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BY

F. DENNIS SENTILLES

In 1958, R. C. Buck [1] introduced the or strict topology on the linear
space C (S) of bounded continuous functions on a locally compact Hausdorff
space S. This topology is defined by the seminorms

P (/) sup {I f<x> <x)i

where e Co (S), the subspace of functions in C (S) which vanish at infinity.
Since this time several authors have studied and made use of the strict topology
in various settings. One may consult [2] for more specific references. In this
paper a study will be made of the compact and weakly compact linear oper-
ators on this space.
The strict topology is a complete locally coavex topology which is neither

barrelled, boraological nor metrizable. Ia fact, any of these is equivalent to
the compactaess of S. Oa the other hand the strong dual of C (S) is the
space M (S) of bounded regular Borel measures on S as was shown in [1], and
furthermore, the and supremum norm bounded sets in C(S) coincide.
These two facts along with the integral representation of the continuous
operators on C (S) into a space C (T) obtained in [8] allows us to obtain the
following principal result.

Let us call an operator A on C (S) into a topological vector space X com-
pact (weakly compact) if A maps -bounded subsets of C (S) into relatively
compact (weakly relatively compact) subsets of X, and call A /-compact
(/-weakly compact) if A maps a neighborhood of 0 into a relatively compact
(weakly relatively compact) subset of X. It will be shown that when
X C (T), then A is/-compact (/-weakly compact) if and only if A is con-
tinuous with the norm topology on C (T) and compact (weakly compact).
As a consequence it will be shown that these two properties coincide when X
is a Banach space.

In closing this introduction the author wishes to acknowledge the aid of the
referee in improving the paper, particularly with regard to the considerably
shortened proofs of Corollaries 2 and 4.
Our notation will be taken from [8] and [9] and we rely on [8] for the follow-

ing result.
If A is a continuous linear operator from C (S) into C (T) then there is a

unique mapping k T -- M (S), henceforth called the kernel of A, such that
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for all f e C (S) and x e T. This last integral will be denoted by X (f)(x).
Furthermore, (A*g)(E) fr X(x, E)g(dx) when T is locally compact and
Hausdorff and g e M(T), while for a bounded Borel measurable function
f e M (S)*, [A**f] (x) X (f) (x) is a bounded Borel function on T. When A
is a weakly compact operator, the function A**f C (T) and consequently the
kernel X is a weakly continuous kernel as defined in [9]. This, along with the
work in [9] on such kernels, motivates the work herein.Finally, we remark
that the topology on C (S) denoted by ’ in [8] coincides with as was shown
by Dorroh [4].

In the sequel, T is a locally compact Hausdorff space as is S. We begin with
a classification of the operators on a space C(S) into C(T)o essentially
established in [8] and [9]. Briefly, the type of operator with kernel X is deter-
mined by the peoperties of the sets X (K) {X (x) x e K} where K is a com-
pact subset of T.

THEOREM 1. Let A be a linear mapping of C(S)o into C(T)o given by a
kernel X. Then

(1) A is continuous on C (S) into C (T)o if and only if each set X (K), for
K compact in T, is -equicontinuous. That is, gien e > 0 and K compact in T
there is a compact set Q S such that X (x, S\Q < e for all x K.

(2) A is wealcly compact if and only if each set X (K) is weakly compact in
M (S) for K a compact subset of T. That is, given e > O, K compact in T and U
any open subset of S, there is a compact set Q U such that X [(x, U\Q < e

for all x K.
(3) A is compact if and only if each set X (K), for K compact in T, is com-

pact in M (S).

Proof. (1) follows immediately from [8, Theorem 5]. That the set of
measures X (K) satisfies the measure theoretic properties stated in (1) follows
from [3, Theorem 2].

(2) follows immediately from [9, Theorem 2] and the fact that the norm
and -bounded sets coincide. The stated measure theoretic property is a con-
sequence of [9, Theorem 2, part 3].

(3) follows from [9, Theorem 3].

