ON THE EXISTENCE AND REPRESENTATION OF INTEGRALS

BY

JAMES A. RENEKE

1. Introduction

Suppose that Ω is a set, R is a non-empty collection of subsets of Ω , and D is the collection of finite non-empty subsets of R to which M belongs only in case M^* , the union of all the members of M, is in R and the members of M are relatively prime in R, i.e., if A and B are in M then there is no non-empty member of R which is contained in both A and B. We will assume that each non-empty A in R contains a point x such that if M is in D and A is in M then no other member of M contains x.

Let $B(\Omega, R)$ denote the closure in the space of functions from Ω to the number-plane which have bounded final sets of the linear space spanned by the characteristic functions of members of R with respect to the supremum norm $|\cdot|$. We will assume that $B(\Omega, R)$ is an algebra. An *integral* on $B(\Omega, R) \times R$ is a function K from $B(\Omega, R) \times R$ to the number-plane such that (1) for each (f, A) in $B(\Omega, R) \times R, K[$, A] is a linear functional on $B(\Omega, R)$ and K[f,] is additive on R, i.e., $K(f, M^*) = \sum_{H \text{ in } M} K(f, H)$ for each M in D, and (2) there is an additive function λ from R to the non-negative numbers such that $|K(f, A)| \leq |I_A f| \lambda(A)$, for each (f, A) in $B(\Omega, R) \times R$. This paper is concerned with the existence and representation of integrals on $B(\Omega, R) \times R$.

2. Bounded variation

A finite subset M of R is said to partition a member A of R provided $M^* = A$. If each of M_1 and M_2 is a finite subset of R then M_2 is said to refine M_1 provided that $M_1^* = M_2^*$ and each member of M_2 is contained in some member of M_1 . If (A, B) is in $R \times R$ then [A, B] will denote the collection of non-empty members of R which are contained in both A and B. A subset A of Ω is said to be R-measurable if for each B in R there is a partition M of B in D such that each H in M is either contained in A or $[H, A] = \emptyset$ and if $[A, B] \neq \emptyset$ then the common part of A and B is the union of those members of M contained in A.

THEOREM 2.1. If each member of R is R-measurable, each of M_1 and M_2 is in D, and $M_1^* = M_2^*$, then there is a member M of D which refines each of M_1 and M_2 such that each A in M_1 is the union of those members of M contained in A.

Proof. Let $\{B_p\}_1^n$, be a reversible sequence with final set M_2 . There is a sequence $\{N_p\}_0^n$ with values in D such that $N_0 = M_1$ and, for each integer p in [1, n],

(1) N_p is a refinement of N_{p-1} such that each A in N_{p-1} is the union of those members of N_p contained in A, and

Received January 25, 1968.

(2) if A is in N_p then either A is contained in B_p or $[A, B_p] = \emptyset$.

 N_n is a refinement of M_1 such that each A in M_1 is the union of those members of N_n contained in A. Suppose that A is in N_n and x is a member of Awhich is not in $(M - \{A\})^*$, for any M in D which contains A. There is a member of M_2 which contains x and hence a member of M_2 which contains A. Therefore N_n refines M_2 .

COROLLARY. If each of M_1 and M_2 is in D and M_2 refines M_1 , then each A in M_1 is the union of those members of M_2 contained in A.

Proof. Let M be a member of D which refines each of M_1 and M_2 such that each A in M_1 is the union of those members of M contained in A. If A is in M_1 then, since each member of M is contained in a member of M_2 , A is the union of those members of M_2 contained in A.

We will assume from this point that each member of R is R-measurable and if (A, B) is in $R \times R$ then there is a member of D which contains a partition of each of A and B.

A function W from R to the plane is said to have *bounded variation* on a member A of R provided there is a number k such that $\sum_{H \text{ in } M} |W(H)| \leq k$, for each member M of D which partitions A. If W has bounded variation on A then we will denote the least such number by $\int_{A} |W|$. Let BV denote the set of additive functions from R to the plane to which W belongs only in case W has bounded variation on each member of R.

