# ON THE EXISTENCE AND REPRESENTATION OF INTEGRALS 

BY<br>James A. Reneke

## 1. Introduction

Suppose that $\Omega$ is a set, $R$ is a non-empty collection of subsets of $\Omega$, and $D$ is the collection of finite non-empty subsets of $R$ to which $M$ belongs only in case $M^{*}$, the union of all the members of $M$, is in $R$ and the members of $M$ are relatively prime in $R$, i.e., if $A$ and $B$ are in $M$ then there is no non-empty member of $R$ which is contained in both $A$ and $B$. We will assume that each non-empty $A$ in $R$ contains a point $x$ such that if $M$ is in $D$ and $A$ is in $M$ then no other member of $M$ contains $x$.

Let $B(\Omega, R)$ denote the closure in the space of functions from $\Omega$ to the number-plane which have bounded final sets of the linear space spanned by the characteristic functions of members of $R$ with respect to the supremum norm |•|. We will assume that $B(\Omega, R)$ is an algebra. An integral on $B(\Omega, R) \times R$ is a function $K$ from $B(\Omega, R) \times R$ to the number-plane such that (1) for each $(f, A)$ in $B(\Omega, R) \times R, K[, A]$ is a linear functional on $B(\Omega, R)$ and $K[f, \quad]$ is additive on $R$, i.e., $K\left(f, M^{*}\right)=\sum_{H \text { in } M} K(f, H)$ for each $M$ in $D$, and (2) there is an additive function $\lambda$ from $R$ to the non-negative numbers such that $|K(f, A)| \leq\left|1_{\Delta} f\right| \lambda(A)$, for each $(f, A)$ in $B(\Omega, R) \times R$. This paper is concerned with the existence and representation of integrals on $B(\Omega, R) \times R$.

## 2. Bounded variation

A finite subset $M$ of $R$ is said to partition a member $A$ of $R \operatorname{provided} M^{*}=A$. If each of $M_{1}$ and $M_{2}$ is a finite subset of $R$ then $M_{2}$ is said to refine $M_{1}$ provided that $M_{1}^{*}=M_{2}^{*}$ and each member of $M_{2}$ is contained in some member of $M_{1}$. If $(A, B)$ is in $R \times R$ then $[A, B]$ will denote the collection of non-empty members of $R$ which are contained in both $A$ and $B$. A subset $A$ of $\Omega$ is said to be $R$-measurable if for each $B$ in $R$ there is a partition $M$ of $B$ in $D$ such that each $H$ in $M$ is either contained in $A$ or $[H, A]=\emptyset$ and if $[A, B] \neq \emptyset$ then the common part of $A$ and $B$ is the union of those members of $M$ contained in $A$.

Theorem 2.1. If each member of $R$ is $R$-measurable, each of $M_{1}$ and $M_{2}$ is in $D$, and $M_{1}^{*}=M_{2}^{*}$, then there is a member $M$ of $D$ which refines each of $M_{1}$ and $M_{2}$ such that each $A$ in $M_{1}$ is the union of those members of $M$ contained in $A$.

Proof. Let $\left\{B_{p}\right\}_{1}^{n}$, be a reversible sequence with final set $M_{2}$. There is a sequence $\left\{N_{p}\right\}_{0}^{n}$ with values in $D$ such that $N_{0}=M_{1}$ and, for each integer $p$ in $[1, n]$,
(1) $\quad N_{p}$ is a refinement of $N_{p-1}$ such that each $A$ in $N_{p-1}$ is the union of those members of $N_{p}$ contained in $A$, and
(2) if $A$ is in $N_{p}$ then either $A$ is contained in $B_{p}$ or $\left[A, B_{p}\right]=\emptyset$.
$N_{n}$ is a refinement of $M_{1}$ such that each $A$ in $M_{1}$ is the union of those members of $N_{n}$ contained in $A$. Suppose that $A$ is in $N_{n}$ and $x$ is a member of $A$ which is not in $(M-\{A\})^{*}$, for any $M$ in $D$ which contains $A$. There is a member of $M_{2}$ which contains $x$ and hence a member of $M_{2}$ which contains $A$. Therefore $N_{n}$ refines $M_{2}$.

Corollary. If each of $M_{1}$ and $M_{2}$ is in $D$ and $M_{2}$ refines $M_{1}$, then each $A$ in $M_{1}$ is the union of those members of $M_{2}$ contained in $A$.

Proof. Let $M$ be a member of $D$ which refines each of $M_{1}$ and $M_{2}$ such that each $A$ in $M_{1}$ is the union of those members of $M$ contained in $A$. If $A$ is in $M_{1}$ then, since each member of $M$ is contained in a member of $M_{2}, A$ is the union of those members of $M_{2}$ contained in $A$.

We will assume from this point that each member of $R$ is $R$-measurable and if ( $A, B$ ) is in $R \times R$ then there is a member of $D$ which contains a partition of each of $A$ and $B$.

A function $W$ from $R$ to the plane is said to have bounded variation on a member $A$ of $R$ provided there is a number $k$ such that $\sum_{H \text { in } M}|W(H)| \leq k$, for each member $M$ of $D$ which partitions $A$. If $W$ has bounded variation on $A$ then we will denote the least such number by $\int_{A}|W|$. Let $B V$ denote the set of additive functions from $R$ to the plane to which $W$ belongs only in case $W$ has bounded variation on each member of $R$.

Theorem 2.2. If $W$ is in $B V$ then the set of ordered pairs $\lambda$ to which $(A, k)$ belongs only in case $A$ is in $R$ and $k=\int_{A}|W|$ is an additive function from $R$ to the non-negative numbers.

Proof. Suppose that $M$ is in $D$ and $N$ is a function from $M$ into $D$ such that, for each $H$ in $M, N(H)$ partitions $H$. Then

$$
\sum_{H \operatorname{in} M G \operatorname{in} N(H)}|W(G)| \leq \int_{M^{*}}|W|
$$

Hence $\sum_{H \text { in } M} \lambda(H) \leq \lambda\left(M^{*}\right)$. Suppose that $M^{\prime}$ is a member of $D$ which partitions $M^{*}$. There is a member $M^{\prime \prime}$ of $D$ which refines each of $M$ and $M^{\prime}$.

$$
\begin{aligned}
\sum_{H \text { in } M^{\prime}}|W(G)| & \leq \sum_{G \text { in } M^{\prime}} \sum_{G \text { in } M^{\prime \prime}, G \coprod_{H}}|W(G)| \\
& =\sum_{H \text { in } M} \sum_{G \text { in } M^{\prime \prime}, G \subseteq}|W(G)| \\
& \leq \sum_{H \text { in } M} \lambda(H) .
\end{aligned}
$$

Hence $\lambda\left(M^{*}\right) \leq \sum_{H \text { in } M} \lambda(H)$ and so $\lambda$ is additive.

