ON LINEAR TRANSFORMATIONS WHICH PRESERVE
THE DETERMINANT

BY
Morris L. EaTon!

Let S be the linear space of n X n real symmetric matrices and ® be the cone
of real positive definite matricesin S. Consider a linear transformation 7' on
S to S such that

(1) T@E@) <@
and
2) det (T'(A)) = (det A)e, AeS

where ¢ is a non-zero real constant. If M is an n X n non-singular matrix, let
Ty denote the linear transformation on S defined by

3) Tu(d) = MAM', AeS;

and let G denote the set of such transformations Ty . It is obvious that if
Twe@G, then Ty satisfies (1) and (2). Our first theorem establishes the
converse.

TuroreM 1. If T s a linear transformation on S to S satisfying (1) and (2),
then T € G.

Proof. Since T'(I) ¢ @, there exists a B e ® such that T(I) = BB

Setting U = T T, we have that U satisfies (1) and (2) with ¢ = 1 and
U{) = I. Since U is linear, we have

4) det W[ — A) =det (UM — 4)) =det .M — U(4))

for A €S and real \. Hence, the eigenvalues of A are the same as the eigen-
values of U(4) forall A € S. Now, an inner product on S is (41, As)=tr A; A,
(tr denotes trace). If A, BeS have the same eigenvalues, it is well known
that tr A* = tr B. Thus, we see that

®) (4, 4) = (U4, UA) = (U'UA,A)

forall A € S. Thus U’'U is the identity on S (see [1, p. 138]).

If x ¢ R" is a column vector, then 2z’ ¢ S. We also note that any positive
semi-definite matrix of rank one is of the form zz” for some z ¢ R” and the only
non-zero eigenvalue is #’z. Further, (zz/, yy') = (@'y)’. Now,let e, -+,
be the standard orthonormal basis in R". Since &; ¢; is positive semi-definite
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of rank 1 with non-zero eigenvalue equal to 1, it follows that
(6) Ulesei) = zsmi, i=1--,n
where i z; = 1. Furthermore,
(ei &) = (esei, 565y = (U'Ueser , €5€5)
= (Uesei, Usjefy = (miwe , x; z7)
= (@iz;)
so that x;,7 = 1, --- , n is an orthonormal basis for B”. Let I be the n Xn

orthogonal matrix with ¢ row z; and define Von Sby V = Tr U. Then V
satisfies (1) and (2) with¢ = 1 and Vesef = esei,4 =1, -+ ,m, and

@) det \[ — 4) = det (\[ — VA).

Hence the eigenvalues of A and VA are the same. Now, fix ¢ < j. Since
(s + €;)(e; + &;)" is a rank one positive semidefinite matrix with non-zero
eigenvalue equal to 2, there exists z ¢ R" such that

@®) V(e + &) (ei + &) = aa’
where 2’z = 2. Since Ve;e; = e:¢:, (8) can be written
ax’ = e;e1 + e5e; + Vieie; + &5 61).
However,
0 = (ener, eie; + & &0

= (V'V (ex &1), €: €5 + i €1)

= (eren, Vieies + 5¢0)).
Thus the <, 7 and 7, j diagonal elements of V (¢; e; + & &) are 0. Using (8)

this implies that (z*)* = (&'”)* = 1, where 2® is the kt element of the vector

z. Since 2’z = 2, we see that #® = 0fork # 4, ks j, 2¥ = +1 and
¥ = +1. Thus we have

9) Vieie; + ejei) = xa’ — eiei — €565 = = (e &5 + & €5).

Noting that {e;i,3 = 1, --- ,n} u {e;&; + & 1,4 < j} forms a basis for S
we conclude thatif VA = C = {C,}, then Ci; = &;ai; where A = {a;},
£; = =1, and & = 1.

Now, letn; = &forj =1, --- ,n. Weclaim that £; = 5.;. To establish
this claim, we first show that £&; = 7293 . By assumption, det (VA) = det(4)
for all A ¢ S. For A, choose the matrix

B 0 011
A = where B; =1 0 1
1 11

0 I
and I is the (n — 3) X (n — 3) identity.
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B, 0 0 7 s
V(A) = Where B2 =1 72 0 523 y

0 I
s £ 1

and we then have det By = det B.. This yields the equation 7 13 &3 = 1.
Since &3 = +1, we see that 7213 = £ .

Now, by simply permuting rows and columns, it follows easily that &:; = #:;
for all4,7. Thus if we let D ¢S be a diagonal matrix with ** diagonal element
7:, then

Then

(10) VA = DAD for AeS.
Setting M = B™'I'D, we have
11) T(A) = MAM' for AeS. Q.E.D.

Let £ be the linear space of n X 7 real matrices. We want to extend the
result of the above theorem to linear transformations on £. First, we prove
the following.

TuaEOREM 2. Let M, and M+ be two real n X n matrices such that
12) det (A + M1) = det (A + M:) forall AeS.

Then
M1=M2 or M1=M;.

