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!. Introduction
Let S be a locally compact Hausdorff space and T a topological space. A

kernel on T into the space M (S) of bounded regular Borel measures on S with
variation norm is a mapping k: T -- M (S) which is weak, bounded and con-
tinuous. Equivalently,

k(f)(x) f(y)X(x) (dy) f(y)X(x, dy)

is a bounded continuous function on T for each f e Co (S), the set of continuous
functions on S which vanish at infinity. Such kernels have been used in the
integral representation of operators on Co (S) and the space C (S) of bounded
continuous functions on S and less general kernels have been extensively
studied in probability and potential theory.
A study will be made of mappings k which are (weakly) continuous into
M (S). A consideration of several diverse examples will show that the results
obtained include (and improve) as special cases most of the important results
on (weak) compactness and convergence in M (S). Furthermore, the results
herein are consequences of but [3] and [7] along with certain results of a general
nature.
The material presented is a part of the author’s dissertation done under the

direction of Professor J. R. Dorroh. I wish to thank him for his guidance and
encouragement, as well as express my appreciation to the referee for the im-
provements which he suggested.

II. Definitions and notation

If k: T -- M (S) we denote by , (x, E) (x) (E) the value of the measure
k (z) at the Borel set E and set k (x, E) k (x)! (E), the variation of ), (x)
on E. We will call k a (weakly) continuous kernel if k is continuous in the
(weak) strong topology on M (S). Notice that for any kernel

!] )’ I[ sup

If T is a locally compact Hausdorff space and e M(T) the formula
k()(E) fr k(x, E)(dx) defines an element of M(S) (see [7]). If
H c M (T) let

k(H) {k():eH}

Received December 15, 1967.

761



62 F. DENNIS SENTILLES

and ifK Tlet
X(K) {k(x):xeK}.

Let (E) 1 if x e E, 0 if x E and notice that X (x) X ().
A set N c M (S) is uniformly inner regular (uniformly outer regular) if

given e > 0 and U an open subset of S (P a compact subset of S) there is a
compact set Q c U (an open set V P) such that

for all N.
The or strict topology on C (S) is that locally convex topology on C (S)

defined by the seminorms

P(f) sup {If(x)4,(x)l:xeS} for ,eC0(S).

The space C (S) is studied iu [1], [2], [3] and [7] and is known to have dual
space M (S). In particular, Conway [3, Theorem 2] has shown that a bounded
subset H in M (S) is -equicontinuous if and only if given e > 0 there is a
compact set R c S such that II(S\R) < for all e H. It is easy to see
that a bounded set N M (S) is uniformly inner regular if and only if N is
uniformly outer regular and -equicontinuous. Both of these statements are
equivalent to the weak relative compactness of N as was shown by Grothen-
dieck [6] and since obtained by Conway using his work in [3]. Further termi-
nology and notation can. be found in [7].

Finally, a Borel set E will be called a strict G if E is closed and its comple-
ment is a-compact.

I!1. Examples
(1) Any kernel k defines a bounded linear operator f -- k (f) from Co(S)

into C (T). Conversely, any such operator A has a kernel representation k
such that Af , (f). Furthermore, the mapping t --* k (it) defines a bounded
linear map of M (T) into M (S) by [7], and under the conditions given in [7]
the converse is valid.

(2) Let/} be a sequence in M (S) which is weak, convergent to a meas-
urement tte M (S). Let T denote the one point compactification of the in-
tegers with the discrete topology and the point at infinity. Let ), (n, E)
,(E), k(, E) (E) for Borel sets E. Since k(f)(n) ffd,, k is a
kernel on T.

(3) Let {,} be a bounded net in M (S) and e M (S). Let

and let be a collection of bounded Borel functions on S. Give T the discrete
topology at points and let the collection of sets

o(f,e) ={vT: fsf d,, ff dl < e} forfffande>O
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be a subbase for the neighborhood system at . Define (, E) (E) for
e T. Then ), (f)() fs f d, and k is a kernel when , -- weak. and

c0(s).

(4) Let N be a bounded subset of M (S) and let T denote the set N with
the relative weak. topology. Setting k(, E) (E) for e T defines a
kernel with range N.

(5) Let G be a locally compact group and set (x, E) (Ex-) for
ueM(G) andxeG. Then

(f)(x) fa f(yx) (dy) and ()(E) ( ,)(E)

since is a kernel.

(6) Let be a regular Borel measure on S and let P be a bounded subset
of LI(). Let T be the set P with the weak topology and define

L), (g, E) f g d for g e T. Then for f e () (f) (g) ff.g d and ), is
a kernel.

IV. Main Results
We take note of a lemma needed to prove

THEOREM 1. Let T be a topological space, : T ----> M (S) with [I < .
If (., C) is continuous on T for each strict G set C, then k is a kernel on T and
the set (K) is weakly compact in M (S) for each compact set K T.

LEMMA 1. Let X be as in Theorem 1. Then (., U) is continuous for each
open set U if and only if (f) e C (T) for all bounded lower semicontinuous func-
tions $ on S.

