there is some ¢ = 1, - -+, s such that W is Z, [D]-isomorphic to an ir-
reducible component of (D on Cy, (P)). Since (5.20) holdsfor P, B, D, U;, 9;,
the module W is Z,[D]-isomorphic to an irreducible component of
(D on C;,(P)). Then (5.26) and the complete reducibility of (P on J)
imply that Wis Z, [D]-isomorphie to an irreducible component of (D on C;(P)).
Obviously any irreducible component of (D on C;(P)) is an irreducible com-
ponent of (D on Cy(P)). Therefore (D on Cy(P)) is weakly equivalent to
(D on C;(P)), which proves the lemma.

Now we study the elements I of ¢ — g and their translates.

Levma 5.27. Let (5.22) hold. If I e 9 — g, then-Cp(I) is a P-invariant
subgroup of B.  Furthermore, if o ¢ B, then Is ¢ 9 — g if and only if ™ * € C5(I)
for all = € P.

Proor. By (5.19b), P centralizes I. Therefore Cg(I) is P-invariant.

If ¢ € B, then Io ¢ 4 by (5.22d). By (5.19b), Ie ¢ § — g if and only if P
centralizes Io, i.e., if and only if yor = yo,forally eI, 7re P. Since I ed — g,
we know that y = yr~'. Hence Io ¢ 9 — ¢ if and only if yr ‘'or = yo, for all
yel,meP, ie.,ifand only if yo™ ' = y, forally e I, 7 ¢ P. So the lemma is
true.

The following lemma is the key to proving (5.20):

Levma 5.28.  Let (5.22) hold. Suppose that Up is a primary Z. [D]-module.
Assume that there is some I ¢ § — g, and some o € B satisfying

(5.29) foreachweP — {1}, thereexistspe P — {1} suchthate™ " ¢ Cp(I).
Then (5.20) holds and C;(P) # {0}.

Proor. By (5.22d) we may choose some yel — {0}. Our hypotheses give
us an element o € B satisfying (5.29). We define u ¢ U by

U = yo (Z“p ).
Clearly u is centralized by P.

By (5.19b), P centralizes I. Therefore yor = yr ‘o = yo", for all = € P.
If ™" e Cs(I), for any = e P — {1}, then the P-invariance of C5(I) (by Lemma
5.27) implies that ¢ P®™ ¢ C5(I), for all p e P — {1}. This contradicts
(5.29). Soc" ¢ Cs(I), forallwe P — {1}. Since P is abelian and C(I) is
P-invariant, we have "™ = (" )*¢ Cs(I), forall pe P, 7 e P — {1}. Be-
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cause P » {1}, this and Lemma 5.27 imply that 1o’ ¢ g, for all p ¢ P. Hence
U= D repyo eJ (by (5.19¢)). If u s 0, we conclude that C;(P) = {0}.
Suppose that w = 0. Then

0=us"'=y~+ Dreryyo"

Condition (5.29) and Lemma 5.27 tell us that Ie™ " ¢ g, for all m ¢ P — {1}.
Hence

Y= —D rer—y Yo" ed.

But y is non-zero and centralized by P. Therefore C;(P) 5 {0} in all cases.
Since (D on U) is primary, any two non-trivial Z, [D]-submodules of U are
weakly Z,[D]-equivalent. Clearly C;(P) = {0} implies Cy(P) = {0}. So
C;(P), Cy(P) are two non-zero Z.[D]-submodules of U and the lemma is
true.
To obtain some information about Cz(I) we use the following technical
lemma:

LemMma 5.30.  Suppose that (5.22a, ¢) holds and that (PB on U) 4s irreductble.
Let E be a P-invariant subgroup of Z (B) and Y be any non-trivial Z,[PE)-
submodule of U. Then Xer (E on U) = Ker (F on Y).

Proof. Clifford’s theory (see Theorem V, 17.3 of [4]) and (5.22a) give us a
primary Z, [B]-submodule W of U such that

(5.31) U= rer Wr.

Let X be an irreducible Z, [E]-submodule of W. Since Fis central in B and
W is Z, [B]-primary, the module Wg is Z, [E]-primary. Because P normalizes
E, each Wr,m ¢ P,is Z, [E]-primary with X asan irreducible Z, [E]-submodule.
It follows from this and (5.31) that every irreducible component of (£ on U)
is Z, [E]-isomorphic to X, for some 7 € P.

Since Y s {0}, it has an irreducible Z, [E]-component which, by the above
argument, must be isomorphic to X, for some = ¢ P. By Y isa Z, [PE]-
submodule. Therefore it must contain irreducible Z, [E]-components iso-
morphic to X, for all o ¢ P. By the above argument it can contain no
other irreducible Z, [E]-components. Since (F on Y) is completely reducible
(by (5.22¢)), we conclude that:

Ker (B onY) = Nyo Ker (E on X).

Obviously this expression is independent of Y, which proves the lemma.
We use this to prove

LemMa 5.32. Suppose that (5.22) holds and that (PB on U) s trreductble.
Then Cs(I)n Z(B) = Ker (Z(B)on U), forany I ¢ 9 — §.

Proof. By Lemma 5.27, C3(I) is P-invariant. Hence E = C3(I) n Z(B)
is a P-invariant subgroup of Z (B) which centralizes I. It follows from this
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and (5.22d) that I is a non-trivial Z, [PE]-submodule of U such that
E = Ker (EonlI). Since (PBon U) isirreducible, Lemma 5.30 implies that
E = Ker (Eon U) < Ker (Z(B) on U). Since Ker (Z(B) on U) is ob-
viously contained in £ = C,(I) n Z(B), this proves the lemma.

Now we can establish (5.20) in a substantial case:
LEmmaA 5.33. If (5.22) holds, (PB on U) s trreducible, and
[Z (Byv), P, P] = {1},
then (5.20) s true.

Proof. Obviously By is non-trivial. Therefore it lies in @ (by (1.5)). It
follows easily that P, By, Dy, U and g satisfy (5.22). Clearly (5.20) holds
for P, B, D, U, 4 if and only if it holds for P, By, Dy, U, 9. So we may re-
place B, D by By, Dy, respectively, and assume that (B on U) is faithful.

Let By = Z(B)-D. Thisis a P-invariant non-trivial subgroup of B. So it
liesin @. It follows that P, B1, D, U, g satisty (5.22). Of course, (PByon U)
need not be irreducible. Let Ui, ---, U, beirreducible Z, [P B;]-submodules
of U so that (5.24) holds. Lemma 5.25 tells us that we need only verify
(5.20) for P, B,,D, U,;,9;,foreacht =1, --- ,s.

Let p be a generator of the cyclic group P. Since Z (B) is abelian, we have
(1} 5 [Z(B), P, P] = Z(B)*™". 8o we may choose an element ¢ ¢ Z (B)
such that o ™" % 1. Because p = |P|is a prime, this condition implies that

(5.34) "V 21 Jorallme P — {1}.

Fix ¢ = 1, --- 5. The group PB; is the central product of PZ (B) and D
(by (5.22b)). Since U;is an irreducible Z, [PB;]-module, its restriction (U;)p
must be a primary Z, [D]-module. Lemma 530 with E = Z(B) and Y = U;
tells us that Z (B) acts faithfully on U,.

Suppose that §; = 9;. ThenJ, = U;. 8o (5.20) for P, B;, D, U;, 9; re-
duces to the condition C'y, (P) = {0}. Since [Z(B), P] # {1} and Z (B) acts
faithfully on U, we have [Z (Bi)v, , P] 2 [2(B)v,, P] D {1}. Asin the proof
of Proposition 3.10, it follows from this and Corollary 3.3 that Cy, (P) = {0}.
Hence (5.20) for P, By, D, U;, I, holds in this case.

Suppose that g; < 9;. Choose I € 9; — J;. Since Z (B) acts faithfully on
U, Lemma 5.32 implies that Cz(I) n Z(B) = {1}. ButoeZ(B). Sonone
of the elements on the leftin (5.34) canliein C3 (). Now Lemma 5.28 proves
(5.20) for P, By, D, U,, I, in this case.

We conclude that (5.20) holds for P, By, D, U;, 9;in all cases. As noted
above, this is enough to prove the lemma.

We now have enough information to handle the case in which p # p ,B).

ProrosrrioN 5.35 Assume that (5.22) holds with p = p(B). If each
rreductble component of (PB on U) is ample, then (5.20) is true.
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Proof. In view of Lemma 5.25, it suffices to prove this proposition under the
additional hypothesis that (PB on U) is irreducible. As in the first para-
graph of the proof of Lemma, 5.33, we may also replace B, D by By, Dy and
assume that (B on U) is faithful.

If [Z (B), P] s {1}, then p # p (B) implies that [Z (B), P, P] = [Z(B), P]
{1}. Since (B on U) is faithful and (PB on U) is irreducible, Lemma 5.33
gives (5.20).

Now suppose that [Z(B), P] = {1}. By hypothesis, [B, P] # {1}. So
Corollary 3.12 tells us that PB is the central product of P[B, P] and C(P).
In view of (1.3) and (5.22b) it suffices to prove (5.20) under the additional
hypothesis that D = Cp(P). Then Up is a primary Z, [D]-module.

If g = d,thenJ = U. Since (PBon U) is ample and irreducible, Proposi
tion 3.10 gives C;(P) = Cy(P) £ {0}, which proves (5.20). Hence we may
assume that § C 4.

Let I be an element of § — . By Lemma 5.32, Cx(I)n Z(B) = {1}. It
follows that Cis,;(I) n Z([B, P]) = {1}. So Ciz,rn(I) is a proper P-in-
variant subgroup of [B, P]. Let Bi be a maximal P-invariant subgroup of
[B, P] containing Cis.p(I). Then [[B, P]/Bi]* is an irreducible Z,[P]-
module such that

[[B, P1/BiI", P] = [[B, P]/Bi]".

Since P is cyclic of prime order p, it follows that 6(w — 1) # 0, for all
G e[[B, Pl/Bi]" — {0} and allwe P — {1}. Choose o ¢ [B, P] so that its image
& in [[B, P]/Bi]" is non-zero. Then none of ¢'"“> where r, pe P — {1},
has a nonzero image in [[B, P] /Bi]". In particular, none of them can lie in
Csz(I). So o satisfies (5.29). Now the hypotheses of Lemma 5.28 are all
satisfied. So that lemma completes the proof of this proposition.

For the case p = p(B), we need a few routine technical lemmas.

LemMaA 5.36. Suppose that (5.22a) holds with p = p(B). Then
(5.37) [[B, P, [B, P)| < [@(B), P]*™"'™*° forall 4,5 > 0.
Proof. Supposethat:i=0. Ifj<p—1,thenMax ¢+j+1—p,0)=0

and (5.37) holds. Ifj > p, then [B, P}’ = {0} (sincep = p(B)), and (5.37)
follows from (1.6). So (5.37) is true for ¢ = 0.

Suppose that ¢ > 0 and that (5.37) is true for all smaller values of 7. Let

o be an element of [B, P]" ™, = be an element of [B, P’, and = bean element of P.

