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Introduction

It is well known [3] that if compet Lie group G of homeomorphisms ets
effectively on connected m-mnifold M,

dim G <_ m(m q- 1)/2.

In ddition, it hs been observed previously [5, Chapter IV], [4] that the di-
mension of G cnnot fll into the following two rnges"

(m 1)m/2 -t- 1 < dim G < m(m -q- 1)/2 (m 4)

(m 2)(m 1)/2 -1- 3 < dim G < (m 1)m/2 (m lrge).

In [2] we showed that the bove two rnges of gps in dimensions re prt of
general pttern. Specifically we established the following result [2, Theo-

rem 2].

THeOrEM A. Let G be a compact Lie group acting effectively on a connected
m-manifold M. Then if the dimension of G falls into one of the following ranges"

(m k)(m k -q- 1) -t- k(lc q- 1)/2

< dimG < (m- k q- 1)(m- kq- 2), k 1,2,3,

we have only three possibilities"
(i) m 4, G is isomorphic to SU(3)/Z (Z denotes the center of the special

unitary group SU(3)), M is homeomorphic to the complex projective plane
P(C) and G acts transitively on M.

(ii) m 6, G is isomorphic to the exceptional Lie group G , M is homeo-
morphic to either the sphere S or real projective space P6(R) and G acts tran-
sitively on M.

(iii) m 10, G is isomorphic to SU(6)/Z, M is homeomorphic to PS(C)
and G acts transitively on M.

In this paper we show that the pttern of gaps given by Theorem A is but
a special case of a still more general pattern of gaps. This, in effect, settles
a question which we rised at the end of [2]. Although our present result
does not exhaust all possible gps, we have reason to believe, as will be dis-
cussed lter, that it produces the most general consistent pattern of gaps.
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In the statement of Theorem A, / runs from 1 to (m).
short table of values of (n) will be of future assistance"

2. Preliminaries

The following notation will be helpful. If n is a positive integer,

(n) n(n + )/.

(n) largest integer j such that (n j) + (j) < (n j + 1) 1.

The following

LEMMA 1.
ger <_ x.

LEMM 2.

n (n)
3
6 2
10 3
15 4
21 5
28 6
36 7

(n) [(/{ 1 -{- 8n} 3)/2] where [x] denotes the largest inte-

Proof. The result of course follows immediately from the definition of
(n) forj_<(n) 1. We letj =(n). Now

(n- (n) 1)-b ((n) -b 1)
(1)

(n- (n)}-t- ((n) -b 1} (n- (n))
by Lemma 4. Applying Lemma 5,

<n -(n) 1> + <(n) -{- 1 >
(2) _< <n- (n)}-b <q(n) q- 1}- <ep(n)>- 1_

(n (n)> - (n) (Lemma 4)
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(i)
(ii)
(iii)
(iv)
(v)

Then

Since by Lemma 6,

(3) (n) _< ((n) ((n)))
the result follows.
We have reduced the next lemma which will be used heavily in the sequel

to the following technical form.

LEMMA 8. Let K, k, u, ti (j 1, 2, r), v, q be non-negative integers
satisfying the following conditions:

v Oorv >_ 3, u >_ 1, tc >_ 2,
_< (K),

K-- to--u >_ t,all j,
--v--q+u>_O,-_ t <_ v q + u.

Case I.

(1)

where

(/ u) + Z: ;-- (t) < (K ) + ( (R)() 2v .
Proof. It could be checked directly that with the hypothesis above

(K /c) --I- (/ --,:I:,(lc)) 2v q

__
0.

This fact, however, will of course be established indirectly through the course
of the proof.

v + q _< / + 1. By repeated application of Lemma 2,

(K / u} -F- Erj--1 (tj}

_
(g k 1} -t- E=I

_>0, llj,nd=t_</-v-q+l.

Applying Lemma 3(a) and then Lemma 3(b),

(K u) + :__ its) < + ( v + )

(2)

_
(K /c 1} -- (/c -- 1} (v -t- q)

_< (K-- k-- 1}q-(/q- 1}- 2v-- q.

The last step follows since v 0 or v >_ 3. Finally, applying Lemma 7,

(3) (K / u} q- = (t.} _< (K k} q- (/c (k)} 2v q.

CaselI. vq-q>_/cq-2. Letv=lc-v--qq-u>_0. Therefore u.