As a consequence of the above, if g e M (S) and/c is a real or complex func-
tion on T S such that/ (x, e L (t) for all x e T and/ is uniformly bounded
on K S for each compact set K c T and

[Aft(x) fsf(Y)k(x’ y)(dy)

is continuous on T, then A is a continuous weakly compact operator on C (S)
into C (T)o. For itskernel, X (x, E) fE to(x, y)(dy), satisfies the measure
theoretic properties in (2) since given K compact in T, e > 0, and U open in S
there is a compact set Q U such that u[(U\Q) < el’r, where

sup {I k(x, Y)I: (x, y)e K S}
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so that

\Q
for all xeK.

THEOREM 2. Let A be a linear mapping of C (S) into C (T). Then A is
-wealcly compact if and only if A is wealcly compact and continuous from C (S)
to (C T ).

Proof. Suppose A is -weakly compact. Then there is a -neighborhood
V of 0 such that A (V) is weakly relatively compact ia C (T) and hence weakly
bounded and therefore norm bounded. Consequently, A is continuous from
C (S) to (C (T), ). Furthermore, since -bounded sets are absorbed by
V, the image under A of a -bounded set is absorbed by the weakly relatively
compact set A (V) making A weakly compact.

Conversely, suppose A is weakly compact and continuous into C (T)with
the supremum norm topology. Then A* maps equicontinuous sets of
(C (T), )* into equicontinuous sets of C (S). Let X be the kernel of A
as described above. With denoting the unit point measure concentrated at
x e T the set { x e T} is equicontinuous in (C (T), II)* and consequently

{k(x):xeT} A*{:xeT}
is -equicontinuous in M (S).

It follows from [3, Theorem 1] that there is a non-negative function b e Co(S)
such that each measure (x) vanishes off the non-zeroes of b and

(1/4))" , (x)ll -< 1

where the symbol on the left is the total variation on S of the measure
(1/). (x) defined by

h(x) (E) -for Borel sets E.
We set a(s) (s)1/3 for all s e S and define T -- M (S) by

,(x, E) - X(x, dy) X(x) (E).

We first show that sup {11 (x)l] x T} < .
W {s: (s) _> 1}.

Then

To see this let

11 (x)11 I1 (x, )

fl, f 1-lxl(x, dy)+ xl(x, dy)
\ (y)

< lxl(x, w)+
\r o(y) hl(x’ dy)
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<: sup{llk(x) ll "xeT} -t- 1 <
this last inequality following from the uniform boundedness principle applied
to the measures h (x) as functionals on Co (S).
We will now show that the function t (’, E) is continuous on T for each

Borel set E c S.
LetN() {seS:(s) > 0} and

W, s e S 1/ (n + 1)3 <_ (s < 1In3} for n 1,2,...

and let W be defined as above. Then,
Z W t9% W Z\N (), (z, Z\N ()) 0

as noted above, and if s e Wn, then 1/(n -t-- 1 <_ (s < 1/n.
If V {seS n < 1/(s)} then W V and (x, V) 1/n as a

consequence of the inequaSty (1/). h (x)[[ 1. Consequemly,

(x, w) /n.
For any Borel set E,

f k(x, dy)1(x,E)

1 X(x, dy) + 1 X(x, dy)
(y) = (y)

where x (s) 1 if s e F, 0 if s t F.
The function g (s) (xa/) (s) for z (s) 0 nd g (s) 0 if z(s) 0

is bounded Borel mesurble function on S. Similarly for

z(s) (xn/)(s)
if z (s) 0, 0 if z (s) 0. Finally note that

(, E) x () (x) + % x() ().
We 11 show that the functions h (g) nd h (g.), n 1, 2, re continuous
on T nd that the convergence is uMform.

First, A being wekly compact with rnge C (T) implies that the kernel
of A stisfies condition (5) of Theorem 2 in [9] nd hence lso condition (7)
which sys that k (f) is continuous on T for ny bounded Borel function ]
on S. Hence h (g) nd (g) re continuous.