THEOREM 2.2. If W is in BV then the set of ordered pairs λ to which (A, k) belongs only in case A is in R and $k = \int_{A} |W|$ is an additive function from R to the non-negative numbers.

Proof. Suppose that M is in D and N is a function from M into D such that, for each H in M, N(H) partitions H. Then

$$\sum_{H \text{ in } M} \sum_{G \text{ in } N(H)} |W(G)| \leq \int_{M^*} |W|.$$

Hence $\sum_{H \text{ in } M} \lambda(H) \leq \lambda(M^*)$. Suppose that M' is a member of D which partitions M^* . There is a member M'' of D which refines each of M and M'.

$$\sum_{H \text{ in } M'} |W(G)| \leq \sum_{H \text{ in } M'} \sum_{G \text{ in } M', G \subseteq H} |W(G)|$$

=
$$\sum_{H \text{ in } M} \sum_{G \text{ in } M'', G \subseteq H} |W(G)|$$

$$\leq \sum_{H \text{ in } M} \lambda(H).$$

Hence $\lambda(M^*) \leq \sum_{H \text{ in } M} \lambda(H)$ and so λ is additive.

3. An existence theorem

A choice function ϕ for R is a function from R into Ω such that (1) $\phi(H)$ is contained in H, for each H in R, and (2) if each of A and B is in R then there is a member M of D which partitions B such that if H is a member of M which

contains a point of A, G is a member of R contained in H, and G contains a point of A, then $\phi(G)$ is in A only in case $\phi(H)$ is in A. A member A of R is said to be *properly situated* relative to a member B of R with respect to a collection of choice functions Φ on R provided either A and B are disjoint or for each ϕ in Φ and each member H of R which is contained in A and contains a point of B we have $\phi(H)$ is in B only in case $\phi(A)$ is in B.

THEOREM 3.1. There is a choice function for R.

Proof. There is a function ϕ from R into Ω such that, for each A in R and M in D which contains A, $\phi(A)$ is contained in A but no other member of M. Suppose that each of A and B is in R and M is a member of D which partitions B such that for each H in M either H is contained in A or $[H, A] = \emptyset$. Suppose that H is a member of M and G is a member of R which is contained in H and contains a point of A. If $\phi(G)$ is in A then G is contained in A and so H is contained in A. Hence $\phi(H)$ is in A. If $\phi(H)$ is in A then, similarly, $\phi(G)$ is in A. Therefore ϕ is a choice function for R.

THEOREM 3.2. If ϕ is a choice function for R, (A, B) is in $R \times R$, and W is in BV then $\int_B \mathbf{1}_A [\phi] W$ exists.

LEMMA. For each positive number b there is a member M of D which partitions B such that

$$\sum_{H \text{ in } M, H \cap A \neq \emptyset} \sum_{\sigma \text{ in } M', \sigma \subseteq H, G \cap A = \emptyset} |W(G)| < b,$$

for each refinement M' of M in D.

Proof of the lemma. Suppose that the lemma is false. Then there is a positive number b and a sequence M with values in D such that $M(0)^* = B$ and, for each positive integer n, M(n) refines M(n-1) and

$$\sum_{H \text{ in } M(n-1), H \cap A \neq \emptyset} \sum_{G \text{ in } M(n), G \subseteq H, G \cap A = \emptyset} |W(G)| \geq b$$

If n is a positive integer then

$$\begin{split} \int_{B} |W| &\geq \sum_{H \text{ in } M(0), H \cap A \neq \emptyset} \int_{H} |W| \\ &= \sum_{H \text{ in } M(0), H \cap A \neq \emptyset} \sum_{G \text{ in } M(1), G \subseteq H, G \cap A = \emptyset} \int_{G} |W| \\ &+ \sum_{H \text{ in } M(0), H \cap A \neq \emptyset} \sum_{G \text{ in } M(1), G \subseteq H, G \cap A \neq \emptyset} \int_{G} |W| \\ &\geq b + \sum_{G \text{ in } M(1), G \cap A \neq \emptyset} \int_{G} |W| \\ &\geq nb + \sum_{G \text{ in } M(n), G \cap A \neq \emptyset} \int_{G} |W| . \end{split}$$

This contradicts the assumption that W is in BV.