## 3. An existence theorem

A choice function $\phi$ for $R$ is a function from $R$ into $\Omega$ such that (1) $\phi(H)$ is contained in $H$, for each $H$ in $R$, and (2) if each of $A$ and $B$ is in $R$ then there is a member $M$ of $D$ which partitions $B$ such that if $H$ is a member of $M$ which
contains a point of $A, G$ is a member of $R$ contained in $H$, and $G$ contains a point of $A$, then $\phi(G)$ is in $A$ only in case $\phi(H)$ is in $A$. A member $A$ of $R$ is said to be properly situated relative to a member $B$ of $R$ with respect to a collection of choice functions $\Phi$ on $R$ provided either $A$ and $B$ are disjoint or for each $\phi$ in $\Phi$ and each member $H$ of $R$ which is contained in $A$ and contains a point of $B$ we have $\phi(H)$ is in $B$ only in case $\phi(A)$ is in $B$.

Theorem 3.1. There is a choice function for $R$.
Proof. There is a function $\phi$ from $R$ into $\Omega$ such that, for each $A$ in $R$ and $M$ in $D$ which contains $A, \phi(A)$ is contained in $A$ but no other member of $M$. Suppose that each of $A$ and $B$ is in $R$ and $M$ is a member of $D$ which partitions $B$ such that for each $H$ in $M$ either $H$ is contained in $A$ or $[H, A]=\emptyset$. Suppose that $H$ is a member of $M$ and $G$ is a member of $R$ which is contained in $H$ and contains a point of $A$. If $\phi(G)$ is in $A$ then $G$ is contained in $A$ and so $H$ is contained in $A$. Hence $\phi(H)$ is in $A$. If $\phi(H)$ is in $A$ then, similarly, $\phi(G)$ is in $A$. Therefore $\phi$ is a choice function for $R$.

Theorem 3.2. If $\phi$ is a choice function for $R,(A, B)$ is in $R \times R$, and $W$ is in $B V$ then $\int_{B} 1_{\Delta}[\phi] W$ exists.

Lemma. For each positive number $b$ there is a member $M$ of $D$ which partitions $B$ such that

$$
\sum_{H \text { in } M, H \cap_{A \neq D}} \sum_{G \text { in } M^{\prime}, G \subseteq_{A, G \cap_{A=\varnothing}}|W(G)|<b, ~}
$$

for each refinement $M^{\prime}$ of $M$ in $D$.
Proof of the lemma. Suppose that the lemma is false. Then there is a positive number $b$ and a sequence $M$ with values in $D$ such that $M(0)^{*}=B$ and, for each positive integer $n, M(n)$ refines $M(n-1)$ and

$$
\sum_{H \text { in } M(n-1), H \cap_{A \neq \emptyset}} \sum_{G \text { in } M(n), G \subseteq_{H, G} \cap_{A=\emptyset}}|W(G)| \geq b .
$$

If $n$ is a positive integer then

$$
\begin{aligned}
& \int_{B}|W| \geq \sum_{H \text { in } M(0), H \cap A \neq \emptyset} \int_{H}|W| \\
& =\sum_{H \text { in } M(0), H \cap A \neq \varnothing \text { G in } M(1), G \subseteq_{H, G \cap}} \int_{A=\emptyset}|W| \\
& +\sum_{H \text { in }} \sum_{M(0), H \cap} \sum_{A \neq \emptyset G \text { in } M(1), G \subseteq_{H, G \cap}} \int_{A \neq \emptyset}|W| \\
& \geq b+\sum_{G \text { in } M(1), G \cap} \cap_{A \neq g} \int_{G}|W| \\
& \geq n b+\sum_{G \operatorname{in} M(n), G \cap A \neq \emptyset} \int_{G}|W| .
\end{aligned}
$$

This contradicts the assumption that $W$ is in $B V$.

Proof of Theorem 3.2. If $A$ and $B$ are disjoint then we are through. Suppose that $A$ contains a point of $B$ and $b$ is a positive number. There is a member $M$ of $D$ which partitions $B$ with the property that if $H$ is in $M$ then $H$ is properly situated relative to $A$ with respect to $\{\phi\}$. There is a member $M^{\prime}$ of $D$ which refines $M$ such that

$$
\sum_{A \text { in } M^{\prime}, H \cap} \cap_{A \neq \emptyset} \sum_{G \text { in } M^{\prime \prime}, G \subseteq} \coprod_{H, G \cap_{A=\varnothing}}|W(G)|<b
$$

for each $M^{\prime \prime}$ in $D$ which refines $M^{\prime}$. Hence for each $M^{\prime \prime}$ in $D$ which refines $M^{\prime}$ we have

$$
\begin{aligned}
\mid \sum_{M^{\prime}} 1_{A}[\phi] W- & \sum_{M^{\prime \prime}} 1_{A}[\phi] W \mid \\
& =\left|\sum_{H \text { in } M^{\prime}} \sum_{G \text { in } M^{\prime \prime}, G \subseteq \subseteq^{H}}\left\{1_{A}(\phi(H))-1_{A}(\phi(G))\right\} W(G)\right| \\
& \leq \sum_{H \text { in } M^{\prime}, H \bigcap_{A \neq \emptyset} \neq \emptyset} \sum_{G \text { in } M^{\prime \prime}, G \subseteq}, G, G \cap_{A=\emptyset}|W(G)|<b .
\end{aligned}
$$

Therefore $\int_{B} 1_{A}[\phi] W$ exists.
Corollary. If $\phi$ is a choice function, $A$ is in $R, W$ is in $B V$, and $f$ is in $B(\Omega, R)$ then $\int_{A} f[\phi] W$ exists.

An integral $K$ on $B(\omega, R) \times R$ is called a refinement integral provided there is a positive integer $n$ and a sequence $\left\{\phi_{p}, W_{p}\right\}_{1}^{n}$, where, for $p=1,2, \cdots, n$, $\phi_{p}$ is a choice function for $R$ and $W_{p}$ is in $B V$, such that

$$
K(f, A)=\sum_{p=1}^{n} \int_{A} f\left[\phi_{p}\right] W_{p}
$$

for each $f$ in $B(\Omega, R)$ and $A$ in $R$. Mac Nerney [1] has provided a partial answer to the question of what integrals are refinement integrals. In the next section we will extend Mac Nerney's representation theorem to give a better but still incomplete answer.