OW
(K k u} q- = (t} _< (K / -(u ,)} (Lemma 2)_

((K-/- 1) (u-v-

(4) _< (K- k-- 1>- (u--,- 1>
(Lemma 3(b)_

(K- /- 1>- /v--q- k-- 1).
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(10)

For k _> 3,

(11)

Hence,

Lemma 7).

2(k+ 2) < (k+ 1)+ 1.

=, (t) < (K k) + (k -(k)) 2(k + 2)

< (K- k)+ (k--(k))- 2v-- q.

NOW,

(6) 2(k+ 1)

_
(k+ 1} fork >_ 2.

Combining (4), (5), and (6),

(g ) + =
(7) (K- k- 1) + (k+ 1)- 2v- 2q

(K-- k) + (k -(k)}- 2v-- q (Lemma7).

Here k 1 can lso be hndled by n individual check; so far we hve not
had to enforce the condition that k > 2.

Subcase (b). v + q k + 3. From (4),

(8) (K- 1)-

5(K-)+ (-())-(+1)-3 (LemmaT).

Now fork 3,2(k+3) <(k+ 1)+3. Hence,

<K u) + E;: <t) < (K ) + < ()) ( + )
(9)

< (K ) + ( -()) v q.

Here k 2 cn lso be hndled s special case. The result, however, is
not vlid for k 1 in this subcse.

Subcase(c). v+ q k+2. From (4),
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Again/ 2 can be handled by a special check, while the result is not valid
fork 1.

3. Statement of main result
G will denote a compact Lie group acting on a connected m-manifold M.

The action of G on M is said to be almost effective if the normal subgroup K of
G formed from all elements of G which act trivially on M is finite; an almost
effective action is said to be almost free if G/K acts freely on M. Although
Theorem A was stated in [2] in terms of almost effective actions, the proof
given in [2] actually provides the statement as given here [2, p. 545 top].
A compact connected Lie group G can be expressed in the following form

G (T @ $1 @ $2 @ @ Sa)/N /N
where Tq is a q-torus, q >_ 0 T is assumed to be trivial), each S. is a compact
connected, simply-connected simple Lie group and N is a finite normal sub-
group of G. If q 0, G is called semi-simple.
We use the standard notation: Ar (r _> 2, r 3), B, (r >_ 1), C (r >_ 3),

Dr (r _> 3), G, F4, E6, ET, and E8 for the classification of the compact simple
Lie groups. The simply-connected representatives of the classes A, B, C and
D are SU(r 1), Spin (2r W 1), Sp(r) and Spin (2r) respectively. The
simple observation that for G of type B, C or D, the dimension of G is of
the form

dim G (1) for some integer l,

will be of particular future interest. We are now able to state our main
result.

THEOREM B. Let G be a compact Lie group acting effectively on a connected
m-manifold M. Let k (i 0, 1, ..., s W 1) be any sequence of positive
integers satisfying the conditions:

(a) ko=m,
(b) k,+l _< (/), 0 _< i _< s.

Then if the dimension of G falls into the range"

< dim G < "-- {k,- k,+} -f- (k. k.+l -f- 1}

we have only three classes of possibilities.
In each case the action of G on M is transitive and G is semi-simple and locally

isomorphic to

S @ S. @ @

where the S are simple simply-connected Lie groups with, for 1 <_ i <_ s, St of
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type B or D and dim St (]c_1 ]c). The three classes of possibilities are:

(i)
(ii)
(iii)

8 4, +1 1, and S,+I isomorphic to SU(3).
k, 6, k,+ 2, and S+I isomorphic to the exceptional Lie group G.
/c 10,/,+ 3, and S+ isomorphic to SU(6).

Condition (b) of Theorem B assures that/c >>/+1 for 0

_
i

_
s Theorem

B is the appropriate generalization of Theorem A as evidenced by the fol-
lowing proposition.

PROPOSITION 1.
integers with

Let lc (i O, 1, ..., s q- 1) be a sequence of positive

]+ <_ (), 0 <_ i <_ s.

Then for 0

_
r < s,

Proof. The first and second inequalities are clear. We prove the third
inequality.
Now

Applying Lemma 3(a),

from which he result follows.. Proof of Theorem
The first part of the following lemma appeared as Lemma 4 in [2]. The

remaing parts are proved in an entirely analogous fashion and consequently
depend upon knowing the maximal dimensions of proper closed subgroups of
the compact simple Lie groups. This last iormation may be found in the
table on p. 539 of [2].