Proof of Theorem 3.2. If A and B are disjoint then we are through. Suppose that A contains a point of B and b is a positive number. There is a member M of D which partitions B with the property that if H is in M then H is properly situated relative to A with respect to $\{\phi\}$. There is a member M' of D which refines M such that

$$\sum_{H \text{ in } M', H \cap A \neq \emptyset} \sum_{G \text{ in } M'', G \subseteq H, G \cap A = \emptyset} |W(G)| < b,$$

for each M'' in D which refines M'. Hence for each M'' in D which refines M' we have

$$\begin{aligned} |\sum_{M'} 1_A [\phi] W - \sum_{M''} 1_A [\phi] W | \\ &= |\sum_{H \text{ in } M'} \sum_{G \text{ in } M'', G \subseteq H} \{ 1_A (\phi(H)) - 1_A (\phi(G)) \} W(G) | \\ &\leq \sum_{H \text{ in } M', H \cap A \neq \emptyset} \sum_{G \text{ in } M'', G \subseteq H, G \cap A = \emptyset} |W(G)| < b. \end{aligned}$$

Therefore $\int_{B} 1_{A}[\phi] W$ exists.

COROLLARY. If ϕ is a choice function, A is in R, W is in BV, and f is in $B(\Omega, R)$ then $\int_A f[\phi]W$ exists.

An integral K on $B(\omega, R) \times R$ is called a *refinement integral* provided there is a positive integer n and a sequence $\{\phi_p, W_p\}_1^n$, where, for $p = 1, 2, \dots, n$, ϕ_p is a choice function for R and W_p is in BV, such that

$$K(f, A) = \sum_{p=1}^{n} \int_{A} f[\phi_{p}] W_{p},$$

for each f in $B(\Omega, R)$ and A in R. Mac Nerney [1] has provided a partial answer to the question of what integrals are refinement integrals. In the next section we will extend Mac Nerney's representation theorem to give a better but still incomplete answer.

4. A representation theorem

A choice function ϕ_1 for R is said to precede a choice function ϕ_2 for R provided that if each of A and B is in R and A is properly situated relative to B with respect to $\{\phi_1, \phi_2\}$ then $\mathbf{1}_B(\phi_1(A)) \leq \mathbf{1}_B(\phi_2(A))$. Suppose that Φ is a collection of choice functions for R. For each ϕ in Φ let f_{ϕ} denote the set of ordered pairs to which (x, k) belongs only in case x is an ordered pair (A, B) in $R \times R$ such that A is properly situated relative to B with respect to Φ and k is the least non-negative number m such that $\mathbf{1}_B(\psi(A)) \leq m$, for each ψ in Φ different from ϕ which precedes ϕ . The collection Φ is said to be complete provided (1) if each of ϕ_1 and ϕ_2 is in Φ , ϕ_1 precedes ϕ_2 , and ϕ_2 precedes ϕ_1 then $\phi_1 = \phi_2$; (2) if each of A, B, and C is in R, C is properly situated relative to each of A and B with respect to Φ , ϕ is a member of Φ , and

$$1_{A}(\phi(C)) - f_{\phi}(C, A) = 1 = 1_{B}(\phi(C)) - f_{\phi}(C, B)$$

then $[A, B] \neq \emptyset$ and the common part of A and C is the common part of B and

C; and (3) if each of A and B is in R, A is properly situated relative to B with respect to Φ , and A contains a point of B, then there is only one member ϕ of Φ such that $1_B(\phi(A)) - f_{\phi}(A, B) = 1$.