Let &, 7 be the images of s, 7, respectively, in B. From (1.6) and the bi-
linearity and P-invariance of fz we compute

([o, 7"], T]+ = fB(ﬁ’(ﬂ' - 1)) 7-')
= fB(&W, '7') - fB(&’ ';)
= fa(@, 7 ) — fa(5, )
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= fs(6, 7 )@ — 1) + 2, 7@ — 1))
= [loy =" 15, 7l + [o, [r, = NI".
By induction the first term lies in
[ (B), Ppxt2%, P] < [(B)Y, PpeaxtHe®
and the second lies in
[®(B)", Ppax(+iti—p0

Therefore [[o, 7], 7] € [®(B), PMax 720 61 all ¢ [B, P, r¢[B, P,
7 > 0. Evidently this proves (5.37) for ¢ and finishes the inductive proof of
the lemma.

Lemma 5.38. Suppose that (5.22a) holds, that p = p(B) > 5, and that
[®(B), P = {1}. For any, p, ¢ P — {1}, the map
N a _)a(p—l)(ar—l)
Py
is a P-epimorphism of [B, P1* onto [B, PI"™".  If Byis a P-invariant subgroup of
[B, P]”"%, then the image \,.. (B1) is independent of the choice of p, = ¢ P — {1}.

Proof. Tirst we show that \, . is a homomorphism. If ¢, 7 € [B, P|*"*, we
compute

1) = [[(or) or) T

— [o_pr—lo_-—l]r—l

— (O_p—ITp—I[Tp—-I o_-—-l] )1r—1

— (o_p—lTp—-l)‘lr[Tp—l, 0_—1]1r—-1 (o_p——lTp'—l )--1.

Since 7" ¢ [B, PI?" and o ‘¢ [B, P’ it follows from (5.37) that their
commutator lies in
[CI)(B), P](p—2)+(p—3)+1—p — [@(B) P]p—4'

This is contained in [®(B), P], since p > 5. From [®(B), P]* = {1}, we con-

clude that [+, ¢ ']"" = 1. So this term may be dropped from the above
expression, giving

( T )(p—l) (r—1) — (o_p—lTp—-l )'n' (o_p—lTp—l )—1
— o_(p—-l) T T(p—l) (1) ( o_p——l )-1.

Now (" ) e [B, PI" > and r* "™V ¢ [B, PI”". So (5.37) says that their
commutator lies in

[@(B) P](zl—2)+(p—1)+1—p — [q)(B) P]p—-2'
This is {1}, since p > 5 and [®(B), P} = {1}. Therefore the terms r* >
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-1 \— . .
and (@*)™" commute in the above expression and we have

)(P"l)(ar—l') - o,(p-—l)(1r~l) T(ﬂ—l)(ﬂ—l)

(0'7‘ ’

which proves that A\, » is a homomorphism.

Since P is abelian, \, . is P-invariant. Clearly it sends [B, P]’”° into
[B, PI”". Before showing that it is onto (and hence proving the first
statement of the proposition), we prove the last statement of the propo-
sition. _ _

Fixw,peP —{1}. Ifi=1,---,p — 2, then =’ and »** liein P — {1},
since p = | P|is a prime. For o ¢ By, we compute:

)\p,ri+l(d> - (o_p—l)ri"‘“l—l — (o_p—l)wi+1—1r+1r—1
— aW(p—l)(vri—l)o_(p—l)(w—l) = N (O_ar))\pm (o,)
Using the P-invariance of By, we conclude by induction on % that
Nori(Br) L Npe (By), forall 2=1,---,p—1.

Since | P| = p is a prime, there exists, for each ¢ = 1, -+, p — 1, some
j=1,--+,p — lsuch that 7 = #”. The above inclusion for =*, j in place of
, © respectively is just:

Noa(Br) K Npri(Br), forall ¢=1,--+,p—1,

Combined with the original inclusion and the fact that P is eyclic, this proves
that N\, - (B1) is independent of the choice of = ¢ P — {1}.
Now we vary p. Fore=1,---,p — 2 we have

)\P'i+1,7r (0») — (O.Pi+1—-1)1r—l - [o_p(Pi_.l)o—P__l]ﬂ,_l

1 —1) (7r— £—1)—
— crp(p l)ra_(p 1) (mr 1)[0_9(11“ 1)] 1.

We know that o > ¢ [B, P and [¢** "] ¢ [B, P]"*. By (5.37), their
commutator lies in

[®(B), PI” Y07 = [o(B), P = {1},

since p > 5 and [®(B), P’ = {1}. So they commute and the above expres-
sion becomes

i—1) (- —1) (w1
>\pi+1,1r(0) — Gp(p’ 1) ( l)o_(p ) (w—1)

= Npir (0" )Ny, (o), forall ©=1,--- p — 2.

As in the above case of r, this is enough to show that N\, . (B1) is independent
of the choice of p e P — {1}. So the last statement of the lemma is true.

Obviously [B, P]”" is generated by its subgroups \,.([B, P]*"*), where
p, me P — {1}. By the preceding argument all these subgroups are equal to
each other and hence to [B, P”". Therefore N, .([B, P]”"*) = [B, P, for
all p, m ¢ P — {1}, which finishes the proof of the lemma.



488 E. C. DADE

Now we can handle the case p = p(B) = 5.

ProrosiTioN 5.39. Suppose that (5.22) holds with p = p(B) > 5. If each
irreducible component of (PB on U) is ample and D < [B, P*™, then (5.20) 3s
true.

Proof. In view of Lemma 5.25, we may assume that (PB on U) is ir-
reducible. Since (PB on U) is ample, (3.9¢) implies that By # {1}. So
By e (by (1.5)), and we may replace, B, D by By, Dy without disturbing
our hypotheses, assumptions, or conclusions. I.e., we may assume that (B
on U) is faithful.

Since (PB on U) is faithful, irreducible, and ample, (3.9¢) implies that
[B,P]" " {1}. Inviewof (1.1), we may assume that D = Cyz,po-1(P) 5 {1}.

If [®(B), P, P] # {1},then[Z (B),P,P] # {1} by (1.4b). Since (BonU)is
faithful and (PB on U) is irreducible, Lemma 5.33 gives (5.20) in this case.
So we may assume that [®(B), P, P] = {1}.

Let p be any element of P — {1}. Our assumptions and Lemma 5.38 tellus
that \,., : 0 — ¢ " is a P-epimorphism of [B, P]””° onto [B, P]’". Since
(PB on U) is ample, (3.9c) implies that [B, P’ # {1}. Hence
[B, P]"® s {1}. Tt follows that P, [B, P|*™*, D, U, 4 satisfy (5.22) and that
we only need prove (5.20) for this quintuple.

Decompose U as in (5.24) into a direct sum of irreducible Z,[P[B, P]*"*-
submodules U; where ¢ = 1, ---, s. We first consider such an 7 for which
gi © 9;and [By, , PI" # {1}.

It follows from (5.37) that

(B, P1"*, [B, PI'™'] < [@(B), P|" ™™ = [9(B), P
This is {1}, since p > 5 and [®(B), P’ = {1}. Hence [B, P]"" is central in
[B, PI*. 1fIed; — gi, we conclude from Lemma 5.32 that
C{B,P]p—‘l(I) = Ker ([B, P]p_l on U.‘).

By the choice of U;; , the last group is not equal to [B, P]”™".  Hence there exists
some o ¢ [B, P]*"® such that

Mo (@) € [B, PI — Cra,ppo=1(I).

It follows from the last statement of Lemma 5.38 that the inverse image in
[B, P*® of Cs,710-1(I) under \,,, is independent of the choice of w e P — {1}.
Therefore

M (@) = a8 Cip proms (I),

for all e P — {1}, i.e., o, I satisfy (5.29).

Because D is a subgroup of [B, P]*, it is central in [B, P]""*. Because D
centralizes P, it is central in P[B, P]*°. Since (P[B, P}’ on Uj;) is ir-
reducible, this implies that (D on Uy) is primary. So Lemma 5.28 says that
(5.20) holds for P, [B, PI*%, D, U;, 9;.
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If g = 9;,forsome¢ = 1, ---, s, then J; = U;. So (D on C;;(P)) =
(D on Cy,(P)). If [By,, P’ = {1}, forsome ¢ = 1, -- -, s, then D cen-
tralizes U;. So (D onC,, (P))istrivially weakly equivalent to (D on Cy, (P)).
This and the above arguments tell us that (D on C;, (P)) is weakly equivalent
to DonCy,(P)),forallé =1, ---,s. Asin Lemma 5.25, we conclude that
(D on C;(P)) is weakly equivalent to (D on Cy(P)).

Since (PB on U) is ample and irreducible, Proposition 3.10 implies that
(D on U) is weakly equivalent to (D on Cy(P)), and hence to (D on C;(P)).
But D = Dy = {1}. Therefore D acts non-trivially on C, (P ), which implies
C;(P) 5= {0} and completes the proof of the proposition.

We collect the results of this section in

TuroreEM 5.40. If (5.1) holds with either p = p(B) or p = p(B) > 5, then,
(5.13) s true.

Proof. Define U, d as in Proposition 5.18. By that proposition we may
assume that U 5 {0}. Then we only need prove (5.20).

Evidently P, B, D, U, g satisfy (5.22). Furthermore, each irreducible
component of (PB on U) is ample (by Proposition 5.18). If p # p(B),
then Proposition 5.35 proves (5.20). If p = p(B) > 5, then D < [B, P}*™
by (5.1i) and Proposition 5.39 proves (5.20). Therefore the theorem is true.

6. The case p = 3

When p = p(B) = 3, Proposition 5.29 does not hold and the arguments of
the last section do not suffice. However, in this case our Fitting chain is aug-
mented. So we consider the more complicated situation in which:

(6.1a) PE is the semi-direct product of a group P of order 3 acting on a non-
trivial group E of prime power order.

(6.1b) PEB is the semi-direct product of PE acting on a group B € G.

(6.1c) F 15 a subgroup of Cx(P).

(6.1d) PFBA is the semi-direct product of PFB acting on a group A € Q.

(6.1e) V is a finite dimensional Z [P Al-module, for some prime q.

(6.1f) p(E) #p(B) =3#=p(d) = q.

(6.1g) [2(B), E] = {1}.

(6.1n) B s a completely reducible Z; [PE]-module.

(6.1i) [®(4), B] = {1}. _

(6.1j) Each irreducible component of (PB on A) is ample.

(6.1k) The representation (A on V') s fatthful and weakly F B-invariant.

We define
(6.2) D = [[B, P, F].
Then we have

ProposiTioN 6.3. It follows from (6.1a,b,c,g) and p(B) = 3 that
D < Cz(P). Ifallof (6.1) holds, then P, B, A, D, V satisfy (5.1) withp = 3.
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Proof. Suppose that (6.1a,b, ¢, g) hold and p(B) = 3. Since |P| = 3,
we have [B, P}’ = {1}. From Be@ and (1.4b) we conclude that [B, P <
Z(B). Ttfollows that, for each = ¢ P, the map u : ¢ —¢™ ' is a homomorphism
of [B, P]’ into ®(B). It is clear from (6.1b,c) that u is F-invariant. By
(6.1c,g), F centralizes u([B, P’) < ®(B). Therefore D < Kerp, i.e., P
centralizes D. This proves the first statement of the proposition.

If all of (6.1) holds, then (5.1a) comes from (6.1a,b), (5.1b) is the first
statement of this proposition, (5.1¢) comes from (6.1d), (5.1d) from (6.1e),
(5.1e) from (6.1f), (5.1f) from (6.1i), (5.1g) from (6.1j), (5.1h) from (6.1k),
and (5.11) from (6.2) since p = 3. So the proposition is true.