## 4. A representation theorem

A choice function $\phi_{1}$ for $R$ is said to precede a choice function $\phi_{2}$ for $R$ provided that if each of $A$ and $B$ is in $R$ and $A$ is properly situated relative to $B$ with respect to $\left\{\phi_{1}, \phi_{2}\right\}$ then $1_{B}\left(\phi_{1}(A)\right) \leq 1_{B}\left(\phi_{2}(A)\right)$. Suppose that $\Phi$ is a collection of choice functions for $R$. For each $\phi$ in $\Phi$ let $f_{\phi}$ denote the set of ordered pairs to which ( $x, k$ ) belongs only in case $x$ is an ordered pair ( $A, B$ ) in $R \times R$ such that $A$ is properly situated relative to $B$ with respect to $\Phi$ and $k$ is the least non-negative number $m$ such that $1_{B}(\psi(A)) \leq m$, for each $\psi$ in $\Phi$ different from $\phi$ which precedes $\phi$. The collection $\Phi$ is said to be complete provided (1) if each of $\phi_{1}$ and $\phi_{2}$ is in $\Phi, \phi_{1}$ precedes $\phi_{2}$, and $\phi_{2}$ precedes $\phi_{1}$ then $\phi_{1}=\phi_{2} ;(2)$ if each of $A, B$, and $C$ is in $R, C$ is properly situated relative to each of $A$ and $B$ with respect to $\Phi, \phi$ is a member of $\Phi$, and

$$
1_{A}(\phi(C))-f_{\phi}(C, A)=1=1_{B}(\phi(C))-f_{\phi}(C, B)
$$

then $[A, B] \neq \emptyset$ and the common part of $A$ and $C$ is the common part of $B$ and
$C$; and (3) if each of $A$ and $B$ is in $R, A$ is properly situated relative to $B$ with respect to $\Phi$, and $A$ contains a point of $B$, then there is only one member $\phi$ of $\Phi$ such that $1_{B}(\phi(A))-f_{\phi}(A, B)=1$.

Furthermore, for each $\phi$ in $\Phi$, let $I(\phi)$ denote the subset of $\Phi$ to which $\lambda$ belongs only in case $\lambda \neq \phi, \phi$ precedes $\lambda$, and if $\lambda^{\prime}$ is in $\Phi$ and $\phi$ precedes $\lambda^{\prime}$ and $\lambda^{\prime}$ precedes $\lambda$ then either $\lambda^{\prime}=\lambda$ or $\lambda^{\prime}=\phi . \quad$ Let $I^{0}(\phi)$ denote the set $\{\phi\}$ and if $n$ is a positive integer let $I^{n+1}(\phi)$ denote the subset of $\Phi$ to which $\lambda$ belongs only in case there is a member $\lambda^{\prime}$ of $I^{n}(\phi)$ such that $I\left(\lambda^{\prime}\right)$ contains $\lambda$. The collection $\Phi$ is said to be coherent provided if each of $p$ and $q$ is a non-negative number and $F$ is a function from $\Phi$ to the plane then

$$
\sum_{\lambda \text { in } I^{p}(\phi) \mu} \sum_{\text {in } I^{q}(\lambda)} F(\mu)=\binom{p+q}{q} \sum_{\nu \text { in } I^{p+q(\phi)}} F(\nu) .
$$

Theorem 4.1. If $K$ is an integral on $B(\Omega, R) \times R$, and $\Phi$ is a finite complete collection of choice functions for $R$ which is coherent then there is a function $W$ from $\Phi$ into $B V$ such that

$$
K(f, A)=\sum_{\phi \text { in } \Phi} \int_{A} f[\phi] W_{\phi}
$$

for each $(f, A)$ in $B(\Omega, R) \times R$.
Our proof of Theorem 4.1 follows in outline Mac Nerney's proof of Theorem 1 [1, p. 322] and requires the introduction as an intermediate step of a function $V$ from $\Phi$ into $B V$ from which $W$ will be constructed. If each of $M$ and $M^{\prime}$ is in $D$ then $M^{\prime}$ is called a proper refinement of $M$ with respect to $\Phi$ provided that $M^{\prime}$ is a refinement of $M$ and if $(A, B)$ is in $M^{\prime} \times M$ then $A$ is properly situated relative to $B$ with respect to $\Phi$. Let $V(\phi)$, for each $\phi$ in $\Phi$, denote the set of ordered pairs to which $(A, k)$ belongs only in case $A$ is in $R, k$ is a complex number, and for each positive number $b$ there is a member $M$ of $D$ which contains a partition of $A$ such that

$$
\left|k-\sum_{H \text { in } M^{\prime}} \sum_{G \text { in } M^{\prime \prime}, G \subset A} K\left(\left\{1_{H}(\phi(G))-f_{\phi}(G, H)\right\} 1_{H}, G\right)\right|<b
$$

for each member $M^{\prime}$ of $D$ which contains a refinement of $M$ and each member $M^{\prime \prime}$ of $D$ which is a proper refinement of $M^{\prime}$ with respect to $\Phi$.

Theorem 4.2. $V$ is a function from $\Phi$ into $B V$.
Proof. Suppose that $\phi$ is a member of $\Phi$ and $A$ is a member of $R$. If $M$ is a member of $D$ which contains a partition of $A$ and $M^{\prime}$ is a proper refinement of $M$ with respect to $\Phi$ then

$$
\begin{aligned}
& \quad \sum_{H \text { in } M} \sum_{G \text { in } M^{\prime}, G \coprod_{A}}\left|K\left(\left\{1_{H}(\phi(G))-f_{\phi}(G, H)\right\} 1_{H}, G\right)\right| \\
& \quad \leq \sum_{H \text { in } M} \sum_{G \text { in } M^{\prime}, G \coprod_{A}}\left\{1_{H}(\phi(G))-f_{\phi}(G, H)\right\} \lambda(G) \leq \lambda(A)
\end{aligned}
$$

Suppose that each of $M, M^{\prime}$, and $M^{\prime \prime}$ is a member of $D, M$ contains a partition of $A, M^{\prime}$ contains a refinement of $M$, and $M^{\prime \prime}$ contains a proper refinement of
$M$ with respect to $\Phi$ and a proper refinement of $M^{\prime}$ with respect to $\Phi$. For each $F$ in $M$, let $N(F)$ denote the subset of $M^{\prime \prime}$ to which $H$ belongs only in case $H$ is contained in $A$ and $1_{F}(\phi(H))-f_{\phi}(H, F)=1$ and $N^{\prime}(F)$ the subset of $M^{\prime \prime}$ to which $H$ belongs only in case $H$ is contained in $A$ and $1_{G}(\phi(H))$ - $f_{\phi}(H, G)=1$, for some $G$ in $M^{\prime}$ which is contained in $F . N(F)$ is contained in $N^{\prime}(F)$, for each $F$ in $M$.