Furthermore, for each ϕ in Φ , let $I(\phi)$ denote the subset of Φ to which λ belongs only in case $\lambda \neq \phi$, ϕ precedes λ , and if λ' is in Φ and ϕ precedes λ' and λ' precedes λ then either $\lambda' = \lambda$ or $\lambda' = \phi$. Let $I^0(\phi)$ denote the set $\{\phi\}$ and if n is a positive integer let $I^{n+1}(\phi)$ denote the subset of Φ to which λ belongs only in case there is a member λ' of $I^n(\phi)$ such that $I(\lambda')$ contains λ . The collection Φ is said to be *coherent* provided if each of p and q is a non-negative number and F is a function from Φ to the plane then

$$\sum_{\lambda \text{ in } I^p(\phi)} \sum_{\mu \text{ in } I^q(\lambda)} F(\mu) = \binom{p+q}{q} \sum_{\nu \text{ in } I^{p+q}(\phi)} F(\nu).$$

THEOREM 4.1. If K is an integral on $B(\Omega, R) \times R$, and Φ is a finite complete collection of choice functions for R which is coherent then there is a function W from Φ into BV such that

$$K(f, A) = \sum_{\phi \text{ in } \phi} \int_A f[\phi] W_{\phi} ,$$

for each (f, A) in $B(\Omega, R) \times R$.

Our proof of Theorem 4.1 follows in outline Mac Nerney's proof of Theorem 1 [1, p. 322] and requires the introduction as an intermediate step of a function V from Φ into BV from which W will be constructed. If each of M and M'is in D then M' is called a *proper refinement* of M with respect to Φ provided that M' is a refinement of M and if (A, B) is in $M' \times M$ then A is properly situated relative to B with respect to Φ . Let $V(\phi)$, for each ϕ in Φ , denote the set of ordered pairs to which (A, k) belongs only in case A is in R, k is a complex number, and for each positive number b there is a member M of D which contains a partition of A such that

$$|k - \sum_{H \text{ in } M'} \sum_{G \text{ in } M'', G \subset A} K(\{1_H(\phi(G)) - f_{\phi}(G, H)\} 1_H, G)| < b,$$

for each member M' of D which contains a refinement of M and each member M'' of D which is a proper refinement of M' with respect to Φ .

THEOREM 4.2. V is a function from Φ into BV.

Proof. Suppose that ϕ is a member of Φ and A is a member of R. If M is a member of D which contains a partition of A and M' is a proper refinement of M with respect to Φ then

$$\sum_{H \text{ in } M} \sum_{G \text{ in } M', G \subseteq A} |K(\{1_H(\phi(G)) - f_{\phi}(G, H)\} 1_H, G)|$$

$$\leq \sum_{H \text{ in } M} \sum_{G \text{ in } M', G \subseteq A} \{1_H(\phi(G)) - f_{\phi}(G, H)\} \lambda(G) \leq \lambda(A).$$

Suppose that each of M, M', and M'' is a member of D, M contains a partition of A, M' contains a refinement of M, and M'' contains a proper refinement of

M with respect to Φ and a proper refinement of M' with respect to Φ . For each F in M, let N(F) denote the subset of M'' to which H belongs only in case H is contained in A and $1_F(\phi(H)) - f_{\phi}(H, F) = 1$ and N'(F) the subset of M'' to which H belongs only in case H is contained in A and $1_{\sigma}(\phi(H))$ $- f_{\phi}(H, G) = 1$, for some G in M' which is contained in F. N(F) is contained in N'(F), for each F in M.