Proof. We first write M; = A; + N:, ¢ = 1, 2 where 4, is symmetric and
N, is skew symmetric. Then (12) implies

(13)) det (A + N1) = det (4 + As + N.) forall AeS

where A; = A, — A: is symmetric. Now, write A; = T'Dy IV where T is
orthogonal and Dy is diagonal. Then (13) implies that

(14) det (A + F) =det (A + Do+ G) forall AeS

where F = I'N: T and G = I'N. T are both skew symmetric. To establish
the lemma, it is sufficient to show (14) implies that Do = 0 and that F = G or
F =@

Let H = Do + @G and note that (14) implies
(15) det (\ + AF) = det (\ 4+ AH)

for all non-singular 4 ¢ S. However, (15) shows that for each non-singular
A €8, the eigenvalues of AF are the same as the eigenvalues of AH. Thus,

(16) tr (AF)® = tr (AH)®
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for all non-singular 4 ¢ S and then (16) holds for all A ¢S by continuity.”
Writing out the left hand side of (16) explicitly, we have

17) tr (AF)" = 275 225 2k 21 aafus ajufui,s

where A = {ay} and F = {fi;}. Now, we desire the coefficient of a.g aysin
(17). Due to the symmetry of A = {a;}, there are eight subscript combina-
tions of (2,4, k, 1) which yield a contributing term to the coefficient of a.s a,s in
(17). These are listed below:

Subseript Combination Coefficient
1= o, =g, .7 =7, =238 fﬂ7f3a
t=a, k=8 j=3 l=v Sos fra
7;=B) k=ar j=7; =23 fa‘Yfm
i=ﬁ: k=a7 j=5’ l='7 fa&f'yﬂ
i=7y k=26 j=a; l=ﬁ f&xfﬂ'y
i=v, k=3 i=8 Il=a Sop for
7:=5y IC=’Y, j=a7 l=8 f'rafﬁb
i=6; k=7’ j=ﬂ» l=a f’Yﬂfad
However, F is skew symmetric so that f;; = —fjforallZandj. TUsing this

fact that adding the coefficients in the above table, we conclude that the co-
efficient of @ag ays in (17) is

(18) 4{fﬁ7 fia + fﬁa fva}-
Since (16) holds for all 4 ¢S, we conclude that
(19) Joy foa + Jos fra = hgy hsa + hgs hya

forall @, 8, v, 5. Noting that f.. = 0 and settinga = 8 = v = din (19) shows
that hee = Oforalla. Since H = {hi} = Do+ G, Dyis diagonal, and G is skew
symmetric, it is clear that Dy = 0. Thus we can write (19) as

(20) Jovy foa + Jos fya = 98y G5 + g8 G
forall e, 8, v, 8. Settinga = fand v = din (29), we have
21) fiy = goy forall B and 4.

Noting that fee = Jae = 0 for all @, and using (20), first with § = 8 and then
with @ = v, we have the two equations

(22) Jov foa = g8y 98a
(23) Jov for = govy Gov

for all o, 8, v, 6.
If fs, = O for all 8 and v, then (21) shows that ¥ = G = 0 and the leama
is established. In the case where F' # 0, fix ¢ and j such that f;; % 0. From

2 Those readers unfamiliar with continuity arguments in an algebraic setting might
consult Chapter 1 of Bellman [2].
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(22) and (23) we then have

(24) fiifiafsi = Gii Gia Goi
for all a, 8, and then (21) shows that
(25) fiafsi = Giags; forall e, 8.
Now, setting 8 = ¢ and ¥ = jin (20) and using (25), we conclude that
(26) fiifsa = gij goa forall a,d.
Since f;; = ¢i; # 0, it follows that
(27) fo« = goa forall a,3d
or
foe = —gsa forall a,é.

However, F and @ are skew symmetric so that either F = Gor F = ¢’. This
establishes the theorem.

If Ty e G, let Ty denote the extension of Ty to £ given by Ty N = MNM’
for all N e £. Also, let G denote the set of T' .

TuroreEM 3. Let T be a linear transformation on £ to £ such that

(28) T@)C @
and
(29) det (TN) = cdet N for Neg,

where ¢ is a non-zero real number. Then T ¢ G or TW ¢ G where W s the linear
operation of transpose.

Proof. From (28) we have that T(S) & S. Applying Theorem 1 to the
restriction of T to S, there exists a T'x ¢ G such that

(30) V =TT

satisfies (29) with ¢ = 1 and V(A) = A4 for all A eS. To establish the
theorem, it is sufficient to show that V is the identity or V= W on £.

Now, for each skew symmetric matrix F, (29) implies that
(31) det (A +VF)) =det (A +F) forall 4AeS

and Theorem 2 shows that either V(F) = For V(F) = F’. Let § denote the
linear space of all n X n skew symmetric matrices and note that £ = S + §.
Also let

B2) Tu={F|Fe§ VIF)=F}, H={F|Fe§ VF)=F}.

It is obvious that F and §» are linear manifolds with only 0 in common and
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T+ T = §. However, the fact that every F e § is either in 1 or §» shows
that either § = {0} or F = {0}. This completes the proof.

REFERENCES

1. P.R. Hawmos, Finite-dimensional vector spaces, second edition, Van Nostrand, Prince-
ton, 1958.

2. R. BeLLmAN, Mairiz analysis, McGraw-Hill, New York, 1960.

UniveRrsiTY oF CHICAGO
Cuicago, InLiNoOIS