Finally,

x() () (
(n + 1) lxl(x, w) /n + /n
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and the convergence of kl h (gk) is uniform making (-, E) continuous
on T.
From this it easily follows that (f)(x) ff(y)t(x, dy) is continuous on

T for each bounded Borel function f on S. Hence is a kernel on T into
M (S) which satisfies condition (7) of Theorem 2 in [9] and so also condition
(5). That is,

C {t (f) f e C (S), f -- 1}

is a weakly relatively compact set in C (T).
Let Y {feC(S):IIfz[[

_
1}. Then V is a t-neighborhood of 0 in

C (S) and if f e V then

Af h (f k (f,/, (f,

Consequently, the set A (V) c C is weakly relatively compact in C (T) com-
pleting the proof.
Remar 1. It is easy to see that the condition that A be continuous into

(C (T), II) and weakly compact could be replaced by the condition that A
have a kernel k which satisfies any one of the conditions of Theorem 2 in [9]
and such that k (x) x e T} be f-equicontinuous.
When the underlying space S is compact, the and norm topologies co-

incide and consequently so do the f-weakly compact and weakly compact
operators. Surprisingly, it is easy to see that the same condition holds when
T, rather than S, is compact.

COROLLARY 1. Let T be compact and let A be a continuous linear operator
from C (S)8 into C (T). Then A is -weakly compact if and only if A is weaklu
compact.

We now replace the space C (T) by an arbitrary Banach space X to achieve.
the same result.

COROLLARY 2. Let A be a continuous linear operator from C(S) into a
Banach space X. Then A is -weakly compact if and only if A is weaklu com-

pact.

Proof. Let T denote the unit ball in X* with the weak, topology so that T
is compact. For x e X let (x) be the restriction of x, as a function on X*,
to the space T. Let Bf .(Af) for fe C(S). Then B is a continuous
weakly compact operator on C (S) into C (T). By Corollary 1, B is/-weakly
compact. There then is a -neighborhood V of 0 in C (S) such that B (V) is
weakly relatively compact in C (T). Since /is an isometry and consequently
/(X) is weakly closed in C(T), this means A (V) /- (B (V)) is weakly
relatively compact in X. Since the converse is clear, this completes the proof.

It is easy to see that the hypothesis of continuity of A on C (S) cannot be
dropped. All one need have is a bounded linear functional on (C (S),
which is not continuous on C (S)s. Such a functional is even compact but
not -wekly compact and is easily found.
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Certainly the above proof will not hold unless X is a complete topological
vector space. The proof also strongly uses the hypothesis that X be a normed
space. The following corollary shows that this hypothesis is not necessary,
provided that S is paracompact.

COROLLARY 3. Suppose S is a paracompact space and X is a Banach space.
Let Y denote the space X with the weak topology. Then any weakly continuous
wealcly compact linear mapping A of C (S)8 into Y is -weakly compact.

Proof. For when S is paracompact the topology on C (S) is the Mackey
topology on C (S) as was shown by Conway [3] and so by [7, p. 62] A is con-
tinuous on C (S) into the Banach space X. Since A is weakly compact an
appeal to Corollary 2 completes the proof.

Before considering the case of compact operators on C (S) we state two re-
sults on weakly compact operators on Co (S) and their extension to C (S).

THEOREM 3. Let A be a weakly compact operator on Co(S) into C(T).
Then A has a unique extension to a continuous operator on C (S). Further-
more, this extension is weatcly compact on C (S).

Proof. By [8, Theorem 3] the operator A can be represented by a kernel
T --. M (S) such that Af ), (f) for all f e Co (S). Since A is weakly com-

pact, the kernel }, satisfies condition (6) in [9, Theorem 2] and consequently
condition (3). But this means ) satisfies E (See [8, Remark 5]) and conse-
quently the map f - ), (f) for f e C (S) defines a continuous operator B on
C(S) into C(T) which extends A uniquely. Since satisfies condition
(5) in [9, Theorem 2] and the and norm bounded sets in C (S) coincide,
the operator B is weakly compact.

COROLLARY 4. Let A be a continuous weakly compact mapping of Co(S)
into a Banach space X. Then A has a unique extension to a -wakly compact
operator on C (S) into X.

Proof. Define the space T and the operators , and B as in the proof of
Corollary 2. By Theorem 3 and Corollary 1, B has a unique extension to a
t-weakly compact operator B’ on C(S) into C(T). Furthermore, since, (X) is closed in C (T) and Co (S) is -dense in C (S) one has B’ (C (S) c , (X)
and hence that APf "-lBPf is a unique -weakly compact extension of A to
C (S) into X.

