THE DEFINITE OCTONARY QUADRATIC FORMS OF DETERMINANT 1

BY
Dennis Estes and Gordon Pall

1. G. Eisenstein remarked in 1847 that if h_{n} denotes the number of classes of positive n-ary quadratic forms with integral matrices and determinant 1 , then $h_{n}=1$ if $1 \leqq n \leqq 8$ (the one class being that of $x_{1}^{2}+\cdots+x_{n}^{2}$), but $h_{n}>1$ if $n>8$. He erred as regards $n=8$, since as first shown by Korkine and Zolotareff in 1873 there is another applicable class when $n=8$ whose forms have all diagonal terms even, and so represent no odd numbers. The few proofs that $h_{8}=2$ are referred to by L. J. Mordell, and by Van der Blij and Springer. These proofs involve lengthy computations (Mordell's, while neat in itself, using values of the minimal constants $\gamma_{6}, \gamma_{7}, \gamma_{8}$) or are based on deep developments, such as the Minkowski formula for the weight of a genus, or on properties of spinor genera (in Kneser's proof). The purpose of this note is to give a simple, self-contained proof that $h_{8}=2$.

It should first be observed that the forms under consideration comprise two genera, one typified by the form $f_{8}=x_{1}^{2}+\cdots+x_{8}^{2}$ containing forms which represent odd numbers, and the other consisting of forms which represent only even numbers, the latter genus containing in particular the form $2 g$, where g has the matrix
(1)

$$
\begin{aligned}
G=\left[\begin{array}{cc}
I & \frac{1}{2} V \\
\frac{1}{2} V^{\prime} & I
\end{array}\right], \quad \text { where } \\
I=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], V=\left[\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 \\
1 & 1 & 0 & -1 \\
1 & -1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

whence $V^{\prime} V=3 I$. Notice that g is an integral positive form of determinant $\frac{1}{2}^{8}$, and that $h_{8}=2$ requires that there be only one class of such octonary forms. Note that g transforms into f_{8} by an integral transformation of determinant 2^{4} :

$$
\left[\begin{array}{cc}
I & 0 \tag{2}\\
-V^{\prime} & 2 I
\end{array}\right]\left[\begin{array}{cc}
I & \frac{1}{2} V \\
\frac{1}{2} V^{\prime} & I
\end{array}\right]\left[\begin{array}{cc}
I & -V \\
0 & 2 I
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]
$$

2. We prove in this section

Theorem 1. The integral positive octonaries of determinant $\frac{1}{2}^{8}$ form one class.
We may denote by $f T$ the form obtained from a form f by the transformation of matrix T. Hence if A is the matrix of f, the matrix of $f T$ is $T^{\prime} A T$.

[^0]Lemma 1. Consider integral octonaries g_{1} of determinant $\frac{1}{2}^{8}$, and f_{1} with an integral matrix of determinant 1. If $g_{1} T=f_{1}$, with T integral and $\operatorname{det} T=16$, then $S=2 T^{-1}$ is integral and $f_{1} S=4 g_{1}$. Conversely, if $f_{1} S=4 g_{1}$ with S integral and $\operatorname{det} S=16$, then if $T=2 S^{-1}$ is integral, $g_{1} T=f_{1}$.

Proof. Let E be the matrix of f_{1}, H that of g_{1}. Thus H has denominator 2, and E^{-1} is integral. But $T^{\prime} H T=E$, hence $T^{\prime} H=E T^{-1}$. Hence T^{-1} has denominator 2, $f_{1} T^{-1}=g_{1}, f_{1} S=4 g_{1}$. The converse follows easily.