If F is in M then

$$\sum_{G \text{ in } M', G \subseteq F} \sum_{H \text{ in } N(F)} K(\{1_G(\phi(H)) - f_\phi(H, G)\} 1_G, H)$$

= $\sum_{H \text{ in } N(F)} \sum_{G \text{ in } M', G \subseteq F} K(\{1_G(\phi(H)) - f_\phi(H, G)\} 1_F, H)$
= $\sum_{H \text{ in } N(F)} K(1_F, H).$

Hence

$$\begin{split} |\sum_{F \text{ in } M} \{\sum_{H \text{ in } N(F)} K(1_{F}, H) - \sum_{G \text{ in } M', G \subseteq F} \sum_{H \text{ in } N'(F)} K(\{1_{G}(\phi(H)) - f_{\phi}(H, G)\} 1_{G}, H)\}| \\ &= |\sum_{F \text{ in } M} \sum_{G \text{ in } M', G \subseteq F} \sum_{H \text{ in } N'(F) - N(F)} K(\{1_{G}(\phi(H)) - f_{\phi}(H, G)\} 1_{G}, H)| \\ &\leq \sum_{F \text{ in } M} \sum_{G \text{ in } M', G \subseteq F} \sum_{H \text{ in } N'(F) - N(F)} \{1_{G}(\phi(H) - f_{\phi}(H, G)\} \lambda(H) \\ &= \sum_{G \text{ in } M'} \sum_{H \text{ in } M'', H \subseteq A} \{1_{G}(\phi(H)) - f_{\phi}(H, G)\} \lambda(H) \\ &- \sum_{F \text{ in } M} \sum_{H \text{ in } M'', H \subseteq A} \{1_{F}(\phi(H)) - f_{\phi}(H, F)\} \lambda(H). \end{split}$$

Therefore A is in the initial set of $V(\phi)$. It is easily seen that $V(\phi)$ is additive on R.

THEOREM 4.3. If each of A and B is in R, A is properly situated relative to B with respect to Φ , ϕ is in Φ , and $1_{\mathbb{B}}(\phi(A)) - f_{\phi}(A, B) = 1$, then

$$K(1_B, A) = \int_A 1_B[\phi] V_{\phi}.$$

Proof. Suppose that b is a positive number. There is a member N of D which partitions A such that

$$\int_{A} 1_{B}[\phi] V_{\phi} - \sum_{H \text{ in } N'} 1_{B}(\phi(H)) V_{\phi}(H) \bigg| < b/3,$$

for each member $N \leq$ of D which refines N. There is a member M of D which refines N such that if M' is a member of D which refines M then

$$\sum_{H \text{ in } M, H \cap B \neq \emptyset} \sum_{G \text{ in } M', G \subseteq H, G \cap B = \emptyset} \lambda(G) < b/3.$$

There is a member M' of D which contains a refinement of each of $\{B\}$ and M such that

$$\frac{\sum_{H \text{ in } M, H \cap B \neq \emptyset} |V_{\phi}(H)}{-\sum_{F \text{ in } M'} \sum_{G \text{ in } M'', G \subseteq H} K(\{1_{F}(\phi(G)) - f_{\phi}(G, F)\} 1_{F}, G)| < b/3,$$

for each member M'' of D which is a proper refinement of M' with respect to Φ . If M'' is a member of D which is a proper refinement of M' with respect to Φ then

