A CHARACTERIZATION OF A CLASS OF RIGID ALGEBRAS

BY
David W. Knudson ${ }^{1}$
Introduction

Let A be an algebra over a field k. One of the principal problems of the deformation theory for algebras is to obtain a manageable necessary and sufficient condition for A to have only trivial deformations. Such an algebra is said to be rigid. Since the vanishing of the second Hochschild cohomology group of $A, H^{2}(A, A)$, is a sufficient condition for A to be a rigid k-algebra [7], it is of interest to determine when the converse is true. If A is an extension field of k or if A is a complete semi-local noetherian k-algebra such that A / m is a separable extension of k and depth $\left(A_{m}\right)=0$ for each maximal ideal m of A, we shall show that the following conditions are equivalent (Corollary 3.8):
(1) $H^{2}(A, A)=0$.
(2) A is a rigid k-algebra.
(3) $A \cong \prod_{1 \leq i \leq n} K_{i}$ where each factor K_{i} is a separable extension field of k and $\left[\Omega\left(K_{i} / k\right): K_{i}\right] \leq 1$ where $\Omega\left(K_{i} / k\right)$ is the module of k-differentials of K_{i}.

We show that a deformation of a product of algebras (with 1) is equivalent to a "product of deformations" of the factors (Proposition 2.3). It follows that a product of algebras is rigid if and only if each of the factors is rigid. Thus since a complete semi-local noetherian k-algebra is isomorphic to a product of local k-algebras, we may reduce the above problem to the local case. The separability hypothesis assures us that a complete noetherian local k-algebra is isomorphic as a k-algebra to the semi-direct product of the residue field and the maximal ideal of the local algebra.

Notation. All rings will be assumed to have an identity and a ring homomorphism will preserve the identity. The expression " A is a k-algebra" will imply that k is a field.

1. Preliminary remarks

Let A be a k-algebra, M an A-bimodule, and $C^{n}(A, M)$ the k-module of all n-linear maps over k of A into M. As usual [9], we define the coboundary operator δ by

$$
\begin{aligned}
& \delta_{n} f\left(a_{1}, \cdots, a_{n+1}\right) \\
&= a_{1} f\left(a_{2}, \cdots, a_{n+1}\right)+\sum_{1 \leq i \leq n}(-1)^{i} f\left(a_{1}, \cdots, a_{i} a_{i+1}, \cdots, a_{n+1}\right) \\
& \quad+(-1)^{n+1} f\left(a_{1}, \cdots, a_{n}\right) a_{n+1}
\end{aligned}
$$

Received February 2, 1968.
${ }^{1}$ This research was supported by a National Science Foundation grant.
where $f \in C^{n}(A, M)$. The $n^{\text {th }}$ cohomology group of this complex is denoted by

$$
H^{n}(A, M)=Z^{n}(A, M) / B^{n}(A, M)
$$

and the elements of $Z^{n}(A, M)=\operatorname{ker}\left(\delta_{n}\right)$ and $B^{n}(A, M)=\operatorname{im}\left(\delta_{n-1}\right)$ are called n-cocycles and n-coboundaries respectively.

Let $A[[t]]$ denote the formal power series ring in one variable over A. A deformation of the k-algebra $A[7]$ is an associative $k[[t]]$-bilinear map f_{t} on $A[[t]]$ which is expressible in the form

$$
f_{t}(a, b)=a b+t f_{1}(a, b)+t^{2} f_{2}(a, b)+\cdots
$$

where " $a b$ " denotes the usual product in $A[[t]]$ and where each f_{i} is a k-bilinear map on A extended in the natural manner to a $k[[t]]$-bilinear map on $A[[t]]$.

The associativity condition on f_{t} is equivalent to the system of equations

$$
\begin{equation*}
\sum_{0<p<n} f_{p}\left(f_{n-p}(a, b), c\right)-f_{p}\left(a, f_{n-p}(b, c)\right)=\delta f_{n}(a, b, c) \tag{1}
\end{equation*}
$$

for all $a, b, c \in A$ and each $n=0,1,2, \cdots$. Following the notation of [5], we shall denote the 3 -cochain on the left hand side of (1) by

$$
\sum_{0<p<n} f_{p} \circ f_{n-p}
$$

Hence if f is a 2-cocycle of A such that $f \circ f=0$, then $f_{t}(a, b)=a b+t f(a, b)$ is a deformation of A. We will say that such a deformation is a linear deformation of A.