If $F$ is in $M$ then

$$
\begin{aligned}
& \sum_{G \text { in } M^{\prime}, G \subseteq} \sum^{F} \sum_{H \text { in } N(F)} K\left(\left\{1_{G}(\phi(H))-f_{\phi}(H, G)\right\} 1_{G}, H\right) \\
&=\sum_{H \text { in } N(F)} \sum_{G \text { in } M^{\prime}, G \subseteq} K\left(\left\{1_{G}(\phi(H))-f_{\phi}(H, G)\right\} 1_{F}, H\right) \\
&=\sum_{H \text { in } N(F)} K\left(1_{F}, H\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mid & \sum_{F \text { in } M}\left\{\sum_{H \text { in } N(F)} K\left(1_{F}, H\right)-\sum_{G \text { in } M^{\prime}, G \subseteq \subseteq^{F}} \sum_{H \text { in } N^{\prime}(F)} K\left(\left\{1_{G}(\phi(H))\right.\right.\right. \\
& \left.\left.\left.\quad-f_{\phi}(H, G)\right\} 1_{G}, H\right)\right\} \mid \\
= & \left|\sum_{F \text { in } M} \sum_{G \text { in } M^{\prime}, G \subseteq \subseteq^{F}} \sum_{H \text { in } N^{\prime}(F)-N(F)} K\left(\left\{1_{G}(\phi(H))-f_{\phi}(H, G)\right\} 1_{G}, H\right)\right| \\
\leq & \sum_{F \text { in } M} \sum_{G \text { in } M^{\prime}, G \subseteq \subseteq^{F}} \sum_{H \text { in } N^{\prime}(F)-N(F)}\left\{1_{G}\left(\phi(H)-f_{\phi}(H, G)\right\} \lambda(H)\right. \\
= & \sum_{G \text { in } M^{\prime}} \sum_{H \text { in } M^{\prime \prime}, H \subseteq A}\left\{1_{G}(\phi(H))-f_{\phi}(H, G)\right\} \lambda(H) \\
& \quad-\sum_{F \text { in } M} \sum_{F \text { in } M^{\prime \prime}, H \subseteq A}\left\{1_{F}(\phi(H))-f_{\phi}(H, F)\right\} \lambda(H) .
\end{aligned}
$$

Therefore $A$ is in the initial set of $V(\phi)$. It is easily seen that $V(\phi)$ is additive on $R$.

Theorem 4.3. If each of $A$ and $B$ is in $R, A$ is properly situated relative to $B$ with respect to $\Phi, \phi$ is in $\Phi$, and $1_{E}(\phi(A))-f_{\phi}(A, B)=1$, then

$$
K\left(1_{B}, A\right)=\int_{A} 1_{B}[\phi] V_{\phi}
$$

Proof. Suppose that $b$ is a positive number. There is a member $N$ of $D$ which partitions $A$ such that

$$
\left|\int_{A} 1_{B}[\phi] V_{\phi}-\sum_{H \text { in } N^{\prime}} 1_{B}(\phi(H)) V_{\phi}(H)\right|<b / 3
$$

for each member $N \leq$ of $D$ which refines $N$. There is a member $M$ of $D$ which refines $N$ such that if $M^{\prime}$ is a member of $D$ which refines $M$ then

$$
\sum_{H \text { in } M, H \cap_{B \neq \varnothing}} \sum_{G \text { in } M^{\prime}, G \subseteq} \subseteq^{F, G \cap_{B=\varnothing}} \lambda(G)<b / 3 .
$$

There is a member $M^{\prime}$ of $D$ which contains a refinement of each of $\{B\}$ and $M$ such that

$$
\begin{aligned}
\sum_{B \text { in } M, H \cap_{B \neq \emptyset}} \mid & V_{\phi}(H) \\
& -\sum_{F \text { in } M^{\prime}} \sum_{G \text { in } M^{\prime \prime}, G \subseteq \subseteq^{H}} K\left(\left\{1_{F}(\phi(G))-f_{\phi}(G, F)\right\} 1_{F}, G\right) \mid<b / 3,
\end{aligned}
$$

for each member $M^{\prime \prime}$ of $D$ which is a proper refinement of $M^{\prime}$ with respect to $\Phi$. If $M^{\prime \prime}$ is a member of $D$ which is a proper refinement of $M^{\prime}$ with respect to $\Phi$ then

$$
\begin{aligned}
& \left|K\left(1_{B}, A\right)-\int_{A} 1_{B}[\phi] V_{\phi}\right| \\
& \leq\left|\int_{A} 1_{B}[\phi] V_{\phi}-\sum_{H \text { in } M} 1_{B}(\phi(H)) V_{\phi}(H)\right| \\
& +\sum_{H \text { in } M, H \cap_{B \neq \emptyset}} \mid V_{\phi}(H)-\sum_{F \text { in } M^{\prime}} \sum_{G \text { in } M^{\prime \prime}, G \subseteq H} K\left(\left\{1_{F}(\phi(G))\right.\right. \\
& \left.\left.-f_{\phi}(G, F)\right\} 1_{F}, G\right) \mid \\
& +\sum_{H \text { in } M, H \cap_{B \neq \emptyset}} \sum_{F \text { in } M^{\prime}} \sum_{G \text { in } M^{\prime \prime}, G \subseteq} \underbrace{H, G \cap_{B=\emptyset}} \mid K\left(\left\{1_{F}(\phi(G))\right.\right. \\
& \left.\left.-f_{\phi}(G, F)\right\} 1_{F}, G\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-f_{\phi}(G, F)\right\} 1_{F}, G\right) \\
& <2 b / 3+\sum_{H \text { in } M, H \cap B \neq \varnothing} \sum_{G \text { in } M^{\prime \prime}, G \subseteq \underline{C}^{H}, G \cap_{B=\varnothing}} \lambda(G) \\
& +\mid K\left(1_{B}, A\right)-\sum_{G \text { in } M^{\prime \prime}, G \subseteq A, G \cap_{B \neq \emptyset}} \sum_{F \text { in } M^{\prime}} K\left(\left\{1_{F}((G))\right.\right. \\
& \left.\left.-f_{\phi}(G, F)\right\} 1_{B}, G\right) \mid<b .
\end{aligned}
$$

Therefore we have the theorem.
Theorem 4.4. If $(A, B)$ is in $R \times R, A$ is properly situated relative to $B$ with respect to $\Phi$, and $\Phi$ contains $n$ elements then

$$
K\left(1_{B}, A\right)=\sum_{\phi \text { in } \Phi} \int_{A} 1_{B}[\phi]\left\{V_{\phi}+\sum_{p=1}^{n}(-1)^{p} \sum_{\mu(p) \text { in } I^{p}(\phi)} V\left(\mu_{p}\right)\right\}
$$