Now we may define the families &, £, 9, 9% and the subgroups L, N, Q and
C asin §5. Furthermore, we define U, 9, ¢, J as in Proposition 5.18.

ProrositioN 6.4. D s an F-invariant subgroup of Cs(P). The families
R, £, M and the subgroup L are PFB-invariant. Hence U is a Zp[PF B]-
module and 9 is a PF B-invariant family. The family N and the subgroups N, C
and Q are P X FD-invariant. Hence so are § and J.

Proof. The first statement follows directly from (6.1a,b,c), (6.2), and
Proposition 6.3.

The F-invariance of the families &, £ follows from their definitions and
(6.1d,k). They are PB-invariant by Proposition 5.3. Hence they are PF B-
invariant. By (5.5), this implies that L is PFB-invariant. This and (5.7a)
give the PF B-invariance of 91 and complete the proof of the second statement.

The third statement follows from the second by duality and the definitions
of U and g preceding Proposition 5.18.

Both F and D centralize P by (6.1¢) and Proposition 6.3. It follows from
this and (5.7b,c¢) that 90 and N are P X FD-invariant. Furthermore, it
follows that Kampie is P X FD-invariant. Since @ is the intersection of the
members of Kampie (by (3.15)), it is P X FD-invariant. Clearly C,(P) is
P X FD-invariant. So (5.11) implies that C is P X FD-invariant, which
completes the proof of the fourth statement.

The last statement follows from the fourth by duality and the definitions of
g and J. Therefore the proposition holds.

Instead of (5.20) we now try to establish

(6.5) (F on Deye) ts weakly equivalent to (F on De, ey ).
This has the following eonsequence:

ProrostrioN 6.6. If (6.5) holds, then (F on Dz) is weakly equivalent to
(F on Dg).

Proof. By (6.1f) the representations (D on A) and (D on C) are both fully
reducible. So (5.16) and (5.17) give

(6.72) Ker (D on A) = Ker (D on Cz(P)),
(6.7b) Ker (D on ) = Ker (D on Cz(P)/Cz(P) no(Q")).



CARTER SUBGROUPS AND FITTING HEIGHTS 491

In particular, Ker (D on A) < Ker (D on C). Therefore we only need to show
that a given non-trivial irreducible component W of (F on Dj)is Z; [Fl-iso-
morphic to an irreducible component W of (F on Dg). To simplify the no-
tation we make the definition:

(6.8) “W < Dy” means “Dy is an F-invartant section of D and W 1is Z; [F]-
isomorphic to an trreductble component of (F on Dy)”.

The subgroup L is PFB-invariant by Proposition 6.4. Hence so are the
natural monomorphism ¢ of Proposition 5.6 and the submodule ¢ (L") of A.
Since (D on A) is completely reducible, we conclude from this and (6.7) that

(6.92) Ker (D on A)
= Ker (D on Cz(P)/¢(C.(P)")) nKer (D on ¢ (Ci(P)")).
(6.9b) Ker (D on ()
= Ker (D on Cz(P)/¢(CL(P)"))
n Ker (D on ¢ (CL(P)")/e(Co(P)M)).

By hypothesis W < Dz = D/Ker (Don A). So (6.9a) implies that either
W < D/Ker (Don Cz(P)/o(C(P)T)) or W < D/Ker (Dong(Cr(P))).
In the former case, W < D/Ker (D on C) = Dz by (6.9b), and we are done.
So we may assume that the latter case holds.

Proposition 5.6 says that ¢ is a monomorphism. Hence

Ker (D on ¢ (C(P)*)) = Ker (D on C(P)").
By (5.21a) this is just Ker (D on Cy(P)). Therefore
W < D/Ker (D on Cy(P)) = Deye -

Now (6.5) implies that W < D¢y = D/Ker (D on C;(P)). From (5.21b)
we have

Ker (D on C;(P)) = Ker (D on C(P)/Cy(P)).

This contains Ker (D on Cr(P)"/Ce(P)") by (5.10). Since ¢ is a mono-
morphism, the last kernel is just Ker (D on ¢ (Cr, (P)") /o(Co(P )")). There-
fore

W S D/Ker (D on ¢(C(P)")/e(Ca(P)")).

By (6.9b) this implies that W < D/Ker (D on C) = Dz, which completes the
proof of the proposition.

It is clear from (6.1) and Propositions 5.18 and 6.4 that P, F, E, B, U, 4
satisfy

(6.102) PE <s the semi-direct product of a group P of order 3 acting on a non-
trivial group E of prime power order.

(6.10b) PEB 15 a semi-direct product of PE acting on a group B e Q.

(6.10c) F s a subgroup of Cx(P).
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(6.10d) U s a finite-dimensional Z, [PF Bl-module, for some prime r.
(6.10e) 9 ¢s a PFB-invariant family of non-trivial Z.-subspaces of U.
(6.10f) p(E) = p(B) =3 #r.

(6.10g) [2(B), E] = {1}.

(6.10h) B s a completely reducible Z; [PE]-module.

(6.10i)) U = D11

Now we consider the most general, P, F, E, B, U, d satisfying these con-
ditions. We define D by (6.2), § by (5.19b) and J by (5.19¢). Since
(6.10a, b, ¢, g) are (6.1a, b, ¢, g), Proposition 6.3 and the definitions of D, g, J
imply

(6.11a) D s an F-invariant subgroup of Cz(P),
(6.11b) g is a P X FD-invariant subfamily of 9,
6.11¢) J isa Z,[P X FD]-submodule of U.

Of course, we are trying to prove (6.5). We first make some preliminary
reductions to the “minimal case”.

Lemma 6.12. Suppose that (6.5) holds whenever we assume, in addition to
(6.10), that

(6.13) B is an irreducible Zs [PE]-module with B = [B, E).
Then (6.5) always holds when (6.10) does.

Proof. Let (6.10) hold. By (6.10h) there exist irreducible Z; [PE]-sub-
modules Y3, -+, Y, of B so that:

(6.14) B=@®>.Y: (as Zs[PEl-modules).

For each ¢ = 1, --- | ¢, it follows from the normality of £ in PE and the
irreducibility of (PE on Y;) that [V, E] is either {0} or Y;. We choose the
notation so that [Y;, E] = Y;,for< = 1,---, s, and [Y;, E] = {0}, for
t=s8+4+1,---,t Then

(6.15) the natural map of D into B is a Z;[F)-isomorphism of D onto
@ > ix Yy, PP, F.

Indeed, by (6.2) the image of D is [[B, P}, F], which is
® 2 iallYs, P, F]

by (6.14). Evidently [[Y;, PT, F] < [YV:, E] = {0},fori = s+ 1,---,¢
So the image of D is @ D s [V, P, F).

Since p(E) % 3 = p(B) by (6.10f), it follows from (6.2) that [D, F] = D.
Hence [D, F] = D and C5(F) = {0}. The kernel of the map in (6.15) is
[Dn®(B)/®(D)]", which is contained in C5(F) by (6.10g). Therefore the
kernel is {0} and the map, which is obviously F-invariant, satisfies (6.15).

Let Bi; be the inverse image in B of Y;and B; = [By;, E]fort =1, .-+ ,s
Obviously each B;is a PE-invariant subgroup of B. Furthermore
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(6.16) the natural map of B into B is a Zs [PE]-isomorphism of B; onto
Y,,fore =1,---,s.

Indeed, the image of this map is [Y;, E] = Y, by the construction. The
kernel is [B; n &(B)/®(B;)]" which is contained in Cz, (E) by (6.10g). But
p(E) 5 p(B) = 3 implies that Cz,(E) = {0}. So (6.16) holds.

Fixt=1,--- s It follows easily from (6.10) and (6.16) that both (6.10)
and (6.13) hold with B; in place of B. Let D; = [[B:, Pf, F]. Then our
hypotheses tell us that

(6.17) (F on (D3) oy ) ts weakly equivalentto (F on (Dy) ;) fori=1,-- -,
s. Since J < U we have
Ker (D on C;(P)) > Ker (D on Cy(P)).

So (6.5) will follow once we prove that any non-trivial irreducible component
W of (F on Deyewy) is Zs [Fl-isomorphic to an irreducible component of
(F onDg,). Forsimplicity we adopt the notation (6.8).

It is clear from their definitions and (6.2) that each D;, 7 = 1, ---,s,is a
subgroup of D. So each D;®(D) is an F-invariant normal subgroup of D.
The natural image of D; in B is clearly [V, P/, F], for¢ = 1, ---,s. It
follows from (6.15) that [[i—1 (D:®(D)) covers D/®(D) = D. Hence D is
the product of its F-invariant normal subgroups D, ®(D), ¢ = 1,:--, s.
Since

w S DCU(P) = H:.:l (Diq)(D))CU(P) )

we conclude that thereis some¢ = 1, .-+, ssuchthat W < (D; ®(D)) ey -
By (1.4b), ®(D) is central in D; ®(D). By (6.10g) it is centralized by F.
Since (F ¢ W) is non-trivial, we must have W < (D)eoy@ . Then (6.17) tells
us that W < (Di)e@ - This implies that W <D, ) , which proves the
lemma.

Having reduced B, we now simplify U.

Lemma 6.18. Suppose that (6.5) holds whenever we assume, in additionto
(6.10) and (6.13) that

(6.19) (PFB on U) 1s irreducible.
Then (6.5) holds whenever (6.10) is satisfied.

Proof. By Lemma 6.12 it suffices to prove (6.5) under the hypotheses that
(6.10) and (6.13) hold.

Let U be the family of all irreducible Z, [PF B]-factor modules of U. We do
not know that (PFB on U) is completely reducible, since p (£) may equal r.
However, PB is a normal subgroup of PFB by (6.10a,b, ¢) and (PBon U) is
completely reducible, by (6.10f). It follows easily that any irreducible compo-
nent of (PB on U) is Z, [PB]-isomorphic to an irreducible component of (PB
on V), for some Y eU. Using the complete reducibility of (P X D on U), we
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see from this that any irreducible component of (D on Cy(P)) is Z,[D]-iso-
morphic to an irreducible component of (D on Cy(P)), for some Yea. It
follows that

(6.20) Ker (D on Cy(P)) = Ny Ker (D on Cy(P)).

Suppose that W is a non-trivial irreducible component of (F on D¢y ).
We adopt the notation (6.8). Then we need only show that W < D, .

By (6.20) there exists some Y e U such that W < Doy . Let 9y be the
family of all non-zero images in Y of elements I ed. Define gy and Jy by
(5.19b, ¢) with Y, dy in place of U, d, respectively. Then P, E, F, B, Y, 9y
are easily seen to satisfy (6.10), (6.13), and (6.19). By hypothesis, they then
satisfy (6.5). So W < D/Ker (D on Crpm).

It is obvious from (5.19b) that any I'y € gy is the image in Y of some I ¢ g.
It follows that J v is contained in the image of J. Since (P on J) is completely
reducible (by (6.10f)), this implies that C;, (P) is contained in the image of
C;(P). Therefore

Ker (D on C;(P)) < Ker (D on Cy, (P)).
From this and W < D/Ker (D on Cy, (P)), we conclude that
W < D/Ker (D on C;(P)) = Deyry

which proves the lemma.
We get rid of the easy cases by

LemMMA 6.21.  Suppose that (6.10) and (6.19) hold. If[Z(Bv), P, P] # {1},
then (6.5) s true.