Let f_{t} and g_{t} be deformations of A. We say that f_{t} is equivalent to g_{t} if there is a $k[[t]]$-linear automorphism μ_{t} of $A[[t]]$ of the form

$$
\mu_{t}(a)=a+t \mu_{1}(a)+t^{2} \mu_{2}(a)+\cdots
$$

where each μ_{i} is a k-linear map on A extended in the natural manner to a $k[[t]]$-linear map on $A[[t]]$ such that

$$
\mu_{t}\left(g_{t}(a, b)\right)=f_{t}\left(\mu_{t}(a), \mu_{t}(b)\right) \text { for all } a, b \in A[[t]] .
$$

We may easily check that $g_{1}=f_{1}+\delta \mu_{1}$ in this case. A deformation f_{t} of A is said to be trivial if f_{t} is equivalent to the deformation g_{t} of A defined $g_{t}(a, b)=a b$. Thus if the cocycle f_{1} of the deformation f_{t} is not a coboundary, it follows that f_{t} is a non-trivial deformation. If every deformation of A is trivial, we say that A is a rigid k-algebra. Gerstenhaber proved that if $H^{2}(A, A)=0$, then A is a rigid k-algebra [7, page 65]. In general, the converse is not known. We refer the reader to [7] for a detailed discussion of the deformation of an algebra.

2. Deformation of a product of algebras

We shall need the following lemma which is well known (see [6]) but a proof does not seem to be available.

Lemma 2.1. If f_{t} is a deformation of a k-algebra A (with 1), then the deformed
algebra has an identity. Furthermore, f_{t} is equivalent to a deformation g_{t} such that 1 is the identity of the deformed algebra with multiplication g_{t}.

Proof. The second statement implies the first statement by the definition of the equivalence relation on the set of deformations of A.

We shall define a map

$$
\pi_{t}: A[[t]] \rightarrow A[[t]]
$$

of the form $\pi_{t}(a)=a+t \pi_{1}(a)+\cdots$ by

$$
\pi_{n}(a)=\mu_{n}(a)+\sum_{I_{2}} \mu_{i_{1}} \mu_{i_{2}}(a)+\cdots+\sum_{r_{s}} \mu_{i_{1}} \cdots \mu_{i_{s}}(a)
$$

where s is such that

$$
n=s(s+1) / 2 \quad \text { or } \quad s(s+1) / 2<n<(s+1)(s+2) / 2
$$

and

$$
I_{m}=\left\{\left(i_{1}, \cdots, i_{m}\right) \mid i_{1}>\cdots>i_{m}>0, i_{1}+\cdots+i_{m}=n\right\} .
$$

The μ_{i} are defined inductively as follows. Let μ_{1} be such that

$$
\left(f_{1}+\delta \mu_{1}\right)(a, b)=0
$$

whenever a or b is $1 . \quad \mu_{1}$ always exists since f_{1} is a cocycle [9]. Let

$$
M_{i}(a)=a+t^{i} \mu_{i}(a) \quad \text { and } \quad M^{i}(a)=M_{i} M_{i-1} \cdots M_{1}(a) .
$$

Suppose we have ckosen $\mu_{i}, i<n$, such that the deformation

$$
\left(M^{n-1}\right)^{-1} f_{t}\left(M^{n-1}(a), M^{n-1}(b)\right)=a b+t g_{1}(a, b)+\cdots
$$

has the property that $g_{i}(a, b)=0$ whenever a or b is 1 and $i<n$. Then

$$
\begin{aligned}
\delta g_{n}(a, 1,1) & =\sum_{1<i<n} g_{i} \circ g_{n-i}(a, 1,1,)=0 \\
& =a g_{n}(1,1)-g_{n}(a, 1)+g_{n}(a, 1)-g_{n}(a, 1)
\end{aligned}
$$

Thus $a g_{n}(1,1)=g_{n}(a, 1)$. Similarly, $g_{n}(1,1) a=g_{n}(1, a)$. Define $\mu_{n}(a)=-a g_{n}(1,1)$. We may easily check that $\left(g_{n}+\delta \mu_{n}\right)(a, b)=0$ whenever a or b is 1 . The deformation $\pi_{t}^{-1} f_{t}\left(\pi_{t}(a), \pi_{t}(b)\right)$ clearly has the desired property.