Proof. Suppose that $\lambda$ is in $\Phi$ and $1_{B}(\lambda(A))-f_{\lambda}(A, B)=1$. Then

$$
\begin{aligned}
\sum_{\phi \text { in } \Phi} \int_{A} 1_{B}[\phi] & \left\{V_{\phi}+\sum_{p=1}^{n}(-1)^{p} \sum_{\mu(p) \text { in } I^{p}(\phi)} V\left(\mu_{p}\right)\right\} \\
& =\sum_{p=0}^{n} \sum_{\mu(p) \text { in } I^{p}(\lambda)} \int_{A} 1_{B}[\mu(p)]\left\{\sum_{q=0}^{n-p}(-1)^{q} \sum_{\nu(q) \text { in } I^{q}(\mu(p))} V(\nu(q))\right\} \\
& =\sum_{p+q=0}^{n} \sum_{\mu(p) \text { in } I^{p}(\lambda)} \sum_{\nu(q) \text { in } I^{q}(\mu(p))}(-1)^{q} \int 1_{B}[\lambda] V(\nu(q)) \\
& =\sum_{p+q=0}^{n}(-1)^{q}\binom{p+q}{q} \sum_{\mu \text { in } I^{p+q(\lambda)}} \int_{A} 1_{B}[\lambda] V_{\mu} \\
& =\int_{A} 1_{B}[\lambda] V_{\lambda}=K\left(1_{B}, A\right) .
\end{aligned}
$$

Proof of Theorem 4.1. Suppose that $\Phi$ contains $n$ elements. Let $W$ denote the function from $\Phi$ into $B V$ defined by

$$
W_{\phi}=V_{\phi}+\sum_{p=1}^{n}(-1)^{p} \sum_{\mu(p) \text { in } I p(\phi)} V\left(\mu_{p}\right)
$$

If each of $A$ and $B$ is in $R$ and $M$ is a refinement of $A$ in $D$ such that each member of $M$ is properly situated relative to $B$ with respect to $\Phi$ then

$$
\begin{aligned}
K\left(1_{B}, A\right) & =\sum_{H \text { in } M} K\left(1_{B}, H\right) \\
& =\sum_{H \text { in } M} \sum_{\phi \text { in } \Phi} \int_{H} 1_{B}[\phi] W_{\phi} \\
& =\sum_{\phi \text { in } \Phi} \int_{A} 1_{B}[\phi] W_{\phi} .
\end{aligned}
$$

Hence we have the theorem.

## 5. Some examples

Suppose that $R$ is a field and $F$ is a continuous linear function from $B(\Omega, R)$ to the plane. Let $K$ denote the function from $B(\omega, R) \times R$ to the plane defined by $K(f, A)=F\left(1_{A} f\right) . \quad K$ is an integral and any complete set of choice functions is degenerate. Hence

$$
K(f, A)=\int_{\Delta} f[\phi] K\left[1_{\Omega},\right]
$$

for each choice function $\phi$ for $R$.
Suppose that $n$ is a positive integer and $\Omega$ is the space of $n$-tuples of real numbers. A subset $A$ of $\Omega$ is called a rectangular interval provided that there is an ordered pair $(x, z)$ in $\Omega \times \Omega$ such that $x(p)<z(p)(p=1,2, \cdots, n)$ and a member $w$ of $\Omega$ is in $A$ only in case

$$
x(p) \leq w(p) \leq z(p)(p=1,2, \cdots, n)
$$

Briefly. $A=[x ; z]$. Let $R$ denote the set of all rectangular intervals contained in $\Omega$.

Theorem 5.1. Suppose that each of $[x ; y]$ and $[w ; z]$ is in $R$ and $[x ; y]$ contains a point of $[w ; z]$. For each integer $p$ in $[1, n]$, let

$$
u(p)=\frac{1}{2}(x(p)+w(p)+|x(p)-w(p)|)
$$

and

$$
v(p)=\frac{1}{2}(y(p)+z(p)-|y(p)-z(p)|)
$$

$[x ; y]$ is relatively prime to $[w ; z]$ only in case $u(p)=v(p)$ for some integer $p$ in [1, $n$ ].

Proof. One way is clear. Suppose that $[a ; b]$ is a member of $R$ contained
in each of $[x ; y]$ and $[w ; z]$. Then $u(p) \leq a(p)<b(p) \leq v(p)$ for each integer $p$ in $[1, n]$. Thus we have the theorem.

Suppose that $[x ; y]$ is in $R, w(p)=\frac{1}{2}(x(p)+y(p)$ for $p=1,2, \cdots, n, M$ is a member of $D$ which contains $[x ; y]$ and $[u ; v]$ is a member of $M$ which contains $w$. For each integer $p$ in $[1, n]$, let

$$
\bar{u}(p)=\frac{1}{2}(x(p)+u(p)+|x(p)-u(p)|)
$$

and

$$
\bar{v}(p)=\frac{1}{2}(y(p)+v(p)-|y(p)-v(p)|)
$$

There is an integer $p$ in $[1, n]$ such that $\bar{u}(p)=\bar{v}(p)$. But then

$$
x(p)<\frac{1}{2}(x(p)+z(p))=\bar{u}(p)=u(p)=\bar{v}(p)=u(p)=z(p)
$$

and this is a contradiction. Hence no member of $M$ other than $[x ; y]$ contains $w$.

Theorem 5.2. Each member of $R$ is $R$-measurable.
Proof. Suppose that each of $[x ; y]$ and $[w ; z]$ is in $R$ and $[x ; y]$ contains a point of $[w ; z]$. Let $\left\{N_{p}\right\}_{1}^{n}$ denote the sequence of sets defined as follows: $N_{p}$ is the set to which $u$ belongs only in case either $u=x(p)$ or $u=y(p)$ or $u=w(p)$ and $x(p)<w(p)<y(p)$ or $u=z(p)$ and $x(p)<z(p)<y(p)$. Let $M$ denote the collection of subsets of $R$ to which $[u ; v]$ belongs only in case, for each integer $p$ in $[1, n], u(p)$ and $v(p)$ are in $N_{p}$ and there is no member of $N_{p}$ between $u(p)$ and $v(p) . \quad M$ partitions $[x ; y]$. Suppose that each of $[u ; v]$ and $[\bar{u} ; \bar{v}]$ is in $M$ and $[u ; v]$ is not relatively prime to $[\bar{u} ; \bar{v}]$ with respect to $R$. Then for each integer $p$ in $[1, n]$

$$
\frac{1}{2}(u(p)+\bar{u}(p)+|u(p)-\bar{u}(p)|)<\frac{1}{2}(v(p)+\bar{v}(p)-|v(p)-\bar{v}(p)|)
$$

and so $u(p)=\bar{u}(p)$ and $v(p)=\bar{v}(p)$. Thus $M$ is in $D$. Similarly, suppose that $[u ; v]$ is in $M$ and $[u ; v]$ is not relatively prime to $[w ; z]$ with respect to $R$. Then $[u ; v]$ is contained in $[w ; z]$. Therefore each member of $R$ is $R$-measurable.