Lemma 2. Let the octonary f_{1} of determinant 1 be congruent $(\bmod 4)$ to f_{8}. Let S be integral, $\operatorname{det} S=16, S^{-1}$ have denominator 2 , and $f_{1} S=4 g_{1}$ with g_{1} integral. Then there exists a permutation matrix W and unimodular matrix U such that

$$
W S U=\left[\begin{array}{cc}
21 & V \tag{3}\\
0 & I
\end{array}\right]
$$

Proof. The left factor W allows us to permute the rows of S, and U allows us to make the elements to the left of the main diagonal zero, those on the diagonal to be positive integers m_{1}, \cdots, m_{8} with product 16 , and those to the right of any m_{i} to be reduced modulo m_{i} (0 if $m_{i}=1$, either 1 or -1 at will if $m_{i}=2$). The elements above any m_{j} equal to 2 must be 0 , since if 1 occurs to the right of one 2 and above another, the denominator of S^{-1} is at least 4. Now $m_{1}=2$, since if it were 1 , the first coefficient of $f_{1}(W S U)$ would be odd: but it must be made divisible by 4 . Similarly, since $c^{2}+1$ and $a^{2}+b^{2}+1$ cannot be divisible by 4 , we must have $m_{2}=m_{3}=2$. If $m_{4}=1$ and a later $m_{j}=2$, we can interchange the fourth and j-th rows, and columns, and so secure $m_{4}=2$. Thus the $2 I$ and I in (3) can be placed as shown. The expression for V then follows readily from the condition that the coefficients of the terms in $x_{i} x_{j}(5 \leqq i<j \leqq 8)$ are to be divisible by 4 , rows and columns 5 to 8 being permuted as needed.

Corollary. The integral octonaries of determinant $\frac{1}{2}^{8}$ which can be carried into f_{8} by integral transformations of determinant 16 form a single class.

Lemma 3. Every integral positive octonary of determinant $\frac{1}{2}^{8}$ can be transformed into f_{8} by some integral transformation of determinant 16.

The proof will be completed following Lemma 5.
Lemma 4 (Hermite). Let f be a positive n-ary form with real coefficients, and m the minimum of f for integral values not all zero of the variables. Then

$$
\begin{equation*}
m \leqq\left(\frac{4}{3}\right)^{(n-1) / 2} d^{1 / n} \quad \text { where } \quad d=\operatorname{det} f \tag{4}
\end{equation*}
$$

Proof (by induction). Take m as first coefficient, and complete squares:

$$
\begin{equation*}
f\left(x_{1}, \cdots, x_{n}\right)=m\left(x_{1}+\cdots\right)^{2}+\phi\left(x_{2}, \cdots, x_{n}\right) \tag{5}
\end{equation*}
$$

Here the $(n-1)$-ary form ϕ has determinant d / m, and if m^{\prime} denotes its minimum for integers x_{2}, \cdots, x_{n} not all zero, $m^{\prime} \leqq\left(\frac{4}{3}\right)^{(n-2) / 2}(d / m)^{1 /(n-1)}$. An integer x_{1} can be chosen so that $0 \leqq\left(x_{1}+\cdots\right)^{2} \leqq \frac{1}{4}$. Hence f represents (with integers x_{1}, \cdots, x_{n} not all 0) a number not exceeding $m / 4+m^{\prime}$; and (4) follows from $m \leqq m / 4+m^{\prime}$.

Lemma 5. Every integral positive quinary of determinant $\frac{1}{4}$ can be carried by an integral transformation of determinant 2 into $x_{1}^{2}+\cdots+x_{5}^{2}$.

Proof. By (4) with $d=\frac{1}{4}$ and $n=5, m<2$; hence $m=1$, and 1 can be taken as the leading coefficient. If the cross-product coefficients involving x_{1} are even the term x_{1}^{2} splits off, and we proceed with a quaternary of determinant $\frac{1}{4}$, which again represents 1 by Lemma 4 ; and so forth until (since $\frac{1}{4}$ is not an integer) we reach a situation expressed by $x^{2}+x y+\cdots$. We may as well assume this situation at the start, and take the quinary to be

$$
x_{1}^{2}+x_{1} x_{2}+\phi\left(x_{2}, \cdots, x_{5}\right)
$$

Let us now replace x_{2} by $2 x_{2}$, a transformation of determinant 2 , and then complete squares. This gives a form $y_{1}^{2}+\phi_{1}$, where ϕ_{1} is integral and $\operatorname{det} \phi_{1}=1 . \quad$ Also,

$$
\begin{aligned}
\phi_{1}\left(y_{2}, \cdots, y_{5}\right) & =k y_{2}^{2}+2 r_{3} y_{2} y_{3}+2 r_{4} y_{2} y_{4}+2 r_{5} y_{2} y_{5}+\cdots \\
& =k\left(y_{2}+\left(r_{3} / k\right) y_{3}+\cdots\right)^{2}+\cdots,
\end{aligned}
$$