The proof is standard and we omit it.

Proof of Theorem 1. We begin by showing that X is a kernel on T.

Suppose f e Co (S) and 0 _< f 1, and le

A., s e S f(s <_ k/n} for k 0,1,...,n.

Each set A. is closed and

S\A., U= {s e S:k/n + 1/i <_ f(s)}

so that A0 is a strict G. Consequently, X (., A,) is continuous on T, and
X (f) is the uniform limit of continuous functions

= k/nX (., A,AA-t,,,) for n 1, 2, ....
Let K be a fixed compact subset of T. Since X is a kernel the set X (K) is

weak, compact and hence weakly closed. By Eberlein’s theorem the set
X (K) will be weakly compact provided a sequence X (x) X (K) is weakly
relatively compact and by [6, Theorem 2] and outremarks above, it suffices to



show that the set /k (x)} is uniformly inner regular. This is what we will
prove.
The sequence {x} has a cluster point x e K and a convergent subnet

{x} c K. Notice that{x} c {x}. Set0 k(x) and k(x). We
will show that k (x, U) - k (x, U) for an open set U.

For a fixed open set U we construct by induction and the inner regularity
of the measures {:n 0, 1, 2, ..-} a sequence of compact sets Q Usuch
that ]k[(U\Q,)

_
1In for/ 0, 1, n and such that Q is a subset of

the interior of Q+I. The set V UI Qk is then open and its complement C
is a strict G. Furthermore, iI(U\V) 0 for/c 0, 1, ....

Since k (., S) and k (., C) are continuous so is k (., V). Hence

x(z., u) ),(x., v)-. X(x, v) X(x, u)

since {x,} {x}. By Lemma 1, (f)(x,) -- k (f)(x) for all bounded lower
semicontinuous functions f on S.
To show that {k (x)} is uniformly inner regular with respect to open sets,

again let U be a fixed open set and construct V as above.
Let v be the restriction of to V so that v e M (V). By [3, Theorem 2]

one obtains uniform inner regularity on V by showing that {v:n 1, 2,
is f-equicontinuous as a subset of the dual of C (V). Since V is a-compact it
suffices to show that {,.} is -weak, compact, referring to [3, Theorem 4].
We obtain this by showing that v0 is a f-weak, cluster point of {v}.

If g e C(V) and g _> O, set f(s) g(s) for s e V and f(s) 0 for s V.
Since f is a lower semicontinuous function on S,

k(f)(x.) -+ k(f)(x) and k(f)(x) f f d,, f g d.

so that a subnet of {fv g d} converges to f g d0.
proof.

This completes the

Remark 1. We point out that the result taken from [6] which we use above
can be obtained from the work in our other reference [3] as is noted therein.
Consequently, Theorem 1 relies only on [3].

Our next result completely characterizes weakly continuous kernels on a
locally compact space T. Its proof relies on [3], [7] and a basic result on
weakly compact operators.

THEOREM 2. Let k: T ----> M (S be a kernel and suppose that T is a locally
compact Hausdorff space. The following are equivalent.

(1) k is a weakly continuous kernel.
(2) For each compact set K T the set k(K) is weakly compact in M(S).
(3) The set k (K) is fl-equicontinuous and uniformly outer regular for each

compact subset K of T.
(4) The mapping ----> k () maps 3-equicontinuous sets in M (T) into

weakly relatively compact subsets of M (S).
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(5) The set {h(f):fe C(S), [Ifl[ -< 1} is weakly relatively compact in C(T)
(6) The set {h(f):fe Co(S), I]fl] -< 11 is a weakly relatively compact subset

of C (T)
(7) For all bounded Borel functions f, (f) e C (T).
(8) (., C) is continuous on T for all strict G sets C.

Proof. The equivalence of (2) and (3) follows from [6, Theorem 2] or [3]
(see Remark 1). Clearly (1) implies (2) since is weakly continuous. To
see that (2) implies (1), let K be a compact set and notice that the weak and
weak. topologies agree on the weakly compact set (K) and h, being akernel,
is weak. continuous on K. To obtain continuity at a point x e T let K be the
closure of a neighborhood of x having compact closure.

Let us show that (3) implies (4). We again use Grothendieck’s characteri-
zation of weak compactness in M (S). If H is a -equicontinuous set in M (T)
then there is a compact set K c T such that

g (T\K) < e(2 )’ [I)-1 for all geH.

Given a compact set Q c S, there is, by (3) and our earlier remarks, an open
set U Q such that

h I(x, U\Q) < e/2a where a sup Ill II’H} for all xeK"

Hence for g e H one has

< e/2a [gl (K) -i- ll h 11 I, 1 <T\K) < e.

Hence ), (H) is uniformly outer regular and by [6] weakly relatively compact.
Assume that (4) holds. The set H {$:x e K} is -equicontinuous for K

a compact subset of T and consequently ), (H) h (K) is weakly relatively
compact and hence -equicontinuous. It follows from [7, Remark 5] that the
formula Af ), (f) for f e C (S) defines a continuous linear operator A from
C(S) into C(T) with A*g X(g) for geM(T). Hence by (4), A* maps
equicontinuous sets into weakly relatively compact sets and consequently by
[5, Theorem 9.3.1] A maps the -bounded set {f e C (S) :[1 f < 1} into a
weakly relatively compact set in C (T) proving (5).