$$\begin{split} \left| K(1_{B}, A) - \int_{A} 1_{B}[\phi] V_{\phi} \right| \\ \leq \left| \int_{A} 1_{B}[\phi] V_{\phi} - \sum_{H \text{ in } M} 1_{B}(\phi(H)) V_{\phi}(H) \right| \\ + \sum_{H \text{ in } M, H \cap B \neq \emptyset} | V_{\phi}(H) - \sum_{F \text{ in } M'} \sum_{G \text{ in } M'', G \subseteq H} K(\{1_{F}(\phi(G)) - f_{\phi}(G, F)\} 1_{F}, G) | \\ + \sum_{H \text{ in } M, H \cap B \neq \emptyset} \sum_{F \text{ in } M'} \sum_{G \text{ in } M'', G \subseteq H, G \cap B = \emptyset} | K(\{1_{F}(\phi(G)) - f_{\phi}(G, F)\} 1_{F}, G) | \\ + | K(1_{B}, A) - \sum_{H \text{ in } M, H \cap B \neq \emptyset} \sum_{F \text{ in } M'} \sum_{G \text{ in } M'', G \subseteq H, G \cap B \neq \emptyset} K(\{1_{F}(\phi(G)) - f_{\phi}(G, F)\} 1_{F}, G) | \\ + | K(1_{B}, A) - \sum_{H \text{ in } M, H \cap B \neq \emptyset} \sum_{G \text{ in } M'', G \subseteq H, G \cap B \neq \emptyset} \lambda(G) \\ + | K(1_{B}, A) - \sum_{G \text{ in } M'', G \subseteq A, G \cap B \neq \emptyset} \sum_{F \text{ in } M'} K(\{1_{F}((G)) - f_{\phi}(G, F)\} 1_{B}, G) | < b. \end{split}$$

Therefore we have the theorem.

THEOREM 4.4. If (A, B) is in $R \times R$, A is properly situated relative to B with respect to Φ , and Φ contains n elements then

$$K(1_B, A) = \sum_{\phi \text{ in } \Phi} \int_A 1_B[\phi] \left\{ V_{\phi} + \sum_{p=1}^n (-1)^p \sum_{\mu(p) \text{ in } I^p(\phi)} V(\mu_p) \right\}.$$

Proof. Suppose that λ is in Φ and $1_B(\lambda(A)) - f_\lambda(A, B) = 1$. Then

$$\begin{split} \sum_{\phi \text{ in } \Phi} \int_{A} \mathbf{1}_{B}[\phi] \left\{ V_{\phi} + \sum_{p=1}^{n} (-1)^{p} \sum_{\mu(p) \text{ in } I^{p}(\phi)} V(\mu_{p}) \right\} \\ &= \sum_{p=0}^{n} \sum_{\mu(p) \text{ in } I^{p}(\lambda)} \int_{A} \mathbf{1}_{B}[\mu(p)] \left\{ \sum_{q=0}^{n-p} (-1)^{q} \sum_{\nu(q) \text{ in } I^{q}(\mu(p))} V(\nu(q)) \right\} \\ &= \sum_{p+q=0}^{n} \sum_{\mu(p) \text{ in } I^{p}(\lambda)} \sum_{\nu(q) \text{ in } I^{q}(\mu(p))} (-1)^{q} \int \mathbf{1}_{B}[\lambda] V(\nu(q)) \\ &= \sum_{p+q=0}^{n} (-1)^{q} \binom{p+q}{q} \sum_{\mu \text{ in } I^{p+q}(\lambda)} \int_{A} \mathbf{1}_{B}[\lambda] V_{\mu} \\ &= \int_{A} \mathbf{1}_{B}[\lambda] V_{\lambda} = K(\mathbf{1}_{B}, A). \end{split}$$

Proof of Theorem 4.1. Suppose that Φ contains *n* elements. Let *W* denote the function from Φ into *BV* defined by

$$W_{\phi} = V_{\phi} + \sum_{p=1}^{n} (-1)^{p} \sum_{\mu(p) \text{ in } I^{p}(\phi)} V(\mu_{p}).$$

If each of A and B is in R and M is a refinement of A in D such that each member of M is properly situated relative to B with respect to Φ then

$$K(1_B, A) = \sum_{H \text{ in } M} K(1_B, H)$$
$$= \sum_{H \text{ in } M} \sum_{\phi \text{ in } \Phi} \int_{H} 1_B[\phi] W_{\phi}$$
$$= \sum_{\phi \text{ in } \Phi} \int_{A} 1_B[\phi] W_{\phi}.$$

Hence we have the theorem.

5. Some examples

Suppose that R is a field and F is a continuous linear function from $B(\Omega, R)$ to the plane. Let K denote the function from $B(\omega, R) \times R$ to the plane defined by $K(f, A) = F(1_A f)$. K is an integral and any complete set of choice functions is degenerate. Hence

$$K(f, A) = \int_A f[\phi] K[1_{\Omega},]$$

for each choice function ϕ for R.