Proof. Evidently P, B, D, U and 9 satisfy (5.22). Let Uy be anirreducible
Z,[PB]-submodule of U. Sinece (PBF on U) is irreducible (by (6.19)) and
PB is a normal subgroup of PFB, any irreducible component of (PB onU)
is Z, [PB]-isomorphic to (Ui) o, for some o e F.

Clearly [Z (Byv), P, P] is an F-invariant subgroup of By . If it centralizes
Ui, it therefore centralizes each (Ui) o, 0 e F. Hence it centralizes U, con-
tradicting our hypotheses. So

[Z(BU1)7 Py P] Z [Z(BU)7 P) P]Ul > {1})

for all irreducible Z,[PB]-submodules Uy of U. Now Lemmas 5.25 and 5.33
tell us that (5.20) holds. This and the complete reducibility of (D on U)
imply that Deyy = Deyry - So (6.5) holds and the lemma is proved.

We now prove several lemmas under the following hypotheses:

(6.22a) Conditions (6.10), (6.13) and (6.19) all hold.
(6.22b) XKer (#(B) on U) = {1}.

(6.22¢) ®(B) # {1}.

(6.22d) [®(B), P, P] = {1}.

First we draw some routine conclusions.
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LemMA 6.23. Let (6.22) hold. Then Z(B) = ®(B) = B, i.e., B is non-
abelian and special. The representation (Cos (P) on U) s faithful, primary,
and fully decomposable. The groups Cewy (P) and ®(B)/[®(B), P] are both
cyclic of order 3. Finally, D n®(B) = {1}.

Proof. By (6.13) we have [B, E] = B. So [B/B’, E] = B/B’. Applying
the E-invariant epimorphism o — ¢° of B/B’ onto ® (B)/B’ we get, [® (B)/B’, E|
= ®(B)/B’. This and (6.10g) imply that ®(B) = B’.

Since ®#(B) < Z(B) < B (by (1.4b)) and (PE on B) is irreducible (by
(6.13)), either Z(B) = B or Z(B) = ®(B). But Z(B) = B implies
{1} = B’ = ®(B), contradicting (6.22c). Hence Z(B) = ®(B), and the
first statement is true.

It follows from (1.4b) and (6.10g) that Cecs (P) is central in PFB. Since
(PFB on U) is irreducible (by (6.19)), we conclude that (Ce (P) on U) is
primary and fully decomposable. It is faithful by (6.22b). So the second
statement is true.

Since ®(B) is a non-trivial elementary 3-group (by (6.22¢) and (1.4c)),
the second statement implies that | Csw (P)| = 3. The other half of the
third statement follows from this since P is cyclic.

From Lemma 5.36 we obtain

(B, PT, [B, PI] < [@(B), PI'*}"" = [&(B), PI".

This is {1} by (6.22d). Therefore [B, P]’ is an abelian subgroup of B. Since
p(B) = 3 does not divide | F | (by (6.10f)), we have

[B, PT" = [[B, PI', F1 X Ciz,m: (F).

The first factor is D by (6.2). The second contains [B, P]* n &(B) by (6.10g).
Therefore the last statement is proved and the lemma is true.
The next lemmma is merely an aide to the following one.

Lemma 6.24. Let (6.22) hold. If §¢D — {1} and 7 s any non-trivial
element of (8, Co(P)), then there is some trreducible component W of
({8, Cam (P)) on U) such that neither 6 nor r acts trivially on W.

Proof. Let B be a generator for Ca (P) (which is eyclic by Lemma 6.23).
Then 8 is central in B (by (1.4b)), so (3, Ca) (P)) = (3, ) is abelian. It fol-
lows from the last statement of Lemma 6.23 that 6¢ (). This and (1.4d)
imply that (5, 8) = (8) X (B) is elementary of order 9.

Let W, be any irreducible component of ({5, 8) on U). By Lemma 6.23,
(«B) on U) is faithful, primary and fully reducible. Hence

Ker ((5, 8) on Wo) n{8) = {1}.
But (3, B)w, must be cyclic. Therefore Ker ({3, 8) on Wy) = (38", for some
1 =0,1,2.

The image § of 6 in B lies in Cs(P) by (6.11a). Sothemapg:d— [z ©,a)

is a Zs[P]-homomorphism of B into ®(B)*. The last statement of Lemma
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6.23 implies that § % 0. Then the first statement of that lemma says that
g(B) ## {0}. Since|P| = 3, we conclude that ¢ (B) n Ca (P)" # {0}. But
Cos) (P)" is a one-dimensional subspace of ®(B)*, by Lemma 6.23. Hence
Cow (P)* < g(B). Therefore there exists some element o e B such that
[6, o] = B.

For each j = 0, 1, 2 we have: [5, /] = 8, [3, )] = 1. So ¢’ normalizes
(8,8). Therefore W = Wy’ is also an irreducible component of ({5, 8) on U ).
Furthermore

Ker ((5, 8) on W) = Ker ((5, 8) on W,)°’
= ((667)") = (96106, o']) = (36™).
Both 7 and & are non-trivial elements of (5, 8). Hence we may choose
j = 0,1, 2 so that neither = nor & lies in (§8°"). Then W satisfies the condi-

tions of the lemma.
Now comes the key step.

Lemma 6.25.  Let (6.22) hold.  Fiz a generator = for P. ForanydeD — {1},
suppose that we can find an element 7 € B satisfying

(6.26a) F(r — 1) =§ '

(6.26b) f5(7(r — 1), 7(r — 1)) € Cany (P)*, for all 4,5 = 0, 1, 2, where
8 is the image of 8 in B. Then (6.5) holds.
Proor. If (D on C;(P)) is faithful, then De;py = Deyey = D and (6.5)
holds. So we need only prove that each element ¢ ¢ D — {1} acts non-
trivially on C;(P).

Fix 8 e D — {1}. Choose 7 ¢ B satisfying (6.26). Let B, be the inverse
image in B of the Z; [P]-submodule (7, 7 (x — 1), #(xr — 1)® of B. Then B;isa
non-trivial P-invariant subgroup of B containing 8. So P, By, (8), U and ¢

satisfy (5.22).
Next we prove

(6.27) ®) X ®(B) £ Z(B).

Obviously ®(B) < Z(B)n By < Z(By). SincedeD — {1}, the last statement
of Lemma 6.23 implies that (3, ®(B)) = (8) X ®(B). So we need only show
that is centralin By . It clearly suffices.to prove that fs((r — 1), §) =0,
fors = 0,1,2. If¢> 1, then

fo@@ —1)58) = f5(7 8@ — 1) = f5@ 7 — 1)) (@ — 1) =0
by (6.26a, b). If ¢ = 0, then (6.26) implies that
f5(7,8) = fs(F 7@ — 1)) = faGG(r ' — 1)%,7) = fs(F(r — 1)'n %, 7)
= fe@r %) = f5(, 7),

since § ¢ C5(P). But fs is alternating and p(B) = 3is odd. So fz(7,§) =
f&(8, 7) implies f5 (7, §) = 0, which finishes the proof of (6.27).
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Leg 7 be an element of B; having the image 7 in B. By (6.26),
7" = § (mod ®(B)). If P centralizes 7™ *, we take ¢ = 7. Otherwise,
we take o = 7™ '. In either case we have

(6.28) o™V = (TN e (5 Cay (P)) — {1}, for i = 1, 2.

Indeezd, (6.27) ilglplies that Cisyxam (P) = (8) X Com (P). If P centralizes
7™ then T”—:) ' e®(B) n Cs(P) implies (6.28) fori = 1. If P does not
centralize ™" = ¢™, then (6.27) gives 1 5 o™ ¢ [®(B), P]. So (6.28)
for 7 = 1 follows from (6.22d) in this case. Therefore (6.28) always holds for
7= 1.

We compute

21y (m— 2 tr—1 (r— . — — — 72 (7—1)2 1) y—
a_(1r ) (m—1) — [o_w T 1](71' 1) — (0_(1r 1)7ro_1r 1)(1r 1) = 0_(1r 1w 0_(1r 1) [o_(w 1)1] 1'

But ¢« ¢ <T‘:‘“2, ®(B)) = (8) X ®(B) < Z(By), by (6.26a) and (6.27).
Therefore o™ " commutes with [+ "™, and we have

2 — —1)2 —1)2 —1)2.2
o,(‘ll' 1) (7—1) — O_(ﬂ’ 1) ra(r ) — [o_(1r 1) ] ,

(r—1)2

since o is centralized by =. Therefore (6.28) always holds.
By Lemma 6.24, there is an irreducible component W of

(3, Cam (P)) on U)

such that neither o nor & acts trivially on W. We decompose U into ir-
reducible Z, [PB;]-modules as in (5.24). There must be some ¢z = 1, ---, s,
say ¢ = 1, such that W is an irreducible component of ({8, Ca) (P)) on Uh).
By Lemma 5.25, P, By, (8), Us and d; satisfy (5.22). Since (8) is central in
PB; (by (6.27) and (6.11a)), (U1)(s) is a completely reducible primary Z, [(8)]-
module.

The element o ™" ¢ [B:, PI’ acts non-trivially on W. So [B;, PJ* acts
non-trivially on U;. Hence (PB; on U;) is ample and irreducible. There-
fore Cy, (P) # {0} by Proposition 3.10.

We wish to prove that C;, (P) = {0}. If 9 = 91, then J; = U; and this
follows from the preceding paragraph. So we may assume that g1 C 9;.

FixIedy — §. By Lemma 5.32 and (6.27) we have
Cs,(I) n (3, Com (P)) = Ker ({3, Csm (P)) on Uh)
< Ker ({8, Cocs (P))on W).

We chose W so that o™ " does not lie in the last group. This and (6.28)
imply that o, I satisfy (5.29) with B in place of B. So Lemma 5.28 tells us
that C;, (P) = {0}.

Because 6 acts non-trivially on W, it acts non-trivially on U;. Since
(U1)¢s is a completely reducible primary Z,[(5)]-module, this implies that &
acts non-trivially on the non-trivial Z,[(5)]-submodule C;, (P). So é acts non-
trivally on C;(P), which completes the proof of the lemma.

One possibility in (6.22) is now easy to handle.

(r—1)2
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LemMma 6.29. If (6.22) holds with [®(B), P] = {1}, then (6.5) s true.

Proof. Let & be an element of D — {1} and § be its imagein B. By Lemma
6.25, we need only find an element 7 ¢ B satisfying (6.26) for some generator
rof P. By (6.2),5¢[B, Pl = B(r — 1)’. So there exists some 7 ¢ B satisfy-
ing (6.21a). Condition (6.26b) obviously holds, since ® (B)* = Cam (P)™.
Therefore the lemma is true.

For the other possibility in (6.22) we need more information about the ac-
tion of P on B,

LemMa 6.30. Let (6.22) hold with [®(B), P] s« {1}. Then B is a free
Z5 [P]-module.

Proof. We may choose a finite algebraic extension field Z3 of Z; sothat
Z3 is a splitting field for all subgroups of PE. Since Zs is a finite field, Z;3 is a
normal separable extension of Z;. We denote by G the Galois group of Z3
over Zs. Then G operates naturally on the extension Z; ®z, B of B to a
Z3[PE] module, by (¢ ® B)oc = (20) ® B,forallzeZ;,BeB,oeG. There are
absolutely irreducible Z5[PE]-submodules By, - -, B, of Z; ® B so that

(6.3la) Z; ® B = Bi® --- © B, (as Zi[PE]-modules),
(6.31b) forany?,j =1, -- -, t, there exists o ¢ G such that (B;) o 1is Z3[PE]-
1somorphic to Bj .