Clearly (5) implies (6). Given (6) define A as above for f e Co (S). Then
A is weakly compact and hence A** (C0(S)**) c C(T). But by [7, Theorem
3], A**f h (f) for f a bounded Borel function on S proving (7).

Since (7) readily implies (8) and (8) implies (2) by Theorem 1, this com-
pletes the proof.
Remark 2. The overriding hypothesis that h be a kernel may be dropped

and instead be required as part of the hypothesis in (2), (3) and (4).
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Several interesting questions arise from Theorem 2. First, can condition
(8) be formally weakened? Given a particular kernel k what properties must
the collection 2 :k (., E) is continuous} have in order that be weakly
continuous? This question is related to the work of Dieudonne [4] and Con-
way [3] on quarrable sets. Finally, Dieudonne [4] gives conditions under
which convergence of sequences of measures on certain classes of Borel sets
implies that the sequence is uniformly bounded. We have found it necessary
to assume that II < .

Notice that condition (3) involves only the variation k (x)l of the measures
k (x), save that k be a kernel. One is led to ask then whether (say) condition
(3) is equivalent to the continuity of x -- (x, C) for strict G sets C? The
answer is no, essentially because either k or kl can be a weakly continuous
kernel without the other being even a kernel.
At this point we consider only measures ), (x) which are real-valued. Let T

be the interval [0, 1] and S a two point space {a, b} with the discrete topology.
For x 0 let

(x, la}) 1, },(x, {b}) -1 and (0, In}) (0, {b}) 1.

Then k (x, S) 0, k (x, S) 2 and k (’, C) is continuous for strict G sets
C while k is not a kernel.
As a second example we define a weakly continuous kernel k such that kl

is not a kernel. Let T [0, 1], S [0, 2] and define

k(x,E) fBcst/xdt for x 0

and(0, E) 0. IfE [a,b],

(x,E) x[sinb/x- sina/x] and kl(2-n,S) 4

for n 1, 2, so that kl(., S) is not continuous on T. It is easy to see
that k (., U) is continuous for all open sets U so that k is a weakly continuous
kernel by Theorems 1 and 2.

Finally, condition (3) of Theorem 2 does tell us that if both }, and kl are
kernels then }, is weakly continuous if and only if k] is weakly continuous.

Before considering strongly continuous kernels we see how the above
theorems may be applied to our earlier examples.

COROLLARY 1. A bounded subset ofM (S is weatly relatively compact if and
only if it is relatively compact for the weak topology r on M (S) defined by the
collection of characteristic functions of strict G sets.

Proof. Let N be such a set and define k on T to M (S) as in example (4)
where T is the r closure of N with topology r. Clearly k satisfies the hypothe-
sis of Theorem 1 and consequently k (T) is weakly compact and containshr

when N is r relatively compact. The converse is clear.
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The corollary is an improvement on the result in [5, p. 284] and can also be
used to generalize results on weakly convergent sequences to weakly relatively
compact nets {g,} c M (S). One can also use examples (6) and (3) of
Theorem 2 to obtain a result for weak compactness in a space L (g) similar to
the Dunford-Pettis theorem. Other similar observations can be made.
We now turn to a brief study of strongly continuous kernels and prove a

result similar to Theorem 2.

TtIEORE 3.
space.

(1)
(2)
(3)
(4)
(5)

Let T ----> M (S be a kernel and T a locally compact Hausdorff
The following are equivalent.

is a strongly continuous kernel.
For each compact set K T the set (K) is compact in M (S ).
{},(f):fe C(S), f - 1} is -relatively compact in C(T).
{},(f):fe Co(S), IIfll - 1} is fl-relatively compact in C(T).
The mapping ---. () takes -equicontinuous subsets of M (T) into

relatively compact subsets of M (S ).

Proof. Clearly (1) implies (2). Given (2) it follows that h (f) e C (T) for
f e C (S) as in the proof of Theorem 2. Since h is weak, continuous the norm
and weak. topologies agree on sets ), (K) for K compact in T. Consequently,
given a neighborhood U with compact closure, }, is norm continuous on U.
This allows one to show that

is equicontinuous and being uniformly bounded is then compact in the com-
pact-open and hence/-topology on C(T) by Ascoli’s theorem.

Evidently (3) implies (4) and (4) implies that the mapping f -* X (f) de-
fines a compact operator on Co (S) and so that the adjoint mapping t --* X (#)
satisfies (5) by [5, Theorem 9.2.1]. Finally, (5) implies (2), for if K is com-
pact in T, the set {: x e K} is -equicontinuous and hence X (K) X (x): x e K
is relatively compact and weak. closed and hence compact. A review of the
argument that (2) implies (3) yields a proof that (2) implies (1). This com-
pletes the proof.
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