LEMM 9. Let G be a compact connected simple Lie group ting almost
effectively on a connected m-manifold M. Then

(a) If G is of type A or exceptional type,

dimG < (m O(m) for m 17

dimG< <m-(m) 1> form 24.

(b) If G is of type C,

dimG (m-(m)> for m 8

dimG (m-(m) 1> form 12.
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Proof of Theorem B. We may suppose that G is connected for otherwise we
would consider the action of its identity component on M. As mentioned
previously G can be expressed in the form

(1) G (T @ S)/N

where S is a direct sum of compact simply-connected simple Lie groups. Let

(2) - Tq S.

Now ( acts almost effectively on M. Moreover it is known that ( acts almost
effectively and of course transitively on a principal orbit P (see [1, Chapter
IX] for terminology) with

(3) p dim P _< m.

Consider the action of Tq on P. By [2, Lemma 3], S acts almost effectively
and transitively on the compact manifold Mo PIT where

(4) m0 dimM0 p-q.

We now restrict our attention to the action of S on M0. Following the
proof of [2, Theorem 1] we may decompose S as

S=V@Q@R(5)
where

()
()

V, Q and R are each direct sums of simple factor groups of S,
V and R each act almost freely on Mo with

dimR <: dimV v,

(,) Q acts transitively and almost effectively on M1 Mo/V where

ml dimM m0-v.

Moreover, we may express Q as

Q S @ S @ @ Sr
where

() Sj, j 1, 2, r, are simple factor groups of S with

dim S- >_ dim Sj+I.

() S acts almost effectively on the compact manifold

Ms Mi-1/SI-I (So V).

Let l. be the least integer such that

(6) dim S. _< (l.).

We consider first the sequence S, $2, S where

(7) d min (s 1, r).
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The case s 1 will be haadled by later considerations.
follows that

/,_> 3, ]-1_> 10 and ]c,_2_> 66.
We show

dim S (m 1) (0- 1)

Since/,+1 >_ 1, it

and that $1 is of type B or D.
Now S acts almost effectively on the compact connected m-dimensional

manifold
N’ M’-v Sm-m+v.

(Here we agree that S denotes a point rather than the actual 0-sphere.) Since
m k0 _> 66, it follows from Lemma 9 that if S is of type A, C or exceptional
type that

dim S __< (m- I,(m) 1) __< (m-/c- 1).

If S is of type B or D, it follows from the form of the dimension of $1 that
dim $1 (1) for some 1. Moreover if dim S >_ (m kl W 1) we have by
Proposition 1 that

dim G > dim S > (m k -t- 1} > (m lc} -t- (/

which of course is a contradiction to our assumption concerning the range of
dim G. Hence, if S is of type B or D,

dimS (m- 11) or direst_< (m- k-- 1}.

It is sufficient therefore to eliminate the case where

Now

(8)

dimS_ (m- k- 1).

dimG dimG dimTqWdimS

q q- dim V q- dim R -t- dim Q _< q q- 2v "-E=I (l.}.

Since Q acts almost effectively on M1, it follows from [2, Theorem 1] that

(9) __l_< m m0- v p- q- v_< m- q-v.

Consequently,

(10)

where

(i)
()
(iii)
(v)
(v)

dim Q dim t.l + E;-2 dim S _< (m k u} A- =2 (/}

v 0 or v > 3, u > 1, kl >__ 10,
k < (m),
m-- kl-U > l,allj> 2,
kl-V- q-4-u >_ 0,
_-l._ k--v-- q-u.
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Hence we are precisely in the setting of Lemma 8. We conclude

dimQ _< (m k} -4- (k- q(k)} 2v q
(11)

< (m x) + (, ) 2 q.

Combining (8) and (11) we obtain

(12) dim G

_
(m kl)

which is a contradiction to our assumption concerning the range of dim G.
Hence dim $1 (m k) and S is of type B or D. If d >_ 2, we continue
with S.

Let a maximal dimension of the orbits of the action of S on Mx. Then

(13) m-k= l_<al.