Clearly each pair of elements in $R$ is contained in a third member of $R$. Theorem 2.1 shows that if $(A, B)$ is in $R \times R$ then there is a member $M$ of $D$ which contains a refinement of each of $A$ and $B$.

Let $S$ denote the class of ordered pairs to which ( $S, T$ ) belongs only in case each of $S$ and $T$ is a subset of the first $n$ positive integers and $S$ contains no member of $T$. For each member ( $S, T$ ) of $\mathcal{S}$ let $P_{s, T}$ denote the class of functions from $R$ into $\Omega$ to which $\phi$ belongs only in case, for each $[x ; y]$ in $R$ and integer $p$ in $[1, n], \phi([x ; y])_{p}=x(p)$ if $p$ is in $S, \phi([x ; y])_{p}=y(p)$ if $p$ is in $T$, and $x(p)<\phi([x ; y])_{p}<y(p)$ otherwise.

Theorem 5.3. If $(S, T)$ is in $S$ and $\phi$ is in $P_{S, T}$ then $\phi$ is a choice function for $R$.

Proof. Suppose that each of $[x ; y]$ and $[w ; z]$ is in $R$ and $[x ; y]$ contains a point of $[w ; z]$. Let $\left\{N_{p}\right\}_{1}^{n}$ and $M$ be as in the proof of Theorem 5.2. Suppose that $[u ; v]$ is a member of $M$ which contains a point of $[w ; z],[\bar{u} ; \bar{v}]$ is a member of $R$ contained in $[u ; v]$ and $[\bar{u} ; \bar{v}]$ contains a point of $[w ; z]$. If $\phi([\bar{u} ; \bar{v}])$ is in [ $w ; z$ ] and $p$ is in $S$ then

If $p$ is in $T$ then

$$
\phi([u ; v])_{p}=u(p) \leq \bar{u}(p) \leq v(p)
$$

$$
\phi([u ; v])_{p}=v(p) \geq \bar{v}(p) \geq u(p)
$$

Since, for each integer $p$ in the union of $S$ and $T, w(p) \leq \bar{u}(p)$ and $\bar{v}(p) \leq z(p)$ we have $u(p)=\bar{u}(p)$ and $v(p)=\bar{v}(p)$. If $p$ is an integer in $[1, n]$ and $p$ is in neither $S$ nor $T$ then

$$
u(p)<\phi([u ; v])_{t}<v(p)
$$

Again $u(p) \leq \bar{u}(p)<\phi([\bar{u} ; \bar{v}])_{p} \leq \bar{v}(p)=v(p)$. Hence

$$
w(p)<\phi([u ; v])_{p}<z(p)
$$

Therefore $\phi([u ; v])$ is in $[w ; z]$.
Suppose that $\phi([u ; v])$ is in $[w ; z]$. Let $a$ be a point of $[\bar{u} ; \bar{v}]$ in $[w ; z]$. If $p$ is in $S$ than $w(p) \leq \bar{u}(p) \leq u(p) \leq a(p) \leq z(p)$. If $p$ is in $T$ then $w(p) \leq a(p) \leq \bar{v}(p) \leq v(p) \leq z(p)$. If $p$ is an integer in [1, n] and $p$ is in neither $S$ nor $T$ then $u(p)<\phi([u ; v])_{p}<v(p)$. Hence

$$
w(p) \leq u(p) \leq \bar{u}(p) \leq \phi([\bar{u} ; \bar{v}])_{p}<\bar{v}(p) \leq v(p) \leq z(p)
$$

Therefore $\phi([\bar{u} ; \bar{v}])$ is in $[w ; z]$ and so $\phi$ is a choice function for $R$.
Theorem 5.4. Let $\Phi$ be a collection of choice functions for $R$ with the property that, for each ( $S, T$ ) in $\mathrm{S}, \Phi$ contains exactly one member of $P_{s, T} . ~ \Phi$ is a finite complete collection of choice functions for $R$ which is coherent.

Lemma 5.1. Suppose that each of $[x ; y]$ and $[w ; z]$ is in $R$. If there is a member ( $S, T$ ) of S such that a member $u$ of $[x ; y]$ is in $[w ; z]$ only in case $u(p)=x(p)$ for each $p$ in $S$ and $u(p)=y(p)$ for each $p$ in $T$ then $[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\Phi$.

Proof. Suppose that $[u ; v]$ is a member of $R$ contained in $[x ; y]$ which contains a member of $[w ; z],\left(S^{\prime}, T^{\prime}\right)$ is a member of $S$, and $\phi$ is the member of $\Phi$ in $P_{s^{\prime}, T^{\prime}}$. If $\phi([u ; v])$ is in $[w ; z]$ and $p$ is in $S$ then

$$
x(p) \leq u(p) \leq \phi([u ; v])_{p}=x(p)
$$

Hence $S$ is contained in $S^{\prime}$. Similarly, $T$ is contained in $T^{\prime}$. Therefore $\phi([x ; y])$ is in $[w ; z]$. Suppose that $\phi([x ; y])$ is contained in $[w ; z]$. Let $a$ be a member of $[u ; v]$ in $[w ; z]$. If $p$ is in $S$ then $x(p) \leq u(p) \leq a(p)=x(p)$ and if $p$ is in $T$ then $y(p)=a(p) \leq v(p) \leq y(p)$. Hence $\phi([u ; v]$ is in $[w ; z]$. Therefore $[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\Phi$.

Lemma 5.2. If each of $(S, T)$ and $\left(S^{\prime}, T^{\prime}\right)$ is contained in $S, \phi_{1}$ is the member of $\Phi$ in $P_{s, T}$, and $\phi_{2}$ is the member of $\Phi$ in $P_{s^{\prime}, T^{\prime}}$, then these are equivalent:
(1) $\phi_{1}$ precedes $\phi_{2}$,
(2) $S$ is contained in $S^{\prime}$ and $T$ is contained in $T^{\prime}$

Proof. Suppose that (1) holds and $[x ; y]$ is a member of $R$. Let $(w, z)$ be an ordered pair in $\Omega \times \Omega$ such that $[w ; z]$ is in $R$, if $p$ is in $S$ then $z(p)=x(p)$, if $p$ is in $T$ then $w(p)=y(p)$, and $w(p) \leq x(p)<y(p) \leq z(p)$ otherwise. $[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\Phi$. Since

$$
1_{[w ; z]}\left(\phi_{1}([x ; y])\right) \leq 1_{[w ; z]}\left(\phi_{2}([x ; y])\right),
$$