Suppose that n is a positive integer and Ω is the space of n-tuples of real numbers. A subset A of Ω is called a *rectangular interval* provided that there is an ordered pair (x, z) in $\Omega \times \Omega$ such that $x(p) < z(p)(p = 1, 2, \dots, n)$ and a member w of Ω is in A only in case

$$x(p) \leq w(p) \leq z(p) (p = 1, 2, \cdots, n).$$

Briefly, A = [x; z]. Let R denote the set of all rectangular intervals contained in Ω .

THEOREM 5.1. Suppose that each of [x; y] and [w; z] is in R and [x; y] contains a point of [w; z]. For each integer p in [1, n], let

$$u(p) = \frac{1}{2}(x(p) + w(p) + |x(p) - w(p)|)$$

and

$$v(p) = \frac{1}{2}(y(p) + z(p) - |y(p) - z(p)|).$$

[x; y] is relatively prime to [w; z] only in case u(p) = v(p) for some integer p in [1, n].

Proof. One way is clear. Suppose that [a; b] is a member of R contained

106

in each of [x; y] and [w; z]. Then $u(p) \le a(p) < b(p) \le v(p)$ for each integer p in [1, n]. Thus we have the theorem.

Suppose that [x; y] is in R, $w(p) = \frac{1}{2}(x(p) + y(p))$ for $p = 1, 2, \dots, n, M$ is a member of D which contains [x; y] and [u; v] is a member of M which contains w. For each integer p in [1, n], let

$$\bar{u}(p) = \frac{1}{2}(x(p) + u(p) + |x(p) - u(p)|)$$

and

$$\bar{v}(p) = \frac{1}{2}(y(p) + v(p) - |y(p) - v(p)|).$$

There is an integer p in [1, n] such that $\bar{u}(p) = \bar{v}(p)$. But then

$$x(p) < \frac{1}{2}(x(p) + z(p)) = \bar{u}(p) = u(p) = \bar{v}(p) = u(p) = z(p)$$

and this is a contradiction. Hence no member of M other than [x; y] contains w.

THEOREM 5.2. Each member of R is R-measurable.

Proof. Suppose that each of [x; y] and [w; z] is in R and [x; y] contains a point of [w; z]. Let $\{N_p\}_1^n$ denote the sequence of sets defined as follows: N_p is the set to which u belongs only in case either u = x(p) or u = y(p) or u = w(p) and x(p) < w(p) < y(p) or u = z(p) and x(p) < z(p) < y(p). Let M denote the collection of subsets of R to which [u; v] belongs only in case, for each integer p in [1, n], u(p) and v(p) are in N_p and there is no member of N_p between u(p) and v(p). M partitions [x; y]. Suppose that each of [u; v] and $[\bar{u}; \bar{v}]$ is in M and [u; v] is not relatively prime to $[\bar{u}; \bar{v}]$ with respect to R. Then for each integer p in [1, n]

$$\frac{1}{2}(u(p) + \bar{u}(p) + |u(p) - \bar{u}(p)|) < \frac{1}{2}(v(p) + \bar{v}(p) - |v(p) - \bar{v}(p)|),$$

and so $u(p) = \bar{u}(p)$ and $v(p) = \bar{v}(p)$. Thus *M* is in *D*. Similarly, suppose that [u; v] is in *M* and [u; v] is not relatively prime to [w; z] with respect to *R*. Then [u; v] is contained in [w; z]. Therefore each member of *R* is *R*-measurable.

Clearly each pair of elements in R is contained in a third member of R. Theorem 2.1 shows that if (A, B) is in $R \times R$ then there is a member M of D which contains a refinement of each of A and B.