Consider the almost effective action of S. on M. M/S. By [2, Lemma 1],

(14) m. dim M: m

We wish to show dim S (kx k) and that S is of type B or D. Now
S acts almost effectively on the compact connected krdimensional manifold

Since k 66 it follows from Lemms 9 that if S2 is of type A, C or exceptional
type that dim S (kt k2 1). As in the previous step for Sx it is again
sufficient to elinate the case dim S (k k2 1). Now,

(15) dim Q (k0 kx) +
where

(i) v 0 or v > 3, u > 1, k2 _> 10,
(ii) k _< (k),
(iii) k1-- k2--u>_ l.,allj>_ 3,
(iv) k-v-q+u>_0,
(v) . _< v q + u.

It follows from Lemma 8 that

(16) (kx-- k2-- u)+ =(l.)_ (k-- k)+(k-- ka)-- 2v--q

and erefom

(17) dim G (k0 k) + (k k) + (k k,)

which is a contradiction.Hence dim S (k k) and S is of type B or D.
We continue this process until we have exhausted Sx, S, ..., Sa. In

general

(18) dim S (k-x k)
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and Sj is of type B or D (j 1,2, ...,d). In the (jq- 1) th step of the
process (1 _< j _< d 1) we are concerned with

j maximal dimension of the orbits of S. on M..
m+l dim M.+l ms- a.

NI m-+ X S-- X Ss---

Sce at thej stage, dim S (k_ k) it follows that

(19) k-I- k .
Using induction and (19) it is easily established that

(20) m+l k v q.

In later considerations we will be concerned with and N+I for j d and,
in these instances, (19) and (20) will still hold true.
Suppose first that r s 1. Now d r and

(21) dim Q : (k +).

Moreover

(22) =(k,- k+l) k0- m- k

and by [2, Theorem 1],

m-- k, dimM m m- q-v.(23)

Hence

(24)
Now

q+v<_k.

(25) dim G < dim Q -b 2v -b q < -0 (k, k+l) -b 2v -k q.

But since r < s 1, kr > 10 and

(26) 2v A- q _< 2kr < (k- (k)} _< (k- k+).

Hence from (25) and (26),

dim G < -o <k, ks+.,) --t- <k,. k,.+.,} < ’-"
which is a contradiction.
We suppose herefore from now on ha r > and we consider wo cases.
Cae I. dim S, > {k_x /}. Due o our assumption concerning

range of dim G, S, mus be of ype A or exceptional ype in his case. Now
S, acs almos effectively onN-x of dimension k_x (N is defined in a com-
pletely analogous fashion o N for j < d). Hence by Lamina O. k,_x < 16.
Therefore

(27) 0 < _, <_ .
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However it is now easily checked (for example, by using the table on p. 539
of [2]) that S must act transitively on N and, hence, on M,. Therefore

For the remainder of Case I we assume r s. Now by (20),

(28) dimM m, g k_ v q.

Since S, acts almost effectively on M with dim S > (k,_ (k,_)) it is
easily checked that

(29) m, k_

and hence

(30) v 0 q.

For example if k_ 10 and m 9,

dim S. dim SU(5) 24 < (10- 3} (k,_- (k,_)).

Consequently G Q and

(31) dim G -2 (k k+x)

If we consider the cases 11 k_x g 16 individually it is easily verified that

which combined with (31) is contradiction to our assumption concerng
the range of dim G. For example, if k,_x 12, S, must be isomorphic to
SU(7) and

dim SU(7) 48 < (12 3) + (3 1) + (1).

We are left with the case k,_ 10. But here,

dim S dim SU(6) 35 > (10- 3)+

Combining this with (31) we again reach a contradiction. (Note that we
must have k, 3 above for otherwise dim

Case II. dim S, (,_ k,). Recall that l, denotes the least integer
such that dim S, g
By assumption, 1, k,_l k. Since k, 3 we muy use Lemma 8 in the

usual fashion to conclude

We consider two subcases of Case II.
Subcase (). r s. Now

(33) dim Q < =0 ( +).

Moreover since l+ k k+, i 0, s 1 we apply [2, Theorem 1]
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to conclude

(34) m

Hence,

(35)

Now

’-(,-- k+l) _< dimM1 m_< m- q-v.

(36) dim G < -(k- ki+l) -t- 2v -4- q.