where k is odd, and r_{3}, r_{4}, r_{5} are integers. Thus ϕ_{1} can be carried by a transformation which is integral $\bmod 2$ and has determinant 1 into a form $k z^{2}+\phi_{2}\left(z_{3}, z_{4}, z_{5}\right)$, where k is odd and the coefficients of ϕ_{2} are integral mod 2. This implies, we maintain, that ϕ_{1} has an integral matrix. For if not its dyadic canonical form must involve a term $x y$ (since $x^{2}+x y+y^{2}+k z^{2}$ is dyadically equivalent to $x y-3 k z^{2}$), and hence ϕ_{1} represents zero dyadically; thus the Hasse invariant $c_{2}\left(\phi_{1}\right)$ equals 1 , since ϕ_{1} has a square determinant; and since $\operatorname{det} \phi_{1}=1, c_{\infty}=-1$ and ϕ_{1} is indefinite. Thus ϕ_{1} must have an integral matrix, and so by use of (4) with $d=1$ and $n=4,3,2, \phi_{1}$ can be transformed into a sum of four squares.

To proceed: (4) gives $m<2$, hence $m=1$, if f is integral and either $n=8$ and $d=\frac{1}{2}^{8}$, or $n=7$ and $d=\frac{1}{2}^{6}$, or $n=6$ and $d=\frac{1}{2}^{4}$. Hence we can take the given octonary to be

$$
x_{1}^{2}+a_{2} x_{1} x_{2}+\cdots+a_{8} x_{1} x_{8}+\cdots
$$

can find a unimodular transformation replacing $a_{2} x_{2}+\cdots+a_{8} x_{8}$ by $s y_{2}$ with s in Z, and have $x_{1}^{2}+s x_{1} y_{2}+h\left(y_{2}, \cdots, y_{8}\right)$. We replace y_{2} by $2 y_{2}$ (a transformation of determinant 2), and, completing squares, obtain $y_{1}^{2}+\phi\left(y_{2}, \cdots, y_{8}\right)$ with $\operatorname{det} \phi=\frac{1}{2}^{6}$. Two repetitions of this procedure reduces the proof to Lemma 3. Hence the proof of Theorem 1 is completed.
3. Theorem 2. The form $f_{8}=x_{1}^{2}+\cdots+x_{8}^{2}$ is in a genus of one class.

Proof. Any class in the genus of f_{8} contains a form f^{*} congruent to $f_{8}(\bmod 8)$. By Lemma 2 and Theorem 1, after some permutation of the variables of f^{*}, f^{*} is transformed into $4 g_{1}$, where $g_{1} \equiv g(\bmod 2)$ and g_{1} is in the class of g, by the transformation

$$
S=\left[\begin{array}{cc}
2 I & V \tag{6}\\
0 & I
\end{array}\right] \quad \text { where } \quad T=2 S^{-1}=\left[\begin{array}{cc}
I & -V \\
0 & 2 I
\end{array}\right]
$$

It will suffice to prove that 1 has 16 representations by f^{*}.
An integral column vector $\xi=\left\{x_{1}, \cdots, x_{8}\right\}$ will be called a unit of g if $\xi^{\prime} G \xi=1$. This equation amounts to $\left(T^{-1} \xi\right)^{\prime}\left(T^{\prime} G T\right)\left(T^{-1} \xi\right)=1$, or $(S \xi)^{\prime} I_{8}(S \xi)=4$, where I_{8} is the matrix of f_{8}. Hence ξ is a unit of G if and only if $\eta=S \xi$ is a representation of 4 by f_{8} such that $S^{-1} \eta$ is integral, that is, if $\eta=\left\{y_{1}, \cdots, y_{8}\right\}$,

$$
\begin{equation*}
y_{i}+y_{i+4} \equiv y_{5}+y_{6}+y_{7}+y_{8} \quad(\bmod 2) \quad(i=1,2,3,4) \tag{7}
\end{equation*}
$$