Definition 2.2. Let $A=\prod_{1 \leq i \leq n} A_{i}$ be a k-algebra and $\operatorname{let} f_{t}$ be a deformation of A. We say that f_{t} is a product of deformations of the factors A_{i} if $f_{n}(a, b)=0$ for each $n \geq 0$ whenever $a \epsilon A_{i}$ and $b \in A_{j}$ with $i \neq j$.

Proposition 2.3. If f_{t} is a deformation of the k-algebra $A=\prod_{1 \leq i \leq n} A_{i}$, then f_{t} is equivalent to a deformation g_{t} which is a product of deformations of the A_{i}.

Proof. We may assume that $n=2$. We will use the notation " a_{i} " to indicate the $i^{\text {th }}$ component of $a \in A$ except that we set $1=\left(e_{1}, e_{2}\right)$. We shall define a map $\pi_{i}: A[[t]] \rightarrow A[[t]]$ by the same formula as in the proof of Lemma 2.1 where the μ_{i} are now defined inductively as follows.

By Lemma 2 of [9], there is a 1-cochain μ_{1} such that

$$
\left(f_{1}+\delta \mu_{1}\right)(a, b)=0
$$

whenever a or b is e_{1} or e_{2}. Thus suppose we have chosen $\mu_{i}, i<n$, such that

$$
\left(M^{n-1}\right)^{-1} f_{t}\left(M^{n-1}(a), M^{n-1}(b)\right)=a b+t g_{1}(a, b)+\cdots
$$

where $g_{i}(a, b)=0$ whenever a or b is e_{1} or e_{2} for $i<n$. For then we have that

$$
\begin{aligned}
\delta g_{m}\left(a_{i}, e_{i}, b_{j}\right) & =\sum_{0<p<m} g_{p} \circ g_{m-p}\left(a_{i}, e_{i}, b_{j}\right)=0 \\
& =a_{i} g_{m}\left(e_{i}, b_{j}\right)-g_{m}\left(a_{i}, b_{j}\right)+0-g_{m}\left(a_{i}, e_{i}\right) b_{j}
\end{aligned}
$$

if $i \neq j$ and $m \leq n$. Hence $g_{m}\left(a_{i}, b_{j}\right)=0$ if $i \neq j$ and $m<n$. Thus it will suffice to define $\mu_{n}: A \rightarrow A$ such that

$$
\left(g_{n}+\delta \mu_{n}\right)(a, b)=0
$$

whenever a or b is e_{1} or e_{2}. We may assume that $g_{n}(a, b)=0$ whenever a or b is 1 by Lemma 2.1 and so we need only consider e_{1}.
Define $\alpha: A \rightarrow A$ by

$$
\alpha(a)=-\left(a_{1} g_{n}\left(e_{1}, e_{1}\right), a_{2} g_{n}\left(e_{2}, e_{2}\right)\right)
$$

As in the proof of Proposition 2, by considering $g_{n}+\delta \alpha$ we may assume that $e_{i} g_{n}\left(e_{i}, b_{i}\right)=0$ (consider the cochain $\left.e_{i} g_{n}: A_{i} \times A_{i} \rightarrow A_{i}\right)$. Hence we may assume that $e_{i} g_{n}\left(e_{j}, b_{i}\right)=0$ since $e_{i} g_{n}\left(1, b_{i}\right)=0$. Similarly, $e_{i} g_{n}\left(b_{i}, e_{j}\right)=0$. Thus using this reduction, we have that

$$
\begin{aligned}
g_{n}\left(e_{1}, b\right) & =\left(e_{1} g_{n}\left(e_{1}, b_{2}\right), e_{2} g_{n}\left(e_{1}, b_{1}\right)\right), \\
\delta g_{n}\left(e_{1}, b_{1}, e_{1}\right) & =\sum_{0<p<n} g_{p} \circ g_{n-p}\left(e_{1}, b_{1}, e_{1}\right)=0 \\
& =e_{1} g_{n}\left(b_{1}, e_{1}\right)-g_{n}\left(b_{1}, e_{1}\right)+g_{n}\left(e_{1}, b_{1}\right)-g_{n}\left(e_{1}, b_{1}\right) e_{1} .
\end{aligned}
$$