(See Theorem V, 13.13 of [4].)

The subgroup F is normal of prime index 3 = | P | in PE. It follows from
Clifford’s theory, (Theorem V, 17.3 of [4]) that there are two possibilities:
either (Z$§[E] on B:) is irreducible, or B; is induced from some irreducible
Z3[E]-submodule.

Suppose that (Z3[E] on By) is irreducible. By (6.31b), (Zi[E] on B;) is ir-
reducible, for 7 = 1, --- , t. These modules are absolutely irreducible by the
choice of Z5. It follows from this and Schur’s Lemma that

dimz (B: ® 2 Bj/[B: ® B;, E]) < 1, foralli,j =1, -,

Since | P | = 3, the only one-dimensional Z3[P]-module is the trivial one.
Therefore P centralizes (B; ® B;/[B; ® B;, E]), for¢,j = 1, ---, ¢ This
and (6.31a) imply that P centralizes

(Z: ® B) ®7 (Z; ® B)/[(Zi ® B) ® # (43 ® B), El.

Hence P centralizes B ® z, B/[B ® B, E] But fz defines a Z;[PE]-homo-
morphism ¢ of B ® B into ®(B)*. By (6.10g), the kernel of ¢ contains
[B ® B, E]. Therefore P centralizes the image of g. This image is clearly
(B')*, which equals ® (B)*, by Lemma 6.23. By hypothesis, [® (B)*, P] # {0}.
The contradiction proves that (Z5[E] on B;) cannot be irreducible.

We now know that B; is Zi[PE]-isomorphic to Y37, for some irreducible
Z:[E]-module Yi. Therefore (Bi)p is a free Z§[P]-module. Hence so is Z; ®
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B, by (6.31). It follows easily that B is a free Z;[P]-module. Therefore
the lemma, is true.
We investigate f5(7, 7) (mod [®(B)", P]) more closely.

Lemma 6.32. Let (6.22) hold. Then the function
h(3,7) = f5(5, 7(x — 1)) + fz(F 6(x — 1)) + [&(B)", P
is a symmelric, bilinear map of B X B inlo ®(B)Y/[®(B)*, P). Its radical is
Cs(P). And the subspace [B, P) is h-isotropic.

Proof. The first statement is obvious from the definition of A.
For the second, notice that the map

9(5,7) = f(5,7) + @(B)", Pl
is a PE-invariant (by (6.10g)) alternating bilinear map of B X B into
®(B)"/[®(B)", P]. Since B’ = ®(B) (by Lemma 6.23), the map ¢ is not
trivial. So the radical of ¢ is a PE-invariant proper subspace of B. By

(6.13), this radical must be {0}, i.e., ¢ is non-singular.
For any &, 7 ¢ B we compute

(6.33) h(s,7) = g(@,7(x — 1)) +g@F a(r — 1))

=g, 7(r—1)+g9Ga —1),6)

=g i@ —1)) =g i@ —1))

=g@ i@ — r ),
using the PE-invariance of (f and the fact that PE centralizes ® (B)/[®(B), P].
Since ¢ is non-singular, we conclude that 7 lies in the radical of 4 if and only if
(" — 1)a ' =0, 1ie,ifand only if 7 e C5(P). This is the second statement

of the lemn}a.
If , 7 ¢ b, then

g@m — 1), 7(r = 1)) = g, i@ — 1)’ — 1))

= —g@, 7(x — 1)'n ') =0,
since 7(r — 1) = #(x®* — 1) = #(1 — 1) = 0. The third statement of the
lemma follows directly from this and (6.33). So the lemma is true.
At last we can prove
LeEmMA 6.34. Let (6.22) hold with [®(B), P] 5 {1}. Then (6.5) is true.

Proof. By Lemma 6.30, Bis a free Zs[Pl-module. So there is some integer
n_> 0 such that B has dimension 3n, [B, P] has dimension 2n, and
[B, P’ = C3(P) has dimension n. Therefore B; = B/C5(P) has dimension
2n.

Il

Lemma 6.32 says that h induces a non-singular symmetric bilinear form
on By X By to ®(B)"/[®(B)*, P]. The latter space is one-dimensional, by
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Lemma 6.23. So we may apply the ordinary theory of quadratic forms to 4z .
The subspace [B, P]/[B, PJ is hi-isotropic, by Lemma 6.32, and has dimension
n, which is one half the dimension of B;. Therefore there is some comple-
mentary hi-isotropic subspace Y such that

B, = Y1 ® [B, P|/[B, P|’

(see Theorem 3.8 of [1]). It follows that the inverse image ¥ of Y7 in B is
h-isotropic and satisfies Y + [B, P] = B.

Now let & be any element of D, and § be the image of § in B. By (6.2),
§ ¢ [B, P’. If = is a generator for P, then [B, P> = B(x — 1)’=
(Y +[B,P])(x — 1)’ = Y (r — 1)% since [B, P] (r — 1)* = B(x — 1)’ = {0}.
So there exists 7 ¢ Y such that § = 7 (r — 1) i.e., so that (6.26a) holds. Be-
cause Y is h-isotropic, we have

0=h@#7) =2F7x—1)) + [@B)", P|.

Hence f5(7, 7(r — 1)) e [®(B)", P] < Cam (P)" (by (6.22d)).
We compute

faF 7 — 1)) = fa(G (@ — 1), 7) (mod [®(B), P])
=fp(r(r — 1)’ % %) (mod [®(B)", P])
= —fp(7, 7(x — 1)’) (mod [®(B)", P]),

since f5 is alternating, P-invariant, and bilinear, and 7#(r — 1)’ ¢ C5(P).
Since 3 is odd, we conclude that f5 (7, 7 (r — 1)*) e [®(B)*, P].

Finally, fz (G (x — 1), 7(r — 1)*) e [®(B)*, P] by Lemma 5.36. Therefore
(6.26b) holds for 0 < 7z < j < 2. Because fp is alternating, this proves
(6.26b) in all cases. So Lemma (6.25) says that (6.5) holds. This finishes
the proof of this lemma.

We collect the results of this section in

TarorEM 6.35. If (6.1) holds, then (F on Djz) s weakly equivalent to
(F on Dg).

Proof. By Proposition 6.6, it suffices to show that (6.5) holds whenever
(6.10) does. Lemma 6.18 says that it is enough to prove (6.5) when (6.10),
(6.13) and (6.19) all hold, i.e., when (6.22a) holds.

The subgroup Ker (®(B) on U) is E-invariant (by (6.10g)) and PB-
invariant by (6.10d). It follows that P, F, E, B/Ker (®(B) on U), U, g also
satisfy (6.22a). Clearly Deye) and D, r) are unchanged when we replace B
by B/Ker (2(B) on U). So it suffices to prove (6.5) when (6.22a, b) hold.

If ®(B) = {1}, then B is abelian. So

Dy < [By, P, P] = [Z(Bv), P, P].

If Dy # {1}, then (6.5) holds by Lemma 6.21. If Dy = {1}, then (6.5) is
trivial. Therefore it suffices to prove (6.5) when (6.22a, b, ¢) hold.
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f [®(B), P, P] ## {1}, then (6.22b) implies that
{1} # [®(Bv), P, P] < [Z(Bv), P, P].

Again Lemma 6.21 proves (6.5). So it suffices to prove (6.5) when (6.22)
holds.

If [®(B), P] = {1}, Lemma 6.29 proves (6.5). If [®(B), P] # {1}, Lemma
6.34 proves (6.5). Therefore (6.5) holds in all cases and the theorem is true.

7. Proofs of the basic theorems

We shall carry out a large part of the proofs of Theorems 2.6, 2.7 and 2.13
simultaneously. For the first two theorems we assume that (2.5) holds. For
Theorem 2.13, we assume in addition that p = 3 and that 4;, ---, 4, has
been extended to an augumented Fitting Chain A, -- -, 4;, { B;} on which H
also acts.

We may also assume that ¢ > 3 for Theorem 2.6, ¢ > 4 for Theorem 2.7,
and ¢ > 6 for Theorem 2.13. In particular, ¢ > %, where % is defined by
(4.19). In view of (2.5¢), Theorem 4.20 gives us an integer j satisfying:

(71a) 1<j<w<t.
(7.1b) p(4;) #= p. B
(7.1¢) {0} # Ajr1,ample (defined with respect to (PAjon Aj)).

This integer 7 will be fixed throughout this section.

It is convenient to add one more term to our chain. Let ¢be any prime dif-
ferent from p (4;). Form the semidirect product HA: 1 A,. Let A1 be the
regular Z,JHA, 1 A;]-module written multiplicatively. If p(4:) = 3 and we
are proving Theorem 2.13, let B;_; = A1 and .1 be the identity isomorphism.
Since (4; on A1) is weakly invariant under Aut (4.), we easily verify that
H,Pand Ay, -+, Agjaor Ay, -+, A1, { B} satisfy the hypotheses of our
theorems.

We define subspaces S; of A; and subgroups E; of 4; by

(72a) S; = 4;,E; = A;,

(7.2b) 8, is the sum of all ample irreducible Z pca,)[PEi1]-submodules of A,
f07i=j+1,“',t+l,

(7.2¢) E; = [X, Eii], where X s the inverse vmage in A; of Si,
fori=j+1,--,t+ 1.

Clearly S; and E; are P-invariant whenever E; 1is. So it makes sense to form
the group PE; ;in (7.2b).

ProposiTioN 7.3. Leti=j+1,---,t+ 1. Thenboth S;and E; are HE;_;-
invariant. The natural map of E; mto A1 is an HE;_y-isomorphism of E; onto
S:. Hence E; is a direct sum of ample irreducible Z,,u,)[PE@_l] -submodules.
Finally, defining A ampte by (3.15) with respect to (PEi1 on As), we have that
(Bizy o A ampre) 1s weakly equivalent to (B on E;).
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Proof. By (7.2a), S; and E; are H-invariant. Since HE; 1 acts on A; and
P is a normal subgroup of H, it follows from (3.9) that H permutes the ample
irreducible Z,c4[PE1]-submodules of A; among themselves. Hence HE,
leaves S; invariant. By (7.2¢), it also leaves E; invariant. This completes
the inductive proof of the first statement.

By (3.9), E;_1 acts non-trivially on any ample irreducible Z,,)[PE;_1]-
submodule V of A;. Therefore [V, E;ia] = V. We conclude that
Si = [S:, Ei]is theimage in A; of B;. Since p (Adia) # p(4:) (by (2.2b))
we have

[Bi, Bia] = [X, B’ = [X, Eca] = Es,

where X is as in (7.2¢). Furthermore, E; = [E;, E.1] ® Cz, (E:ia). It fol-
lows that Cs, (E;,1) = {0} But the kernel of the natural map of E; into
Aiis [Bin ®(A;)/® (E;)]", which is contained in Cz, (Ei1) by (2.2¢). There-
fore this kernel is {0} and the second statement is true.

The third statement follows immediately from the second and (7.2b).

Since p(A4:1) # p(4;), the action (E.1 on A;) is completely reducible.
It follows that any reducible component of (E;_;on A ; amp10) is E;_s-isomorphic
to one of (E; on S;) and hence one of (E;1onE;). The converseisobvious.
So the last statement is true, which proves the proposition.

