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1. G. Eisenstein remarked in 1847 that if h. denotes the number of classes of
positive n-ary quadratic forms with integral matrices and determinant 1, then
h 1 if 1

_
n -< 8 (the one class being that of x + + x), but

h. > I if n > 8. He erred as regards n 8, since as first shown by Korkine
and Zolotareff in 1873 there is another applicable class when n 8 whose
forms have all diagonal terms even, and so represent no odd numbers. The
few proofs that hs 2 are referred to by L. J. 5/iordell, and by Van der Blij
and Springer. These proofs involve lengthy computations (h/Iordell’s, while
neat in itself, using values of the minimal constants 76,7, 78) or are based on
deep developments, such as the Minkowski formula for the weight of a genus,
or on properties of spiaor genera (in Kneser’s proof). The purpose of this
note is to give a simple, self-contained proof that h8 2.

It should first be observed that the forms under consideration comprise two
genera, one typified by the form f8 x + - x containing forms which
represent odd numbers, and the other consisting of forms which represent only
even numbers, the latter genus containing in particular the form 2g, where g
has the matrix

where

1 0 0 ,V= |1 0 -1 11I=Lo0 i 0 LI I 0
o0 0 0 1 1 -1 1

whence V’V 31. Notice that g is an integral positive form of determinant
18, and that hs 2 requires that there be only one class of such octonary
forms. Note that g transforms into f8 by an integral transformation of de-
terminant 2"

2. We prove in this section
18 form one class.TEoE 1. The integral positive octonaries of determinant

We may denote byfT the form obtained from a formf by the transformation
of matrix T. Hence if A is the matrix of f, the matrix of fT is T’AT.
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1LEMMA 1. Consider integral octonaries g of determinant and f with an
integral matrix of determinant 1. If g T f with T integral and det T 16
then S 2T- is integral andf S 4g Conversely, iff S 4g with S inte-
gral and det S 16, then if T 2S- is integral, g T f.

Proof. Let E be the matrix off, H that of g. Thus H has denominator 2,
and E- is integral. But THT E, hence TH ET-. Hence T- has
denominator 2, f T- g,f S 4g. The converse follows easily.

LEMMX 2. Let the octonary f of determinant 1 be congruent (rood 4) to %.
Let S be integral, det S 16, S- have denominator 2, andf S 4g with g in-
tegral. Then there exists a permutation matrix W and unimodular matrix U
such that

Proof. The left factor W allows us to permute the rows of S, and U allows
us to make the elements to the left of the main diagonal zero, those on the
diagonal to be positive integers m, ..., ms with product 16, and those to the
fight of any m to be reduced modulo m (0 if m 1, either I or 1 at will if
m 2). The elements above any m equal to 2 must be 0, since if 1 occurs
to the right of one 2 and above another, the denominator of S- is at least 4.
Now m 2, since if it were 1, the first coefficient of f (WSU) would be odd"
but it must be made divisible by 4. Similarly, since c -t- 1 and a -t- b" -t- 1
cannot be divisible by 4, we must have m. ma 2. If m 1 and a later
m 2, we can interchange the fourth and j-th rows, and columns, and so
secure m 2. Thus the 21 and I in (3) can be placed as shown. The ex-
pression for V then follows readily from the condition that the coefficients of
the terms in x x (5 =< i < j -<_ 8) are to be divisible by 4, rows and columns 5
to 8 being permuted as needed.

COaOLLAaV. The integral octonaries of determinant which can be carried
into fs by integral transformations of determinant 16 form a single class.

LEMMA 3. Every integral positive octonary of determinant can be trans-
formed into % by some integral transformation of determinant 16.

The proof will be completed following Lemma 5.

LEMMX 4 (ttermite). Let f be a positive n-ary form with real coecients, and
m the minimum off for integral values not all zero of the variables. Then

(4) m <__ ()(-) d’ where d det f.

Proof (by induction). Take m as first coefficient, and complete squares"

(5) f(x, x,,) m(x + ) - O(x., x,).
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Here the (n 1 )-ary form has determinant dim, and if m’ denotes its mini-
mum for integers x., x not all zero, m’

_
()(’-)/(d/m)1/(’*-1). An integer

xl can be chosen so that 0 -< (xl W )s
_ . Hence f represents (with

integers xl, ..., x not all 0) a number not exceeding m/4 - m’; and (4)
follows from m <= m/4 - mt.

LEMMA 5. Every integral positive quinary of determinant can be carried by
an integral transformation of determinant 2 into x - x.