Hence $g_{n}\left(e_{1}, b_{1}\right)=g_{n}\left(b_{1}, e_{1}\right)$. Similarly, $g_{n}\left(e_{2}, b_{2}\right)=g_{n}\left(b_{2}, e_{2}\right)$ and so $g_{n}\left(e_{i}, b_{j}\right)=g_{n}\left(b_{j}, e_{i}\right)$. Thus

$$
\delta g_{n}\left(e_{1}, b_{1}, e_{1}\right)=e_{1} g_{n}\left(b, e_{1}\right)-g_{n}\left(b_{1}, e_{1}\right)+g_{n}\left(e_{1}, b_{1}\right)-g_{n}\left(e_{1}, b\right) e_{1}=0
$$

implies that $e_{1} g_{n}\left(b, e_{1}\right)=e_{1} g_{n}\left(e_{1}, b\right)$. Similarly $e_{2} g_{n}\left(b, e_{2}\right)=e_{2} g_{n}\left(e_{2}, b\right)$ and so $g_{n}\left(e_{1}, b\right)=g_{n}\left(b, e_{1}\right)$ since $g_{n}(1, b)=0=g_{n}(b, 1)$.

Define $\mu_{n}: A \rightarrow A$ by

$$
\begin{aligned}
\mu_{n}(a)= & -e_{1} g_{n}\left(e_{1}, a_{2}\right)+e_{2} g_{n}\left(e_{1}, a_{1}\right) \\
\delta \mu_{n}(a, b)= & -a_{1} g_{n}\left(e_{1}, b_{2}\right)+a_{2} g_{n}\left(e_{1}, b_{1}\right)+e_{1} g_{n}\left(e_{1}, a_{2} b_{2}\right)-e_{2} g_{n}\left(e_{1}, a_{1} b_{1}\right) \\
& -g_{n}\left(e_{1}, a_{2}\right) b_{1}+g_{n}\left(e_{1}, a_{1}\right) b_{2} \\
\delta \mu_{n}\left(e_{1}, b\right)= & -e_{1} g_{n}\left(e_{1} g_{n}\left(e_{1}, b_{2}\right)-e_{2} g_{n}\left(e_{1}, b_{1}\right)\right. \\
= & -g_{n}\left(e_{1}, b\right) \\
\delta \mu_{n}\left(a, e_{1}\right)= & -e_{2} g_{n}\left(e_{1}, a_{1}\right)-e_{1} g_{n}\left(e_{1}, a_{2}\right) \\
= & -e_{1} g_{n}\left(a_{2}, e_{1}\right)-e_{2} g_{n}\left(a_{1}, e_{1}\right) \\
= & -g_{n}\left(a, e_{1}\right) .
\end{aligned}
$$

Hence μ_{n} is the required cochain.

Corollary 2.4. The k-algebra $A=\prod_{1 \leq i \leq n} A_{i}$ is a rigid k-algebra if and only if each factor A_{i} is a rigid k-algebra.

Proof. Let f_{t} be a deformation of A. We may assume that f_{t} is a product of deformations of the A_{i}. It is clear that a product of deformations is trivial if and only if each of the deformations of the product is trivial.

3. Deformation of semi-local algebras

Let M be a module over a commutative ring A and let $T_{A}(M)$ and $\Lambda_{A}(M)$ denote the tensor algebra and the exterior algebra on M respectively. We recall that $\Lambda_{A}(M) \cong T_{A}(M) / I_{A}(M)$ where $I_{A}(M)$ is the ideal generated by elements of the form $a \otimes a$ where $a \in M$ [4]. We refer the reader to [1] for the elementary properties of the direct limit of modules.