We define subgroups F; by

(74a) F; = {1},
(74b) Fi= Cp,(P)if p(A:) #£pandi=j+ 1, -, t+ 1,

(74c) Fju = C[E,-+1,P1P-1(P), ifp(A,~+1) =D,

(74d) F;=[[E:, PP, Fal,ifp(4)) =pandi=7+2, -+, t+ 1.

They satisfy

ProrosiTION 7.5. For each k = j, ---, 1 4+ 1, the subgroup F; of E; is
normalized by H and centralized by P. If p(A;) = p, then F; < [E;, PP,
If ¢ > j + 1, then F ;1 normalizes F; .

Proof. Since H normalizes P and also each E; (by Proposition 7.3), it
follows easily from (7.4) and induction that H normalizes each F'; .

If F;is defined by (7.4a, b, ¢), then it is clearly centralized by P. Assume
that (7.4d) holds and that P centralizes F;_y. Then F; ;normalizes [E:, PP
Since P is cyclic of order p = p(4.), we have [E;, P]* = {0}. Hence
[E:, PP < ®(E;) < Z(E:) (by (2.2a) and (1.4b)). TFor any 7 ¢ P we easily
compute that u : ¢ — ¢™ " is an F;_-homomorphism of [E;, P]"" into & (E.).
Since F,; 1 centralizes ®(E;) < ®(4;) (by (2.2¢)), we must have

Fi; = [[E:, P, Fi4] < Ker p.

Therefore P centralizes F; and the first statement is true.
If (7.4¢) holds, then clearly F; < [E;, P|”". If (7.4d) holds, then F;,
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normalizes [E:, P’"' by the above argument. So the second statement is
true.

If £ > 7 + 1, then F;_; centralizes P and normalizes E; (by Proposition 7.3).
The third statement follows directly from this and (7.4). So the proposition
is true.

The sections D; are defined in most cases by

(76) Di= (Fi)g;y,,fori=7+1,---,¢ unless p(4d:) = p = 3.
From Theorem 5.40 we get

ProposiTioN 7.7. Suppose that p(A:) % p and E; # {1}, for some
t =74+ 1, ---,t Then D; s Fis-tnvariant. If either p #= p(Aia) or
p = p(dia) > 5, then D; # {1} and (F:y on E;) is weakly equivalent to
(F i—1 on D,)

Proof. It is obvious from (7.2) that E; & {1} implies F;—1 # {1}. From
the first statement of Proposition 7.3 we see that P, B = E;3, A = E;and
V = A satisfy (5.1a, ¢, d). Proposition 7.5 says that D = F,_; satisfies
(5.1b,1). Condition (5.1e) comes from (2.2b), since p # p(4;). Condition

(5.1f ) comes from (2.2¢), condition (5.1g) from Proposition 7.3, and condition
(5.1h) from (2.2d, e).

By (7.4b) the section C of (5.11) is
Fi/F;n Ker (F;on Aq1mmple)-

Proposition 7.3 implies that (F; on Aii1ample) is weakly equivalent to
(Fi;on Eiy). Since p(4:) 5= p(Aia) (by (2.2b)), we conclude that

Ker (F;on Aip1ample) = Ker (Fion Eip1).

So (7.6) says that C = D;.

Now (5.12) tells us that D; is F,_i-invariant. The last statement of the
proposition comes from Theorem 5.40. So the proof is complete.

We can now finish the definition of D;. Supposethat:i =741, ---,¢{— 1,
and p(4:) = p = 3. Then p(4ds41) & p by (2.2b). So Dy is defined by
(7.6). If ¥, centralizes F;.1, then it centralizes Diya. If F; does not cen-
tralize E:a, then E;q # {1} and F; normalizes D,y by Proposition 7.7.
Since F; normalizes D1 in both cases, we may define

(78a) Di= Fi)p;p,, fi=4+1,--,t—landp(4:) = p = 3,
(7.8b) D.=F.,if p(4,) = p = 3.

The result corresponding to Proposition 7.7 for p (4;) = pis

ProposiTION 7.9. Suppose that p(4:) = p 2 3 for somet =j + 1, -, 1.
If i > j + 1, we also assume that D;y 7 {1}. Then Ker (F; on Eia) = {1},
F; # {1}, and (F;—1 on E,) is weakly equivalent to (I';-y on F;).

Proof. (E;on Au) is faithful by (2.2d). It follows from this and (3.9¢)
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that ([E:, PI""" on A i1 ,ampie) is faithful. By Proposition 7.3, ([E:, P]”" on
Aii1,ampie) is weakly equivalent to ([E:, P]”' on E.a). Since p(4;) #
p (A1), this implies that ((E:, P’ on E.4) is faithful. Proposition 7.5
says that F; < [E,;, P]*"'. Hence Ker (F;on E;;) = {1}.

Suppose that ¢ = 7 + 1. Then A j11,ampre # {0} by (7.1c). It follows from
Proposition 7.3 that E; 5 {0}. Since E;; is a sum of ample irreducible
PE j-submodules (by Proposition 7.3) and p (4;) &£ p (by (2.2b)), Proposition
3.10 implies that [E;1, PP 5 {0}. Thisand (7.4c) give Fs1 # {1}. Since
F; = {1} (by (7.4a)), this proves the proposition for 7 = j + 1.

Suppose that ¢ > j + 1. Since E; is a sum of ample irreducible PE, ;-
modules and F; 1 = Cg,_, (P), Proposition 3.10 says that (F.1 on E;) is
weakly equivalent to (Fi_; on [E;, P]*™") and hence to

(F iy on [[E:, P, Foa]).

We know that F;_; centralizes F; n ® (E;) by (2.2¢). It follows from this and
(7.4d) that (F.1 on E,) is weakly equivalent to (F;_; on F;). By (2.2b),
p(Aia) # p(4:) = p. Therefore D,y = (Fia)s, = Fia)r,. Hence
F; {0}, which finishes the proof of the proposition.

In the case of Theorem 2.13 we must also define sections C; of B;. They
are given by

(7.10) C; = Cx(P), where X 1s the inverse image in B; of F ; , for all relevant
i=j4+1 -t =2

Since 7; is a P-epimorphism of B; onto 4; and p (4;) # p = 3, we conclude
from (7.4b) that

(711) 9:,(Cy) = Fyi, for all relevant © = j + 1, -+, &t — 2.
Theorem 6.35 will give us

ProposrTioN 7.12.  Suppose that p (A;) = p = 3 and Dy #= {1}, for some
t=7+2 +,t— 1. Then Fiynormalizes Di, Ci normalizes D1, and
(F i1 on E,) is weakly equivalent to (F iy on D;).

Proof. Proposition 7.9 tells us that F; # {1} and Ker (F;on Ei1) = {1}.
Hence E; = {1} and E;q 7% {1}. Let E be the inverse image in B, of E; 1,
Bbe E;, Fbe Ci1, A be Eiy1 and V be A;ys. The augmentation tells us
that PCi;_1 E; acts on A;11. Sinee C; centralizes P, it must leave Siy1 and
E; invariant (by (3.9) and (7.2)). Hence E;;1 is PCiy E-invariant, and
(6.1a—e) hold. Condition (6.1f) comes from (2.2b), since p (4;) = 3. Con-
ditions (6.1g, i) come from (2.2¢) Conditions (6.1h, j) come from Proposi-
tion 7.3. Finally, condition (6.1k) comes from (2.2¢) and (2.10¢).

Evidently (7.11) implies that the group D of (6.2) is the group F; defined
by (7.4d). It follows from Proposition 7.3 that the section C of (5.11) is
D1 (see the proof of Proposition 7.7). So (7.8a) becomes D; = Dg.
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Proposition 6.4 says that C;_; normalizes D1 and F;. Hence itnormalizes
D;. 'This and (7.11) imply that ',y normalizes D; .

Since F;_; centralizes ® (D), the action (F;_1 on D;) is weakly equivalent to
(Fia on D;). Theorem 6.35 and (7.11) say that (Fi;1 on D;) is weakly
equivalent to (Fi1 on (F:)%,,,). By Proposition 7.9, the group (F:)z,,, is
just F;. Since F.; centralizes ®(F;) (by (2.2¢)), (i1 on F;) is weakly
equivalent to (i on F;). This, in turn, is weakly equivalent to (Fi_1 on
E;) by Proposition 7.9. So the proposition is true.

We must return to the techniques of §5 to prove

ProrosiTioN 7.13. If p(Aj11) = p = 3, then Dy 5% {1},

Proof. If j + 1 = t, this is clear from (7.8b) and Proposition 7.9. So we
may assume that ¢ > j + 1.

Proposition 7.9 says that F;,; # {1} and Ker (Fj110on Ejp5) = {1}. Hence
Ej 5 {1}. Asin the proof of Proposition 7.7, this implies that P, B = E;,1,
A = Es2,D = Fjyand V = Ay, satisfy (5.1) with p(B) = p = 3 and
¢ = p(Ajs). Furthermore, the section C' of (5.11) is Djys. Since Dy, is
given by (7.8a) and F;1 by (7.4¢) we are reduced to proving

(7.14) Suppose that (5.1) holds with p = p(B) = 3 and D = Cizr2(P).
If D = Dx # {1}, then D does not centralize C.

Next we pass to the situation (5.22). Let the hypotheses of (7.14) hold
with Dg = {1}. Then (5.16) and p(B) = p(4) imply that D centralizes
Ci(P)/Cz(P) n ¢(Q"). This and (5.10) imply that D centralizes
Cz(P)/Cz(P)ne(N'). On the other hand D = Dj is faithfully represented
on A and hence on Cz (P) by (5.17). So D acts faithfully on Cz (P) no(N*).
Using the fact that ¢ is a monomorphism (by Proposition 5.6 ), we conclude
that D acts faithfully on Cy (P) and centralizes C. (P)/Cx(P). By (5.21),
this implies that D centralizes C; (P) and acts faithfully on Cy (P). So we are
reduced to deriving a contradiction from the situation in which

(7.15a) conditions (5.22) hold,
(7.15b) p = p(B) = 3,

(7.15¢) D = C,pm2(P) # {1},
(7.15d) (D on Cy(P)) s faithful,
(7.15e) D centralizes C;(P).

Wedefine U;, 7i,9:,9i,Ji,forc =1, --- s, asin (5.24) and Lemma, 5.25.
Notice that (5.26), p 5 r, and (7.15¢) imply

(7.16) D centralizes Cs; (P) < wi(Cs(P)), fori =1, ---,s.
The next step is to prove

(7.17) "¢ Z(B) — {1}, for all o ¢ B, = ¢ P.
Suppose that ¢™ ™" ¢ Z(B) — {1}, for some ¢ ¢ B, 7 ¢ P. If = = 1, then
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d™ P = 1. Sor =1 ﬁnd P = (x). Sinc‘i p = p(B) there exists an integer
n > 0 such that o™ ™" 5 1, and ¢ ?*™ = 1. Replacing o by ¢ ",
we may assume that ¢™™° = 1. Then

o,(‘1r—1)2 ¢ C[B,Plz (P) - D.

Since ¢ " ¢ D — {1}, condition (7.15d) and (5.24) give us an integer
i =1, -+, ssuch that o " does not centralize Cy, (P). Hence

™" ¢ Z(B) — Ker (B on U.,).