We count 16 values η from 20000000 ; and permuting the first four and last four components alike we count $64+96+64$ values η from

$$
11100001, \quad 11001100 \text { and } 10000111 .
$$

Thus g has 240 units.
For any integral column vectors ξ, η write

$$
\begin{align*}
(\xi, \eta) & =(\xi+\eta)^{\prime} G(\xi+\eta)-\xi^{\prime} G \xi-\eta^{\prime} G \eta \\
& =\sum 2 g_{i j} x_{i} x_{j} \quad \text { where } \quad G=\left(g_{i j}\right) \tag{8}
\end{align*}
$$

Hence $(\xi,-\eta)=-(\xi, \eta)$; and if $\eta \neq 0,(2 \eta)^{\prime} G(2 \eta) \geqq 4$.
Lemma 6. If ξ and η are units and $\xi \equiv \eta(\bmod 2)$, then $\xi=\eta$ or $\xi=-\eta$.
Proof. Otherwise, $(\xi, \eta) \geqq 4-1-1>0,(\xi,-\eta) \geqq 4-1-1>0$.
Lemma 7. $\xi^{\prime} G \xi \equiv 1(\bmod 2)$ has exactly 120 solutions $\xi(\bmod 2)$. Hence for any η such that $\eta^{\prime} G \eta$ is odd, there is exactly one pair of units ξ and $-\xi$ of g such that $\xi \equiv \eta(\bmod 2)$.

Proof. We need only count the octuplets $x_{1}, \cdots, x_{8}(\bmod 2)$ for which

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2} & +x_{3}^{2}+x_{4}^{2}+\left(x_{2}+x_{3}+x_{4}+2 x_{5}\right)^{2}+\left(x_{1}+x_{3}+x_{4}+2 x_{6}\right)^{2} \\
& +\left(x_{1}+x_{2}+x_{4}+2 x_{7}\right)^{2}+\left(x_{1}+x_{2}+x_{3}+2 x_{8}\right)^{2} \equiv 4 \quad(\bmod 8):
\end{aligned}
$$

x_{1}, x_{2}, x_{3} odd, x_{4} even, and adjust $x_{5} \bmod 2 ; x_{1}, x_{2}$ odd, x_{8}, x_{4} even, and adjust $x_{7} \bmod 2 ; x_{1}$ odd, x_{2}, x_{3}, x_{4} even, and adjust $x_{5} \bmod 2 ; x_{1}, \cdots, x_{4}$ even and adjust $x_{5} \bmod 2$. In all, $4 \cdot 8+6 \cdot 8+4 \cdot 8+8=120$.

Let U denote a unimodular transformation replacing g by g_{1}. If ξ ranges over a complete set of residues mod 2 for which $\xi^{\prime} G \xi$ is odd, $U^{-1} \xi$ ranges over
the same residues, since $g \equiv g_{1}(\bmod 2)$. Hence the units of g and g_{1} are alike in their residues mod 2. The form f_{8} has 16 units, these being given by the vectors $(S \xi) / 2$ which ase integral. Hence f^{*} has 16 units. Theorem 2 follows.

It follows immediately that if $1 \leqq n \leqq 7$, a positive definite n-ary form with an integral matrix and determinant 1 is in the class of $x_{1}^{2}+\cdots+x_{n}^{2}$. For, if h is such a form,

$$
h\left(x_{1}, \cdots, x_{n}\right)+x_{n+1}^{2}+\cdots+x_{8}^{2}
$$

is in the class of f_{8}, and the number of representations of 1 is 16 . Hence h represents 1.

At the referee's suggestion we add that the deepest thing used is the elementary theory of the Hasse symbol, such as, for example in Chapter II of Jones's Arithmetic theory of quadratic forms.

References

1. L. J. Mordell, The definite quadratic forms in eight variables with determinant unity, J. Math. Pures Appl., vol. IX (1938), pp. 41-36.
2. F. Van der Blij and T. A. Springer, The arithmetics of octaves and of the group G_{2}, Indagationes Mathematicae, vol. 21 (1959), pp. 406-418.

University of Southern California
Los Angeles, California
Louisiana State University
Baton Rouge, Louisiana

[^0]: Received February 19, 1968.