Lemma 3.1. Let $\left\{\left(A_{\alpha}\right),\left(M_{\alpha}\right)\right\}_{\alpha e s}$ be a filtered direct system of modules over a filtered direct system of commutative rings. If $A=\operatorname{inj} \lim A_{\alpha}$ and $M=\operatorname{inj} \lim M_{\alpha}$, then $\Lambda_{A}(M) \cong \operatorname{inj} \lim \Lambda_{A_{\alpha}}\left(M_{\alpha}\right)$.

Proof. We have that $T_{A}(M) \cong \operatorname{inj} \lim T_{A_{\alpha}}\left(M_{\alpha}\right)$ since the corresponding statement for the direct limit of tensor products of modules is true.

Let $\Lambda=\Lambda_{A}(M) \cong T_{A}(M) / I_{A}(M)=T / I$ and similarly for the pair $\left(A_{\alpha}, M_{\alpha}\right)$. Thus we have the following commutative diagram with exact rows and columns since inj lim is an exact functor.

It will suffice to show that ω is surjective. But since $T \cong \operatorname{inj} \lim T_{\alpha}$, every element of T can be represented in the direct limit by an element of T_{β} for some $\beta \in S$. It follows immediately that ω is surjective.

Definition 3.2. Let A be a commutative k-algebra (k need not be a field). The module of k-differentials of A is an A-module $\Omega(A / k)$ and a k-derivation $d: A \rightarrow \Omega(A / k)$ which is universal with respect to k-derivations of A into A modules. Hence we have a natural isomorphism

$$
\operatorname{Hom}_{A}(\Omega(A / k), M) \cong \operatorname{Der}_{k}(A, M)
$$

where M is an A-module [8].

Definition 3.3. An extension field L of k is said to be a separable extension if every finitely generated subfield of L is separable generated over k. We refer the reader to [3] for the properties of separable extensions. One may show that an extension field L of k is a rigid k-algebra in the commutative deformation theory if and only if L is a separable extension of k [12].

The following lemma removes the finite generation hypothesis of [10, Theorem 5.3].

Lemma 3.4. If A is a separable extension field of k and if M is an A-module, then

$$
H^{*}(A, M) \cong \operatorname{Hom}_{A}\left(\Lambda_{A}(\Omega(A / k)), M\right)
$$

Proof. We recall that $H^{*}(A, M) \cong \operatorname{Hom}_{\Delta}\left(\operatorname{Tor}_{*}^{A^{e}}(A, A), M\right)$ [10, Lemma 4.1]. $\operatorname{By}[10], \operatorname{Tor}_{*}^{L^{e}}(L, L) \cong \Lambda_{L}(\Omega(L / k))$ if L is a finitely generated separable extension of k. Since A is the direct limit of such subfields L, we may apply Lemma 3.1 since $\Omega(A / k) \cong \operatorname{inj} \lim \Omega(L / k)$ [8].

Remark 3.5. Let A be a commutative k-algebra with two distinct commuting k-derivations D and E. If char $(k)=0$, Gerstenhaber has shown that the $k[[t]]$-bilinear map f_{t} on $A[[t]]$ defined by

$$
f_{t}(a, b)=a b+t D(a) E(b)+t^{2} D^{2}(a) E^{2}(b) / 2!+\cdots
$$

is a non-trivial deformation of A [6]. If $\operatorname{char}(k)=p \neq 0$ and if in addition $D^{p}=0=E^{p}$, then the map g_{t} defined by

$$
g_{t}(a, b)=a b+t D(a) E(b)+\cdots+t^{p-1} D^{p-1}(a) E^{p-1}(b) /(p-1)!
$$

is a non-trivial deformation of A [6].
If $\Omega(A / k)$ is a free A-module such that $[\Omega(A / k): A]>1$, then such derivations always exist. We recall that if A is an extension field of k with char $(k)=0$, then the cardinality of a transcendence base for A over k is $[\Omega(A / k): A]$. If char $(k)=p \neq 0$, then the cardinality of a p-basis for A over k is $[\Omega(A / k): A]$.

Definition 3.6. Let A be a noetherian local ring with maximal ideal m. We say that A has depth n, depth $(A)=n$, if there is an A-sequence of elements of m of length n but no such sequence of length $n+1$. For details, we refer the reader to [8, 16.4].