Finally, certain known results for weakly compact operators on Co(S)
and on the space of continuous functions on S with the compact open topology
have analogues for C (S). One of these is that if T is z-compact and A has
kernel k and is a weakly compact operator, then (x, E) f (x, y) (dy)
for some nonnegative bounded Borel measure on S and function / on
T X S such that/ (x, e L (t) for all x e T; consequeatly

[All(x) f(y)k(x, y)u (dy).
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This result is the analogue of the result in [6, p. 665] and follows from [9,
Theorem 2, part 2] and [6, p. 287].

If A maps real functions into real functions then X (x) is a real signed measure
on S for each x e T. Hence X (x) X (x)+ X (x)- where X (x)+, X (x)- are
non-negative measures such that X I(x, S) X+ (x, S) - X-(x, S). Setting
A+f X+(f), A-f X-(f) defines positive operators on C(S) such that
A A+- A- and such that IXI(x,S) (A+l)(x) + (A-l(x). If this
last function is continuous on T then IX I(., E) is continuous on T for all
Borel sets E since IX I(’, E) is lower semicontinuous because

X I(’, E) sup 1=1 IX (., Ei) lEd ’--1 is a partition of E by Borel sets}

and also upper semicontinuous because

IxI(.,E) Ixl(.,S)-IxI(.,S\E).
Hence by [9, Theorems 1 and 2]

X+(x) (X(x) nt- IXl(x))/2 and X-(x) ([Xl(x) X(x))/2

are kernels defining weakly compact operators on C (S)o into C (T)o. That is,
if A is continuous and weakly compact and

sup {I (Af) (x) f <- 1} xl(x, s)

is continuous on T, then A is the difference A+ A- of positive continuous
weakly compact operators on C(S) into C(T) such that

sup{I (Af)(x)l: Ilfll <- 1} (A+I)(x) + (A-1)(x).

It is easily seen that the converse statement holds.
We now turn to a consideration of compact operators on C (S) and prove

the analogue of Theorem 1.

THEOREM 4. Let A be a linear mapping of C (S) into C (T). Then A is
-compact if and only if A is compact with the -topology on C T and continuous
with the norm topology on C T).

Proof. One implication is clear. For the converse, suppose A is compact
and continuous with the norm topology on C (T). Let X denote the kernel of
A. As in the proof of Theorem 2, X (T) is a/-equicontinuous set. We define
a from the function obtained as before and again set

1 X(x, dy)

Because X here satisfies stronger conditions than in the proof of Theorem 2,
is a kernel by that proof. We will show that the mapping x -- (x) is

continuous with the norm topology on M (S).
Define the sets W and W as before and set

,B(x, E) f 1_ X(x, dy)
n, a(y)
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for B a Borel set. Then, (x, E) ,(x, E) - =l..(x, E) for each
x e T and Borel set E. If B is one of the sets W or W+I then

where a, 1 if B W and n 1 if B W. Since A is a compact operator,
the kernel k satisfies condition (3) in [9, Theorem 3] so that x k (x) is con-
tinuous th the norm topology on M (S) and from our above inequality, so
is x .(x).
We now show that the convergence of the bove series is uniform on T.

We hve

(x) sup f(y) (x, dy) l f 1}
sup l f.f(y)/a(y)k(x, dy) i f ! 1}
(n + 1) lxl(x,w) 1/n:+ 1/n.

Hence is the uniform limit of continuous functions on T and is continuous.
Hence by (3), Theorem 1, f (f) is a compact operator on C(S) into
C(T). Hence C {,(g)" g 1} is relatively compact in C(T) and
fz 1 implies Af k if) =, (fz) C so that A maps a -neighborhood in
C(S) into a relatively compact set in C(T).
A slight modification of the proof of Corollary 2 yields its analogue for com-

pact operators.

COROLLARY 5. A linear mapping of C (S) into a Banach space X is -com-
pact if and only if it is continuous and compact.

Finally, one may apply [9, Theorem 3] to obtain analogues of Theorem 3 and
Corollary 4 for the extension of compact operators on Co(S) to C (S).
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