If It, > 7, 2v A- q _< 2k, < (k. (k,)) _< (k. k,+l) and from (36),

dim G _< ’=0 (k-
which is a contradiction.
We assume for the remainder of Subcase (a) that

(37) 3 _<k._<6

and consider the individual cases. The cases k8 4, 5 and 6 give little
difficulty. For example if k, 5, it follows from (35) that

and hence from (36), dim G < ’=0 (ki k+>.
The case k, 3 and v 3, q 0 appears to require a more subtle argu-

ment. Suppose first that dim S (k_ k,). Now

(38) dim G ’- (ki k+) -t- dim V -4- dim R -4- q

Due to the range of dim G,

(39) 4 <k, k,+) + <k,+) < dim V + direr + q < (k, k+ + 1) 6.

Hence,

(40) dim V -f- dim R A- q 5.

But dimV v 3, q= 0. Hence,

(41) direr 2

which is impossible since R is a direct sum of simple groups. We assume
therefore that dim S. < (k,_ k,). By Lemma 8,

(42) (k,_- k.- 1) < dim

Consequently S is of type A or exceptional type. If we consider the almost
effective action of S on N. - we conclude from Lemma 9 that for k,_ > 17,

dim S, < (k_- q(k_x)) <

since k, 3 < q(k,_) 1. This contradicts, however, (42). We assume
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therefore

(43) 10 _< k,_ _<: 16.

However S, acts almost effectively on M with

(44) m. _< /,-1- v /c,_- 3.

A case by case analysis for 10 _< It,_, 16 verifies the non-existence of such
an S. satisfying (42). For example, if ,_, 10 and, coequently, m, 7,

dim S, dim SU(4) 15 < <6> <k,_- ,- 1>.
This concludes the case , 3 and Subcase (a) of Case II.

Subcase (b). r s+ 1. From (32) we know that l, k._-- ,. We
wish first to elinate the case 1,+ +,. If 1,+ k,+, we may
apply [2, Theorem 1] to conclude

Hence let us suppose/,+1 k k,+ 1. If k+ 2, we may apply Lemma
8 directly to arrive at contradiction. If k+l 1 and Lemma 8 is not ap-
plicable then we must be in Case II, Subcase (b) or (c) of the proof of Lemma
8. Hence

(45) v W q s+l + 3 4 or v W q ksT1 + 2 3.

By (4) of the proof of Lemm 8,

(46) (k,-- +1)-- (.-- ]c,+) (v+q-- 2) (Lemma4)

Now

(47) dim G _< s-li=0 (, k+) + ,+ (l) W 2v W q.

Since S,+ is a simple Lie group, k, k,+l 1 l.+ 2. Hence,

(8) . .
Suppose first from (45) that v + q 4. Then 2v W q 7 and it follows
from (46) and (48) that

(49)
(. .+1) + (.+) 2, q.

In light of (47) we have a contradiction. Hence we suppose v T q 3.
If k, 5, we obtain a contradiction as above by using (46). Assume then
k, 4 and let

/,+1= ,-k.+-u, u 1.
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Since ]c8 4, ]8-}-1 1 and l,+1 _> 2, it follows that u 1. By [2, Theorem 1],

dim G <_ _,: k,, k,+l + k8 k+ u -t-- (k+l + u

Hence we reach a contradiction and therefore from now on we suppose that

(50) 1,+ > k,- ,+.
At this point we have the following data"

(a) S is of type B or D and dim S (]c_ k), i 1, 2, s 1.

(7) dimS.+ > (k,-

Hence S,+ is of type A or exceptional type and by Lemma 9

(51) 3 . 16.

Moreover S,+1 acts almost effectively on the compact manifold N+I of dimen-
sion k,.
We examine the individual cases for k,. For k. 6, it follows that k 28

(i 1, 2, s 1) and by Lemma 9 and (fl) above we conclude that

S, is also of type B or D and dim

(A) k. 16. Now dimS.+ dimSU(9) 80. We may assume
k,+l (16) 4 for otherwise dim S,+ 80 < (, k,+l). Now
1.+ 13 k, k,+l 1 and by [2, Theorem 1],

dim G :(k,- k,+l) + dim

:: (,- ,+) + so + (3)

< .-1,_0 (, ,+1) + (.