$S$ is contained in $S^{\prime}$, and $T$ is contained in $T^{\prime}$.
Suppose that (2) holds, each of $[x ; y]$ and $[w ; z]$ is in $R,[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\left\{\phi_{1}, \phi_{2}\right\}$ and

$$
1_{[w ; z]}\left(\phi_{1}([x ; y])\right)>1_{[w ; z]}\left(\phi_{2}([x ; y])\right) .
$$

There is an integer $p$ in $[1, n]$ such that either

$$
\phi_{2}([x ; y])_{p}<w(p) \quad \text { or } \quad \phi_{2}([x ; y])_{p}>z(p)
$$

Suppose the former. For each integer $q$ in $[1, n]$, let $v(q)=w(q)$ if $q=p$ and $v(q)=y(q)$ otherwise. $[x ; v]$ is a member of $R$ contained in $[x ; y]$ and $[x, v]$ contains a member of $[w ; z]$. Hence $\phi_{1}([x ; v])$ is in $[w ; z]$ and so $p$ is in $T$. But $p$ is not in $T^{\prime}$. We have a similar situation if $\phi_{2}([x ; y])_{p}>z(p)$. Therefore (2) implies (1).

The proof of the second part of Lemma 2 also shows that if

$$
1_{[w ; z]}\left(\phi_{1}([x ; y])\right)=1
$$

and $p$ is an integer in $[1, n]$ which is in neither $S$ nor $T$ then

$$
w(p) \leq x(p)<y(p) \leq z(p)
$$

Lemma 5.3. Suppose that each of $[x ; y]$ and $[w ; z]$ is in $R,[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\Phi,(S, T)$ is in $\mathcal{S}, \phi$ is the member of $\Phi$ in $P_{s, T}$, and

$$
1_{[w ; z]}(\phi([x ; y]))-f_{\phi}([x ; y],[w ; z])=1
$$

then for each member $u$ of $[x ; y]$ these are equivalent:
(1) $u$ is in $[w ; z]$,
(2) $u(p)=x(p)$ for each $p$ in $S$ and $u(p)=y(p)$ for each $p$ in $T$.

Proof. Suppose that (1) holds, $p$ is a member of $S$, and $u(p)>x(p)$. Let $S^{\prime}$ denote $S-\{p\}$ and $\phi^{\prime}$ the member of $P_{s^{\prime}, T}$ in $\Phi$. For each integer $q$ in $[1, n]$, let $v(q)=u(q)$ if $q=p$ and $v(q)=y(q)$ otherwise. Then $[x ; v]$ is a member of $R$ contained in $[x ; y]$ and $[x ; v]$ contains a member of $[w ; z]$. Fur-
thermore, $\phi^{\prime}([x ; v])$ is in $[w ; z]$ and so $\phi^{\prime}([x ; y])$ is in $[w ; z]$. A similar situation holds if $p$ is a member of $T$ and $u(p)<y(p)$. Hence

$$
1_{[w ; z]}(\phi([x ; y]))-f_{\phi}([x ; y],[w ; z])=0
$$

This is a contradiction and so (1) implies (2).
Suppose that (2) holds and $u$ is not in $[w ; z]$. There is an integer $p$ in $[1, n]$ such that either $u(p)<w(p)$ or $u(p)>z(p)$. Suppose the former. For each integer $q$ in $[1, n]$, let $v(q)=w(q)$ if $q=p$ and $v(p)=y(q)$ otherwise. Then $[x ; v]$ is a member of $R$ contained in $[x ; y]$ and $[x ; v]$ contains a member of $[w ; z]$. Hence $\phi([x ; v])$ is in $[w ; z]$. But this is impossible. A similar situation holds if $u(p)>z(p)$. Hence $u$ is in [w; $]$ or (2) implies (1).

Lemma 5.4. If each of $[x ; y]$ and $[w ; z]$ is in $R,[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\Phi$, and $[x ; y]$ contains a point of $[w ; z]$, then there is a member $\phi$ of $\Phi$ such that $\phi([x ; y])$ is in $[w ; z]$.

Proof. Let $a$ be a member of $[x ; y]$ in $[w ; z]$. For each integer $p$ in $[1, n]$, let $u(p)=x(p)$ if $a(p)=z(p)$ and

$$
u(p)=\frac{1}{2}(x(p)+w(p)+|x(p)-w(p)|)
$$

otherwise and $v(p)=y(p)$ if $a(p)=w(p)$ and

$$
v(p)=\frac{1}{2}(y(p)+z(p)-|y(p)-w(p)|)
$$

otherwise. $\quad[u ; v]$ is in $R$ and is contained in $[x ; y]$. Furthermore, $[u ; v]$ contains a member of $[w ; z]$. Let $S$ be the set of integers in $[1, n]$ to which $p$ belongs only in case $a(p)=z(p)$. Let $T$ be the set of integers in [1, n] to which $p$ belongs only in case $a(p)=w(p)$. Let $\phi$ be the member of $P_{s, T}$ in $\Phi$. Then $\phi([u ; v])$ is in $[w ; z]$ and so $\phi([x ; y])$ is in $[w ; z]$.

Proof of Theorem 5.4. Clearly $\Phi$ is finite. Suppose that each of $(S, T)$ and ( $S^{\prime}, T^{\prime}$ ) is in $S, \phi_{1}$ is the member of $\Phi$ in $P_{S, T}, \phi_{2}$ is the member of $\Phi$ in $P_{S^{\prime}, T^{\prime}}$, $\phi_{1}$ precedes $\phi_{2}$, and $\phi_{2}$ precedes $\phi_{1}$. Then by Lemma 5.2 we have $S=S^{\prime}$ and $T-T^{\prime}$. Hence $\phi_{1}=\phi_{2}$.

Suppose that each of $[x ; y],[w ; z]$, and $[u ; v]$ is in $R,[u ; v]$ is properly situated relative to each of $[x ; y]$ and $[w ; z],(S, T)$ is a member of $\mathcal{S}, \phi$ is the member of $P_{S, T}$ in $\Phi$, and
$1_{[x ; y]}(\phi([u ; v]))-f_{\phi}([u ; v],[x ; y])$

$$
=1=1_{[w ; z]}(\phi([u ; v]))-f_{\phi}([u ; v],[w ; z])
$$

Again by Lemma 5.2 a member $a$ of $[u ; v]$ is in $[x ; y]$ only in case $a(p)=u(p)$ for each $p$ in $S$ and $a(p)=v(p)$ for each $p$ in $T$. The same holds for $[w ; z]$. Hence the common part of $[x ; y]$ and $[u ; v]$ is the common part of $[w ; z]$ and $[u ; v]$. For each integer $p$ in $[1, n]$, let $b(p)=v(p)$ if $p$ is in $T$ and $b(p)=u(p)$ otherwise and