Note that depth $(A)=0$ if and only if m consists only of zero divisors. We may also show that depth $(A)=0$ if and only if the annihilator of m is non-zero [11, page 21].

Theorem 3.7. Let A be a noetherian local k-algebra such that depth $(A)=0$. Assume that A is k-isomorphic to the semi-direct product $A / m \oplus m$ where m is the maximal ideal of A. The following conditions are equivalent:
(i) $H^{2}(A, A)=0$.
(ii) A is a rigid k-algebra.
(iii) A is a separable extension of k and $[\Omega(A / k): A] \leq 1$.

Proof. By [7], (i) implies (ii), and (iii) implies (i) by Lemma 3.4. Thus assume that A is a rigid k-algebra. We first show that m must be zero.

If m is generated by one element, then A is a local complete intersection. By applying the results of [12], we see that A is not rigid since A is not a regular local ring if $m \neq 0$. Thus we may assume that there are at least two elements in a minimal set of generators for m. We shall construct a k-bilinear map f on A such that the $k[[t]]$-bilinear map f_{t} on $A[[t]]$ defined by $f_{t}(a, b)$ $=a b+t f(a, b)$ is a nontrivial linear deformation of A. Thus we must show that $f \circ f=0, \delta f=0$, and $f \neq \delta g$ where g is a k-linear map on A. It will clearly suffice to define f on a basis for the L-module $L \oplus m$.

Let $(0: m)=\{a \in A \mid a m=0\}$ be the annihilator of m and assume that $m^{2} \neq 0$. Let $X=\left(x_{i}\right)_{i \epsilon I}$ be a basis for the L-module $L \oplus m$ such that

$$
1 \in X, \quad x_{\alpha} \in(0: m) \cap m^{2} \quad \text { and } \quad x_{\beta}, x_{\lambda} \in m-m^{2}
$$

Assume that the remaining elements of X belong to m. Define $f\left(x_{\beta}, x_{\lambda}\right)=x_{\alpha}$ and $f\left(x_{i}, x_{j}\right)=0$ if $\left(x_{i}, x_{j}\right) \neq\left(x_{\beta}, x_{\lambda}\right)$.

We first show that

$$
f \circ f\left(x_{i}, x_{j}, x_{k}\right)=f\left(f\left(x_{i}, x_{j}\right), x_{k}\left(-f\left(x_{i}, f\left(x_{j}, x_{k}\right)\right)=0\right.\right.
$$

Since f vanishes on the element x_{α}, we certainly have that $f \circ f=0$. Since $f\left(x_{\beta}, x_{\lambda}\right) \neq f\left(x_{\lambda}, x_{\beta}\right), f$ is not a coboundary. We now consider

$$
\delta f\left(x_{i}, x_{j}, x_{k}\right)=x_{i} f\left(x_{j}, x_{k}\right)-f\left(x_{i} x_{j}, x_{k}\right)+f\left(x_{i}, x_{j} x_{k}\right)-f\left(x_{i}, x_{j}\right) x_{k}
$$

If x_{i}, x_{j} or x_{k} is 1 , we certainly obtain 0 for this expression. Hence we may assume that the basis elements belong to m. But f vanishes on elements in m^{2} and takes values in ($0: m$) and so we easily check that $\delta f=0$.

Thus we are reduced to the case $m^{2}=0$. We now let X be a basis for the L-module $L \oplus m$ such that $1 \in X$ and such that the remaining elements of X belong to m. Let $x_{\alpha} \in X \cap m$. Define $f\left(x_{\alpha}, x_{\alpha}\right)=x_{\alpha}$ and $f\left(x_{i}, x_{j}\right)=0$ if $\left(x_{i}, x_{j}\right) \neq\left(x_{\alpha}, x_{\alpha}\right)$. The same reasoning as above shows that $\delta f=0$ and that $f \circ f=0$.