Hence we have elinated the case k. 16.
(B) k, 15, 14, 13, 11, 9, 7, 5. In all these cases we lack the existence

of an S,+ satisfying (7). For example, if . 11,

dim S,+1 dim SU(6) 35 < (8)

(C) k, 12. Now dimS,+l dimSU(7) 48 andwe may assume
k,+ (k,) 3. Clearly l,+ 10 , k,+ W 1 and by [2, Theorem
1],

< Z’- (, ,+,) + s +

(D) k, 10. Here, mS,+ dimSU(6) 35 andk,+ 3. Now
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Hence, we have an exceptional case for dim G with S,+1 isomorphic to SU(6).
Clearly v 0 q and

where each S, i s, is of type B or D. Finally to show the action of G on
M is transitive we must show p m.
We claim

m _-- (m-- p), j 1,2, ,s 1

and we prove this fact by induction on j. Now m p k0 (m p).
Suppose thenmt

_
(m-p),1 s. Weknowmt+ mr-

Hence from (19),

mt+ mt-- (kt_-- kt) kt--- (m--p) (t- ) kt--(m p).

Now S,+ acts almost effectively on M,+ with

dimM+ m,+ k,- (m-p) 10- (m-p).

Since S,+ is isomorphic to SU(6) we must have p m.
(E) k 8. dimS+ dimSU(5) 24and,+ 2. Nowl,+ 7

and by [2, Theorem 1],

dim G < -( k+) + 24 + 1
Since

we must have q 1 for dim G to be in the correct range. But S,+ acts
almost effectively on M,+ with

dimM,+ m,+ k,- v- q 7

by (20). However this rectly contradicts the fact that S,+ is isomorphic
to SU(5). Hence the case k, 8 is elinated.

(F) k, 6. Now(,- ,+}+ (k.+) 13and(k,- k,++ 1) 15.
Hence S,+ must be isomorphic to the exceptional Lie group G. As in (D)
we have an exceptional case for dim G with v 0 q nd

where ech S, i s, is of type B or D. We show the transitivity of the
action by the same method which was employed in (D).

(G) . 4. Here dimS,+ dimSU(3) 8ndsince

dim G 2( k+} + dim

by [2, Theorem 1]. Since

we once again have an exceptional case form G. Since now . 6 we know
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that St only for i _< s 1 is of type B or D. It follows, however, that since
dim G -0( k+l} - 8, we must have that dim
Since k_l >_ 15, S, is not of type C by Lemma 9. Moreover for k,_ >_ 17,
S, is not of type A or exceptional type by Lemma 9. Finally, a simple check
for ks_l 15, 16 verifies that S, must be of type B or D. Again as in (D)
and (F)

G Q S@ S@ @ S,+

and G acts transitively on M.
(H) It, 3. Now dim S,+ _< (3} and since S,+ is simple,

dim Ss-t-1 3 _< (k,-

which eliminates this case.
The proof is now complete with cases (G), (F), and (D) corresponding to

the three classes of possibilities, (i), (ii), and (iii) respectively of Theorem B.

5. Final remarks
There are obvious examples of the three possibilities of Theorem B. For

example, the product action of

G SO(m k + 1) @ SO(k lc2-t- 1) @ @ SO(k,_ 4-t- 1)

@ S/(3)
on

M S"-kl X S - X X S8-’-4 X P2(C)
provides an example of (i).

In the statement of Theorem 1 of [2] a decomposition of G somewhat differ-
ent from that assumed in the proof of Theorem B is used. In [2, Theorem
1] pairs of simple factor groups S isomorphic to Spin (3) in are combined
as copies of the non-simple Lie group Spin (4). If one checks through the
proof of Theorem 1 in [2], it can be seen that this technicality does not affect
the application of Theorem 1 in the proof of Theorem B. In particular, the
above mentioned technicality does not actually arise in the consideration of
the subgroup Q of G.
Theorem B does not exhaust the total range of gaps. In particular, there

are certainly additional gaps a where a < (m (m)). For example it can
be verified that there is no effective pair (G, M2) with dim M 20 and
dim G (15) + 14 (note (15) + 14 < (20 (20))). If we restrict our
attention to a > (m (m)) it can be verified that if a is a gap not covered
by Theorem B, a must be in the range

where

(a) ko=m
(b) k, _< (/c,_1), i _<: i _< t.
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(Note that ]cl, h., ,/t are uniquely determined by a.) When we search
for gaps a in the above range we run into a situation comparable to that
where a < (m (]m)). In the latter case Lemma 9 is not directly appli-
cable and simple factor groups of type A and exceptional type enter signifi-
cantly into the picture. In principle, the techniques of the proof of Theorem
B could be used to track down all possible gaps. However, the program
would appear hopelessly tedious, and the final listing of all possible gaps a

particularly cumbersome.
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