$$
c(p)=\frac{1}{2}(y(p)+z(p)-|y(p)-z(p)|)
$$

if $p$ is in $T$ and

$$
c(p)=\frac{1}{2}(x(p)+w(p)+|x(p)-z(p)|)
$$

otherwise. $[b ; c]$ is a member of $R$.
Suppose that each of $[x ; y]$ and $[w ; z]$ is in $R,[x ; y]$ is properly situated relative to $[w ; z]$ with respect to $\Phi$, and $[x ; y]$ contains a point of $[w ; z]$. By Lemma 5.4 and the finiteness of $\Phi$ there is a least member $\phi$ of $\Phi$ such that

$$
1_{[u ; z]}(\phi([x ; y]))=1 .
$$

But this means that $1_{[w ; z]}(\phi([x ; y]))-f_{\phi}([x ; y],[w ; z])=1$. Lemma 5.3 shows that there is no more than one such $\phi$ in $\Phi$.
Suppose that $(S, T)$ is in $S, \phi$ is the member of $P_{s, r}$ in $\Phi$; each of $p$ and $q$ is a non-negative integer, and $F$ is a function from $\Phi$ to the number plane. If $I^{p+q}(\phi)$ is empty then

$$
\sum_{\lambda \text { in } I p(\phi)} \sum_{\mu \text { in } I q(\lambda)} F(\mu)=0=\binom{p+q}{q} \sum_{v \text { in } I I^{p}+Q(\phi)} F(\nu) .
$$

Clearly the proposition holds if either $p$ or $q$ is 0 . Suppose that $I^{p+q}(\phi)$ is not empty and $p \neq 0 \neq q$. Then there are at least $p+q$ integers in $[1, n]$ which are in neither $S$ nor $T$. Suppose that ( $S^{\prime}, T^{\prime \prime}$ ) is in $S, \nu$ is the member of $\Phi$ in ( $S^{\prime}, T^{\prime \prime}$ ), and $\nu$ is in $I^{p+q}(\phi)$. Let $H$ denote the set of integers in the union of $S^{\prime}$ and $T^{\prime}$ which are not in the union of $S$ and $T . H$ contains exactly $p+q$ elements and there are $\binom{p+q}{p}$ subsets of $H$ which contain $p$ elements. Hence

$$
\sum_{\lambda \text { in } T^{P}(\phi)} \sum_{\mu \text { in } I^{q}(\lambda)} F(\mu)=\binom{p+q}{q}_{v \text { in }} \sum_{P^{+} q(\phi)} F(\nu)
$$

Hence we have Theorem 5.4.
Theorem 5.5. $\quad B(\Omega, R)$ is an algebra.
Proof. A function $f$ from $\Omega$ to the number-plane is said to be quasicontinuous provided if $x$ is a point in $\Omega ;[w ; z]$ is a member of $R$ which contains $x$ in its interior; for each integer $p$ in $[1, n], N_{p}$ is the set of numbers to which $u$ belongs only in case $u=w(p)$ or $u=x(p)$ or $u=z(p) ; M$ is the collection of subsets of $R$ to which $[u ; v]$ belongs only in case, for each integer $p$ in $[1, n]$ each of $u(p)$ and $v(p)$ is in $N_{p}$ and no member of $N_{p}$ lies between $u(p)$ and $v(p) ;(S, T)$ is in $S ;[u ; v]$ is in $M$; and $z$ is a sequence with values in $[u ; v]$ such that for each integer $p$ in $[1, n]$ and positive integer $q, z_{q}(p)=x(p)$ if $p$ is in either $S$ or $T$ and $z_{q}(p)$ is between $u(p)$ and $v(p)$ and $z(p)$ has limit $x(p)$ otherwise; then $f[z]$ has a limit. The set $M$ is the partition of $[w ; z]$ in $D$ which contains both $[w ; x]$ and $[x ; z]$ with the fewest members. Let $\mathfrak{M r}$ denote the space of functions from $\Omega$ to the number-plane which are quasi-continuous and have compact support.
Suppose that $f$ is in $\mathfrak{M},[x ; y]$ is a member of $R$ which contains the support of $f$, and $b$ is a positive number. Let $F$ denote the set of ordered pairs to which ( $a, A$ ) belongs only in case $a$ is in $[x ; y] ; A=[w ; z]$ is a member of $R$ which contains $a$ in its interior; and if $M$ is the partition of $[x ; z]$ in $D$ which contains $[x ; a]$ and $[a ; z]$ with the fewest members, $(S, T)$ is in $\mathrm{S},[u ; v]$ is in $M$, each of $r$ and $s$ is in $[u ; v]$, and, for each integer $p$ in $[1, n], r(p)=s(p)=a(p)$ if $p$ is in either $S$ or $T$ and each of $r(p)$ and $s(p)$ is between $u(p)$ and $v(p)$ otherwise;
then $|f(s)-f(r)|<b$. There is a finite subset $A$ of $[x ; y]$ such that the interiors of the elements of the final set of the contraction of $f$ to $A$ covers [ $x ; y$ ].

For each integer $p$ in $[1, n]$, let $N_{p}$ denote the set to which $u$ belongs only in case there is an $a$ in $A$ such that either $u=a(p)$ or $u=w(p)$ or $u=z(p)$, where $F(a)=[w ; z]$. Let $M$ denote the subset of $R$ to which $[u ; v]$ belongs only in case, for each integer $p$ in $[1, n], u(p)$ and $v(p)$ are in $N_{p}$ and no member of $N_{p}$ lies between $u(p)$ and $v(p)$. Let $M^{\prime}$ denote the collection of subsets of $\Omega$ to which $B$ belongs only in case there is a member $[u ; v]$ of $M$ and a member $(S, T)$ of $S$ such that a point $a$ of $\Omega$ is in $B$ only in case, for each integer $f$ in $[1, n], a(p)=u(p)$ if $p$ is in $S, a(p)=v(p)$ is $p$ is in $T$, and $u(p)<a(p)$ $<v(p)$ otherwise. There is a function $\psi$ from $M^{\prime}$ into $\Omega$ such that $\psi(B)$ is in $B$ for each $B$ in $M^{\prime}$. Let $g$ denote the function from $\Omega$ to the plane defined by

$$
g=\sum_{B \text { in } M^{\prime}} f(\psi(B)) 1_{B} .
$$

$g$ is in $B(\Omega, R)$ and $|f-g|<b$. Since $\mathfrak{N}$ is an algebra the closure of $\mathfrak{N}$, which is $B(\Omega, R)$, in the space of functions from $\Omega$ to the plane which have bounded final sets with respect to $|\cdot|$ is an algebra.

## Bibliography

1. J. S. Mac Nerney, A linear initial-value problem, Bull. Amer. Math. Soc., vol. 69 (1963), pp. 314-329.

Clemson University
Clemson, South Carolina