Furthermore, this and (7.16) give J; < U;. So there is some member I; of
d;— ;. Now Lemma 5.32 tells us that a("—m&f Cz(I;). Since ez (B),
we easily compute that o™ 2™ = [¢" P’ This does not lie in C5(I;),
since p(B) = 3. Hence ¢ and I, satisfy (5.29). Obviously U; is a primary
Z (™ "]-module. So Lemma 5.28, applied to (¢ "), tells us that (™%
on Cy, (P)) is weakly equivalent to ((¢™ 7 on Cy,(P)). This is impossible
since o™ ™" centralizes C;,(P) but not Cy,(P) and r 5% p(B). Therefore
(7.17) holds
From (7.17) we will conclude that

(7.18) D = [B, P" is generated by all ' ™* ¢ ¢ B, 7 ¢ P.

Suppose thato e B, 7¢ P, and o™ " ¢ [B,_P]2 — D. Thenn s 1land P = (r).
Hence e ™° 5 1 (by (7.15¢)). But [B, P’ = {0}, since p = 3 = p(B).
Therefore

¢ e@(B) — (1} € Z(B) — {1}

(by (1.4b)), which violates (7.17). We conclude that D contains a(”_m, for
alle e B, T ¢ P.

The subgroup [B, P]* is generated by the elements o and a("‘l)("z_l),
o € B, m ¢ P. The first elements lie in D. For the second we compute

(r—1)2

— 2 —1) 2 —1)2 —1)2
U(T 1) (w2—1) - o_(7r 1) 1r0_(1r 1) — [O_(ﬂ' 1) ]2 GD,

since ™" ¢ D is centralized by P. Hence [B, P> < D. This and (7.15¢)
give (7.18).
Next we show that

(7.19) Dn [0 ™%, Bl = {1}, for allo ¢ B, T ¢ P.

Suppose that § is a non-trivial member of D n (o™, B, for some o ¢ B,
w e P. Clearly (w) = P. By (7.15d) and (5.24), we may choose some
1 =1, ---, s so that § acts non-trivially on Cy, (P).

Let o, 8; be the images of o, 8, respectively in B; = By, . SincedeD n B
it follows from (7.15¢) and (1.4b) that () < Z(PB;) n ®(B;). Because B;
acts faithfully on the irreducible Z, [PB;]-module U, the subgroup Z (PB;) n B;
is eyclic. From this, §; #% 1, and (1.4¢) we conclude that

(7.20) (8 = Z(PB;) n ®(B;) = Ca, (P).
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Since §; € [(a§"“l)2), B}, there exists an element 7 ¢ B; so that [05"_1)2, 7] = 8.
Hence o{" " ¢ &(B,). It follows from this, (1.4d) and (7.20) that
Y = ({™™% X (5. is an elementary abelian r-invariant subgroup of order 9 in
B;. Clearly

o = P (mod @(By)).
So o TV £ 1 Furthermore, (7.15¢), (7.18) and (7.20) give
o VT € Cowsor (P) = (5.

Therefore both o{" " and ¢{™ ™ are non-trivial elements of Y.

Let W be an irreducible Z, [Y]-submodule of U;. Since §; is central in
PB; and (PB; on U,;) is irreducible, we know that ((6;) on U;) is primary,
completely reducible, and non-trivial. Hence ({3;) on W) is non-trivial and
Ker (Y on W) = (o{™%?), for some ¢ = 0, 1, 2. Because r normalizes Y,
the translate Wr* is also an irreducible Z, [Y]-submodule of U;, for each
k=0,1,2. But

Ker (Y on Wr*) = [Ker (Y on W)|"
= (&"“’%ﬁ[ﬁ”‘"“ai , *rk]> = (aﬁr—l)zﬁf%).

Therefore we may choose W so that neither o§™ " nor o{™ ™™ lies in Ker (¥
on W).

By (7.15¢), (3.9), and the fact that 6; # 1, the action (PB; on U;) is
ample. Proposition 3.10 says that we may take W < Cy,; (P). The complete
reducibility of (Y on Cy,(P)) gives us a Z, [Y]-submodule X of Cy, (P) so
that

Co,(P) =W @& X (as Z,[Y]-modules.)

Since ((8;) on U;) is primary, completely reducible, and non-trivial, (7.16)
implies that C;, (P) = {0}. By (5.22e) and (5.19), this gives

Cu, P) = 0-’; P) +EI~;!9i—$i I; = 215591"—36 I;.

Therefore there is some I; ¢ 9; — J;whose projection (I; + X) N W is non-
trivial. We conclude that Cy(I;) < Ker (¥ on W). In particular, neither
™" nor ™™ lies in Cy(Il:). Hence oi, I; satisfy (5.29).

Lemma 5.28, applied to {5:), tells us that C, (P) £ {0}, contradicting a state-
ment above. Therefore (7.19) holds.

Now we finish the proof of Proposition 7.13. By (7.15¢) and (7.18) there
exists some o ¢ B, 7 ¢ P such that d" % 1. We compute

o_(w2—l) (r—1) — a(r2—1r)ro'(1r—1)3[0_12—w —1
—_ U(ar—l) 2"'0'(,__1) 2[o_(ar——l) 2’ (0_11'2'—7 )—1]'
It follows from this and (7.18) that
[0, @) 1e Do), Bl
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So (7.19) gives

(7.21) A R P L) Il I
Next we compute
@) = @) = (@ D
- a(r—l)wa(r—l)’ (a_r—l )—1[07—1, 6—1](7——1)
s i o (by (7.21)).

This and (7.18) give [e™ ™, ¢ 1" ™ ¢ D. But

[a_'r—-l, 0_——1] (r—1) = [o_(ar——l)r’ a_—-n'] [ar—l’ 0_—1]—-1

= [o_(qr—l)z’ o_—-'n'] [o_r—l’ a_—-1r+1]
- [a_('il'—l)2 0;—-11']
, .
Therefore (7.19) gives
1 = [0_(11'——1)2, G—W]_l — [o_(w—l)zr_ 1, 0'] = [a,(ﬂ'—l)z, O'].

We conclude from this and (7.21) that ¢ " lies in the center of the group
Bl = <0', a_‘ll'—l’ 0_(1—1)2’ q>('B »
Obviously ¢™ ™" ¢ Dy = Ciz,,p12(P) < D. Therefore P, By, D1, U and 9 also

satisfy (7.15). But o™ ' e Z (B,) — {1} violates (7.17). This final contra-
diction proves that (7.15) is impossible and that Proposition 7.13 is true.

Proofs of Theorems 2.6 and 2.7. In these cases either p(4;) # p or
p(d;) =p >5,forallz =1, --- ,{. SoD;isalways defined by (7.6).

We know from (7.1¢) and Proposition 7.3 that Eja 5% {1}. If p (A1) &= p,
then Proposition 7.7 implies that D;, # {1}. If p(4j1) = p, then Dy =
F;1 5% {1} by Proposition 7.9. So Dj.; 5% {1} in both cases.

Suppose that D;; = {1}, for some ¢ = 7 + 2, --- , . Then E; # {1} by
(7.6). Ifp(4:) & p, then D; > {1} by Proposition 7.7. If p(4:) = p, then
D; = F; % {1} by Proposition 7.9. So D; = {1} in all cases.

(7.22a) D; = {1}, forallz =35+ 1,--- ¢

(7.22b) E;#= {1}, foralle =54+ 1,--- L.

Now Proposition 7.9 implies that D; = F; whenever p(4:) = p. From
this, Proposition 7.5 and Proposition 7.7 we have

(7.23) Finormalizes D;, for i =3+ 2, .-+, ¢

In view of (7.22), Propositions 7.7 and 7.9 also tell us that
(7.24) (Fi1on E;) is weakly equivalent to (Fiyon D;),fori =3+ 2,--- ,t.
We shall use Proposition 2.3 to show that Dj1, -+, D; is a Fitting sub-
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chain of A1, -+, A:. We must verify (2.4).

Condition (2.4a) comes from (7.22a).

If 27 =357 4+ 2,:---, t then F,1 normalizes D; by (7.23). Since
p(Aia) 5= p(A;), it follows from (7.24) that

Ker (Fiyon E;) = Ker (Fis on D;) = Ker (Fi_s on D).

This and (7.6) imply that D.; normalizes D; and Ker (D;1 on D;) = {1},
which are (2.4b,¢).

Let¢ =j + 3, ---,t By (2.2¢), (Eix on A;) is weakly F. ,-invariant.
Since F;_, centralizes P (by Proposition 7.5), it follows easily from (3.9) and
(3.15) that (Fii on A;ample) is weakly F, p-invariant. By Proposition 7.3,
(Eiy on E;) is weakly F, p-invariant. Hence (Fiy on E;) is weakly Fi -
invariant. By (7.24), (Fia on D;) is weakly Fi o-invariant. Therefore
(Diy on D;) is weakly D;o-invariant, which is (2.4d).

Now Dj1, -+ -, D, is a Fitting subchain of A1, ---, A; by Proposition
2.3. Proposition 7.5 and (7.6) imply that P centralizes each D;. Since H
normalizes each F; (by Proposition 7.5) and E. (by Proposition 7.3), it
normalizes each D; (by (7.6)). From (7.1a) and (4.19a,b) we see that
7+ 1 < 3in the case of Theorem 2.6 andj + 1 < 4 in the case of Theorem 2.7.
So Ds, ---, D; (respectively Dy, - -+ , D;) satisfy the conditions of Theorem
2.6 (Theorem 2.7). This completes the proofs of these theorems.

Proof of Theorem 2.13. In this casep = 3.

We know from (7.1¢) and Proposition 7.3 that E; 1 5% {1}. If p(d;1) # p,
then (7.1b) and Proposition 7.7 give Dj1 % {1}. If p(A51) = p = 3, then
D;1 5~ {1} by Proposition 7.13. So Dy # {1} in both cases.

Suppose that D,y # {1}, forsome ¢ = j + 2, --- , i. Then E; # {1} by
(7.6) and (7.8). If p(Ai1) # p # p(A:), then D; # {1} by Proposition 7.7.
If p(A:1) = p, then (7.82) and D,y # {1} imply that D; & {1}. If
p(A;) = pand i = ¢, then D, = F, % {1} by (7.8b) and Proposition 7.9. If
p(4;) = p and ¢ < {, then (7.6) and Proposition 7.12 give

{1} # Diq = (Fe)s, = Fia)s, -

Hence D; # {1} in all cases, so that (7.22) holds.
Now Propositions 7.7, 7.9, and 7.12 tell us that (7.23) holds. In place of
(7.24), they now give

(7.25) (Fia on E;) is weakly equivalent to (Fix on Dj), for all
i1=7+4+2 -, tsuchthat p(Adi;a) # 3.

In addition, Proposition 7.12 says that
(7.26) C; normalizes D2, for each relevant index © = j 4+ 1, -+ , ¢t — 2.

We shall use Proposition 2.11 to show that D1, - -+, D¢, {Cs} is an aug-
mented Fitting subchain of A;1, -+, A¢, {B:}. We must verify (2.12).
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Condition (2.12a) comes from (7.22a).

Ifi=45+4+2---,tand p(4dia) 5 3, then (2.12b,e) come from (7.25) as
(2.4b, ¢) came from (7.24). If p(4dia) = 3, they come from the definition
(7.8) and the remarks preceding it.

Condition (2.11¢) comes from (7.11) and (7.6).

Condition (2.12d) is (7.26).

Condition (2.12f) comes from (7.25) as (2.4d) came from (7.24).