Proof. By (4) withd =-andn 5, m< 2; hencem 1, andlcanbe
taken as the leading coefficient. If the cross-product coefficients involving
x are even the term x splits off, and we proceed with a quaternary of determi-
nant 1/4, which again represents 1 by Lemma 4; and so forth until (since 1/4 is not
an integer) we reach a situation expressed by x - xy - .... We may as
well assume this situation at the start, and take the quinary to be

+ x + (,.,..., ).

Let us now replace xs by 2x., a transformation of determinant 2, and then
complete squares. This gives a form y W , .where is integral and
deth 1. Also,

where/ is odd, and ra, r, r are integers. Thus 1 can be carried by a trans-
formation which is integral rood 2 and has determinant 1 into form
kzs -I- (za, z, z), where/ is odd and the coefficients of 4 are integral rood 2.
This implies, we maintain, that has an integral matrix. For if not its
dyadic canonical form must involve a term xy (since x -{- xy -[- yS _[_ kz is
dyadically equivalent to xy 3/cz), and hence represents zero dyadically;
thus the Hasse inwriant cs () equals 1, since has a square determinant;
and since de 1, c -1 and 1 is indefinite. Thus must have an
integral matrix, and so by use of (4) with d 1 and n 4, 3, 2, can be
transformed into a sum of four squres.
To proceed" (4) gives m < 2, hence m 1, iff is integral and either n 8

18 16 14andd= ,orn 7andd ,orn 6andd . Hence wecaatake
the given octonary to be

x -t- as x x -t- - as x xs + ...,
can find a unimodular transformation replacing as xs -k -b a8 xs by sys
with s in Z, and have x -[- sx y -[- h (y., ..., ys). We replace ys by 2y. (a
transformation of determinant 2), and, completing squares, obtain
Y W (y, ys) with det . Two repetitions of this procedure reduces
the proof to Lemma 3. Hence the proof of Theorem 1 is completed.
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3. THEOREm 2. The form f8 x - T x is in a gus ofe class.

Proof. yclass the genus offa confabs a formf congruent tofa (rood 8).
By Lemma 2 and Theorem 1, after some permutation of the vaables of
f*, f* is transformedo 4g, where g g (rood 2) and g is the class of g,
by the transformation

It will suce to prove that 1 has 16 representations by f.
An integral column vector {x, ..., xa] w be caed a unit of

/G 1. This equation amours to ()(TGT)() 1, or
(S)Is (S) 4, where Is is the matr of fa. Hence is a ut of G and
oy if S is a representation of 4 byf such that is tegral, that is, ff, , ...,,,
(7) y -t- y+4 y5 - y6 T y -t- y8 (mod 2) (i-- 1, 2, 3, 4).

We count 16 values 7 from 2 0 0 0 0 0 0 0; and permuting the first four and last
four components alike we count 64 - 96 - 64 values 7 from

11100001, 11001100 and 10000111.

Thus g has 240 units.
For any integral column vectors , 7 write

(8)
(, ( - )’G ( - ) ’G v’G

2gxx. where G--- (g).

Hence (, -7) (, 7); and if 7 0, (27)’G (27)

_
4.

LEMMA 6. If and 7 are units and 7 (mod 2), then . 7 or -7.

Proof. Otherwise, (,7) - 4- 1 1 > 0, (,-7) - 4- 1- 1 > 0.

LEMMA 7. ’G 1 (mod 2) has exactly 120 solutions (mod 2). Hence
for any 7 such that 7’G7 is odd, there is exactly one pair of units and --- of g
such that 7 (mod 2).

Proof. We need only count the octuplets xl, ..., x8 (mod 2) for which

+ + + + ( + x + + 2) + ( + + + 2)
W (xl + x + x4 + 2x) -t- (x -t- x - x -t- 2x) 4 (mod 8)"

x, x., xa odd, x even, and adjust x5 mod 2; x, x odd, xa, x even, and adjust
x mod 2; x odd, x, xa, x even, and adjust xa rood 2; x, ..., x even and ad-
just x rood 2. In all, 4.8 -t- 6.8 - 4.8 -t- 8 120.

Let U denote a unimodular transformation replacing g by g. If ranges
over a complete set of residues rood 2 for whichG is odd. U- ranges over
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the same residues, since g g (mod 2). Hence the units of g and g are alike
in their residues mod 2. The form f8 has 16 units, these being given by the
vectors (S)/2 which ase integral. Hence f* has 16 units. Theorem 2 fol-
lows.

It follows immediately that if 1 -< n

_
7, a positive definite n-ary form with

an integral matrix and determinant 1 is in the class of x - x. For, if
h is such a form,

h(x, x) + + + +
is in the class of fs, and the number of representations of 1 is 16. Hence h
represents 1.
At the referee’s suggestion we add that the deepest thing used is the ele-

mentary theory of the Hasse symbol, such as, for example in Chapter II of
Jones’s Arithmetic theory of quadratic forms.
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