Suppose that $f=\delta g$ where g is a k-linear map on A. Then $f\left(x_{\alpha}, x_{\alpha}\right)=x_{\alpha}$ $=\delta g\left(x_{\alpha}, x_{\alpha}\right)=2 x_{\alpha} g\left(x_{\alpha}\right)$ since $x_{\alpha}^{2}=0$. We may assume that char $(k) \neq 2$. It will suffice to show that $g\left(x_{\alpha}\right) \in m$. Let $x_{\beta} \in X \cap m$ with $x_{\beta} \neq x_{\alpha}$. Then

$$
f\left(x_{\beta}, x_{\beta}\right)=0=\delta g\left(x_{\beta}, x_{\beta}\right)=2 x_{\beta} g\left(x_{\beta}\right)
$$

and so $g\left(x_{\beta}\right) \in m$. But then

$$
f\left(x_{\alpha}, x_{\beta}\right)=0=\delta g\left(x_{\alpha}, x_{\beta}\right)=x_{\alpha} g\left(x_{\beta}\right)+x_{\beta} g\left(x_{\alpha}\right)=x_{\beta} g\left(x_{\alpha}\right)
$$

Hence $g\left(x_{\alpha}\right) \in m$ and so $f \neq \delta g$.

Thus assume that A is a field which is a rigid k-algebra. Since A is rigid in the commutative deformation theory, we have that A is a separable extension of k [12]. Suppose that $[\Omega(A / k): A]>1$. By Remark 3.5, we see that A has a non-trivial deformation and so we must have $[\Omega(A / k): A] \leq 1$.

Corollary 3.8. Let A be a complete noetherian semi-local k-algebra such that A / m is a separable extension of k and depth $\left(A_{m}\right)=0$ for each maximal ideal m of A. The following conditions are equivalent:
(i) $H^{2}(A, A)=0$.
(ii) A is a rigid k-algebra
(iii) $A \cong \prod_{1 \leq i \leq n} K_{i}$ where each factor K_{i} is an extension field of k (necessarily separable) such that $\left[\Omega\left(K_{i} / k\right): K_{i}\right] \leq 1$.

Proof. It will suffice to show that (ii) implies (iii). Since A is complete, $A \cong \prod_{m} A_{m}$ where the product is over the set of maximal ideals m of A. Thus by Corollary 2.4, we may assume that A is local. Since A / m is a separable extension of k, A is k-isomorphic to the semi-direct product $A / m \oplus m$ and so we may apply Theorem 3.7.

The reader should note that the hypotheses of Corollary 3.8 are satisfied if A is a commutative artinian k-algebra with k a perfect field.

Bibliography

1. N. Bourbaki, Algèbre, Eléments de Mathématique, Livre 2, Hermann, Paris, 1962.
2. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, New Jersey, 1956.
3. P. Cartier, Dérivations dans les corps, Séminaire H. Cartan et C. Chevelley, 8e année, 1955-1956, exposé 13.
4. C. Chevelley, Fundamental concepts of algebra, Academic Press, New York, 1956.
5. M. Gerstenhaber, On the cohomology structure of an associative ring, Ann. of Math., vol. 78 (1963), pp. 267-288.
6. -_, On the construction of division rings by the deformation of fields, Proc. Nat. Acad. Sci., vol. 55 (1966), pp. 690-692.
7. -—, On the deformation of rings and algebras, Ann. of Math., vol. 79 (1964), pp. 59-103.
8. A. Grothendieck, Eléments de Géométrie Algebrique, Chap. IV (Première Partie), Publ. Math., vol. 20, l'I. H.E.S., France, 1964.
9. G. Hochschild, On the cohomology theory for associative algebras, Ann. of Math., vol. 47 (1946), pp. 568-579.
10. G. Hochschild, B. Kostant, and A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc., vol. 102 (1962), pp. 383-408.
11. I. Kaplansky, Commutative rings, Queen Mary Mathematics Notes, London, 1966.
12. D. Knudson, On the deformation of commutative algebras, Trans. Amer. Math. Soc., vol. 140 (1969), pp. 622-652.
13. A. Nijenhuis, Graded Lie algebras and their applications, Universeteit van Amsterdam, Mimeographed notes, 1964.
14. J. P. Serre, Algebre locale-multiplicites, Lecture Notes in Mathematics, vol. 11, Springer, Berlin, 1965.
[^0]
[^0]: University of Washington
 Seattle, Washington