Letz=7541,---,t — 3 bearelevant index. It follows from (7.11) and
Proposition 7.3 that C; normalizes E;1. Since C; centralizes P (by (7.10))
it must permute the ample irreducible Zpw4,, ,)[PE:u]-submodules of Ay
among themselves. So it leaves Si» and Eip. invariant. It follows from
(2.10¢c) that (B on A,;) is weakly Cy-invariant. Since C; centralizes P,
it follows that (Ei1s on Az ample) is weakly Ci-invariant. By Proposition 7.3,
this implies that (Eiqe on Eiys) is weakly Ciinvariant.  Hence so is
(Fips on Eiy3). Since p(Adiz) # p(din) = 3, it follows from (7.25) that
(F 42 on Dyys) is weakly Cs-invariant. This proves (2.12g).

Now Djya, - -+, D¢, {C3} is an augmented Fitting subchain of 441, -+ -, 44,
{B;} by Proposition 2.11. Proposition 7.5, (7.6), and (7.8) imply that P
centralizes each D;. By (7.10), P centralizes each C;. Since H normalizes
each F; (by Proposition 7.5) and E; (by Proposition 7.3), it follows easily
from (7.6) and (7.8) that it normalizes each D;. Since H normalizes each
B; and P, it normalizes each C; (by (7.10)). From (7.1a) and (4.19¢) we see
that 7 + 1 < 6. Therefore D¢, D7, ---, D,, {C;} satisfy the conditions of
Theorem 2.13. This completes the proof of that theorem.

8. Thompson'’s conjecture

We first prove Thompson’s conjecture in the special case of solvable groups
@ whose Carter subgroups have a normal complement. We use the following
lemma, which was mentioned to me by R. Carter:

LeMMa 8.1. Let G be a finite solvable group whose Carter subgroups have a
normal complement K. Let H be a Carter subgroup of G and L be an H-invariant
subgroup of K. Then H normalizes some Sylow system of L.

Proof. Since H is a Carter subgroup of G and H < HL, it is a Carter sub-
group of HL (see Lemma VI, 7.9 and Theorem VI, 12.2 of [4]). So thereis a
system normalizer N of HL contained in H (see Theorem VI, 12.8 of [4]).
Let C/D be any chief section of H. Then CL/DL ~ C/D is a chief section of
HL, since L is a complement to H in HL. Clearly the nilpotence of H makes
CL/DL a central chief section of HL. So it is covered by N (see Theorem
11.10 of Chapter VI of [4]). Hence N covers every chief section C/D of H.
Therefore N = H. If {S;} is a Sylow system of HL normalized by N = H,
then {L n S,} is a Sylow system of L normalized by H. So the lemma is true.

To construct H-invariant Fitting chains we use

Lemma 8.2. Let K be a fintle solvable group and H be a group acting on K and
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leaving fixed some Sylow system of K. Then there exist sections A; = Ci/D; of
K fori=1,---,h = h(K), satisfying:

(8.3a) A;eQ,fore =1, h.

(8.3b) Aiis H-invariant, fort = 1, --- , h.

(83c) p(4:) #p(Aum),fori=1,---,h—1
(8.3d) C;normalizes A;,for1 <2< 75 < h

(8.3¢) D;= Ker (Cion Asp1),fore=1,---,h — 1.
(8.3f) D = {1}.

(8.3g) (H-IIin Cion Ay) is irreducible.

(83h) [(I)(AHI)7 Cl] = {1}7 fO?"i = 1, Tt h — 1.
8.31) Cn < F(K).

Proof. We use induction on . If A = 0, there is nothing to prove. If
h = 1, let C1 be any minimal H-invariant subgroup of K and D; = {1}. The
relevant conditions (8.3) are immediately verified in this case.

Now assume that 2 > 1 and that the lemma is true for all smaller values of A.
Since F(K) is a characteristic subgroup of K, the group H acts on
K* = K/F(K). The images in K™ of the groups forming an H-invariant
Sylow system of K are obviously the members of an H-invariant Sylow system
of K*. Foreachz = a,b, ---,1i,let (8.3x)* be (8.3x) with K, 4;,C;, D;, h
replaced by K*, AF, C5, Df, h — 1, respectively, for all indices j. Clearly
h(K*) = b — 1. So induction gives us sections A7 = CF/D} of K*, for
i=1,---,h — 1, satisfying (8.3)™.

Let S be a p (4j—1)-Sylow subgroup of K belonging to a Sylow system fixed
by H. Then S n Fs(K) is an H-invariant p (47— )-Sylow subgroup of F,(K),
and N = Ng(SnFq(K)) is an H-invariant subgroup of K. Consider-
ing SnF.(K) as a p(4i1)-Sylow subgroup of the normal subgroup
(SnFy(K))F (K) of K, we see by the Frattini argument that NF (K) = K.
We denote by ¢ the natural epimorphism of N onto K/F (K) = K*.

Foreachs = 1, ---, h — 2, we define C; and D; to be the inverse images
under ¢ of CF, D}, respectively. Since ¢ defines an H-isomorphism of
N/N nF (K) onto K*, we see from (8.3) that those parts of condition (8.3)
involving only those C;, D; and A; = C;/D; with ¢ < h — 2 are all satisfied.

The image ¢(Sn F.(K)) is the p(4dni)-Sylow subgroup of F(K*) =
Fy(K)/F(K). From (8.3f,1)* we see that Chs < ¢ (Sn Fy(K)). Let Chs
be the inverse image in S n F2(K) of Cj— under . Since N is the normalizer
of 8 n Fy(K), it follows from (8.3b,d)™ that H-]]ics Ci normalizes Cp_s .

Because A e @, we have Ay = {1} (by (1.4a)). It follows that

Cihaa>8SnF(K)nKero = SnF(K).

So there must exist some prime p 3 p (47— ) such that Cy_; does not centralize
the p-Sylow subgroup T of F(K). Then H-]]i« Ci normalizes T and
[T, Cha] ## {1}. The Hall-Higman theory (see Theorem III, 13.5 of [4]) gives
us an H- i Ci-invariant special subgroup C of T such that (H gl Cs
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on C4) is irreducible, (Ci_1 on C4) is non-trivial, and [®(C), Cra] = {1}. Ifp
is odd, we even have exp (Ci) = p. Hence Cj € G.

Now define Dy_1 by Dy1 = Ker (Ch—1 0n Ch). Since F (K) is nilpotent and
p # p(Adia), the subgroup Sn F (K) centralizes T. So Dn > Sn F(K).
But S n F (K) is the kernel of the natural epimorphism of Cj_1 onto 4 (by
(8.3f)*). Theimage E of Dj_1in A is evidently H - [ ] ica CF -invariant and
notequal to A5 . By (8.3g)* we must have Di_1 < ®(4s). Defining 45 1
to ’t_)g Ch—1/Dn_1 , We see that ¢ induces a natural isomorphism of A, on
to Ah—l .

Condition (8.3a) for< = h — 1 comes from 1 < Ay~ Any/E and (1.5).
Condition (8.3b) forz = h — 1 comes from the construction of Cy—; and Dy, .
Condition (8.3¢) fors = h — 2 comes from (8.3¢)*, since p (4r—2) = p(4is)
and p(4s_1) = p(4rs). Condition (8.3d) for j = A — 1 comes from the
construction of Ch—1, Ds—y. Condition (8.3e) for ¢ = h — 2 comes from
(8.3¢)*, since p (An—z) # p(As_1) implies

Ker (Ah_.g on Ah_l) = Ker (Ah__g on fIh_l)
and _
Ker (Araon Aj1) = Ker (Aj—s on 4,%) = {1},

and ¢ induces an isomorphism of Ker (4s_s on An) onto Ker (Ar— on A;).
Finally, condition (8.3h) fors = h — 2 comes from (8.3h)*.

Set D, = {1} and 4A» = Ci/Dn. The constructions of A and D give
those conditions (8.3) involving A , Cr or Dy with no difficulty and complete
the induective proof of the lemma.

Now we can prove the special case of Thompson’s conjecture.

TaHEOREM 8.4. Let G be a finite solvable group whose Carter subgroups have
normal complement K. If H is a Carter subgroup of G, then h(K) <
52" — 1),

Proof. By Lemma 8.1, H normalizes a Sylow system of K. So Lemma 8.2
givesusachain 4, --- , A, b = h(K), of sections of K satisfying (8.3). By
(8.3d,e), A; normalizes A1, for 2 =1,---, A — 1. We claim that
Ay, - -+, Ay with these actions is a Fitting chain, i.e., that it satisfies (2.2).
Indeed, property (2.2a) comes from (8.3a), property (2.2b) from (8.3c),
property (2.2¢) from (8.3h) and property (2.2d) from (8.3¢). Since C; nor-
malizes both Ay and A (by (8.3d)), the action (A1 on Agyp) is Ci-in-
variant and therefore A ;-invariant. So (2.2e) holds, and A;, -+, Ax is an
H-invariant Fitting chain (by (8.3b)).

Leti=1,2,---,¢t — 2Dbe a relevant index. By Lemma 8.1, H leaves in-
variant some p (4;)-Sylow subgroup B; of C;. Let n; be the natural epi-
morphism of B; onto A; = Ci/D;. By (8.3d), B; normalizes

Ai+17A13+27Ai+37 te 7Ah'
This gives as a natural action of B; on A4, . Clearly B; satisfies (2.10a,b).
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Since B; A acts on A3, condition (2.10c¢) is also satisfied if 7 < & — 3.
The H-invariance of B;implies that 4;, - -+, Ax, { B3} is an H-invariant aug-
mented Fitting chain.

Because H is a Carter subgroup of G and H n K = {1}, it centralizes no non-
trivial section of K. Furthermore, H is nilpotent. So Theorem 2.14 tells us
that & < 52" — 1), which is this theorem.

At last we have

TrEOREM 8.5. Let H be a Carter subgroup of a finite solvable group G.  Then
R@Q) < 102" — 1) — 4l(H).
Proof. By induction on I = [(H). If I(H) = 0, then H = {1} and

G =1{1}. Soh(@) =0=102"— 1) — 4-0, and the theorem is true in this
case.

Now assume that I > 0, and that the theorem is true for all smaller values
of I(H).
Fix a Carter subgroup H of G. The Fitting series satisfies

{1} = Fo(@) < F1(G) < -+ < F(@) = G,
where b = h(G). So there exists an integer £ > 0 such that

(8.6a) F,(G)nH = {1}.
(8.6b) Fru(G)nH = {1}.

Let G = G/Fy1a(G). The image Hi of H in G is a Carter subgroup of

G1 (see Lemma VI, 12.3 of [4]). By (8.6b) we have [(H,) < I(H).So in-
duction gives

R(G) = h —Fk —1<10@Q"Y — 1) — 4l(H)

(8.7) -1
<10 —1) —4(@ - 1)

The subgroup G2 = H-F;(G) contains the Carter subgroup H of G. So H
is a Carter subgroup for Gz (see Lemma VI, 7.9 and Theorem VI, 12.2 of [4]).
Clearly (8.6a) says that Fx (@) is a normal complement to H in G;. From
Theorem 8.4 we conclude that A (Fi(G)) = k < 5(2" — 1). Adding this to
(8.7) we get

h=1+k+ Gh—-k—1)
<145 —1)+100@7 —1) —4( —1) = 102" — 1) — 4.
So the theorem is true.
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