Let S denote the class of ordered pairs to which (S, T) belongs only in case each of S and T is a subset of the first n positive integers and S contains no member of T. For each member (S, T) of S let $P_{s,T}$ denote the class of functions from R into Ω to which ϕ belongs only in case, for each [x; y] in R and integer p in $[1, n], \phi([x; y])_p = x(p)$ if p is in S, $\phi([x; y])_p = y(p)$ if p is in T, and $x(p) < \phi([x; y])_p < y(p)$ otherwise.

THEOREM 5.3. If (S, T) is in S and ϕ is in $P_{S,T}$ then ϕ is a choice function for R.

Proof. Suppose that each of [x; y] and [w; z] is in R and [x; y] contains a point of [w; z]. Let $\{N_p\}_1^n$ and M be as in the proof of Theorem 5.2. Suppose that [u; v] is a member of M which contains a point of [w; z], $[\bar{u}; \bar{v}]$ is a member of R contained in [u; v] and $[\bar{u}; \bar{v}]$ contains a point of [w; z]. If $\phi([\bar{u}; \bar{v}])$ is in [w; z] and p is in S then

$$\phi([u;v])_p = u(p) \leq \overline{u}(p) \leq v(p).$$

If p is in T then

$$\phi([u;v])_p = v(p) \ge \overline{v}(p) \ge u(p).$$

Since, for each integer p in the union of S and T, $w(p) \le \bar{u}(p)$ and $\bar{v}(p) \le z(p)$ we have $u(p) = \bar{u}(p)$ and $v(p) = \bar{v}(p)$. If p is an integer in [1, n] and p is in neither S nor T then

$$u(p) < \phi([u; v])_{p} < v(p).$$

Again $u(p) \le \tilde{u}(p) < \phi([\bar{u}; \bar{v}])_{p} \le \tilde{v}(p) = v(p).$ Hence
$$w(p) < \phi([u; v])_{p} < z(p).$$

Therefore $\phi([u; v])$ is in [w; z].

Suppose that $\phi([u; v])$ is in [w; z]. Let a be a point of $[\bar{u}; \bar{v}]$ in [w; z]. If p is in S than $w(p) \leq \bar{u}(p) \leq u(p) \leq a(p) \leq z(p)$. If p is in T then $w(p) \leq a(p) \leq \bar{v}(p) \leq v(p) \leq z(p)$. If p is an integer in [1, n] and p is in neither S nor T then $u(p) < \phi([u; v])_p < v(p)$. Hence

 $w(p) \leq u(p) \leq \overline{u}(p) \leq \phi([\overline{u};\overline{v}])_p < \overline{v}(p) \leq v(p) \leq z(p).$

Therefore $\phi([\bar{u}; \bar{v}])$ is in [w; z] and so ϕ is a choice function for R.

THEOREM 5.4. Let Φ be a collection of choice functions for R with the property that, for each (S, T) in S, Φ contains exactly one member of $P_{S,T}$. Φ is a finite complete collection of choice functions for R which is coherent.

LEMMA 5.1. Suppose that each of [x; y] and [w; z] is in R. If there is a member (S, T) of S such that a member u of [x; y] is in [w; z] only in case u(p) = x(p) for each p in S and u(p) = y(p) for each p in T then [x; y] is properly situated relative to [w; z] with respect to Φ .

Proof. Suppose that [u; v] is a member of R contained in [x; y] which contains a member of [w; z], (S', T') is a member of S, and ϕ is the member of Φ in $P_{S',T'}$. If $\phi([u; v])$ is in [w; z] and p is in S then

$$x(p) \leq u(p) \leq \phi([u; v])_p = x(p).$$

Hence S is contained in S'. Similarly, T is contained in T'. Therefore $\phi([x; y])$ is in [w; z]. Suppose that $\phi([x; y])$ is contained in [w; z]. Let a be a member of [u; v] in [w; z]. If p is in S then $x(p) \le u(p) \le a(p) = x(p)$ and if p is in T then $y(p) = a(p) \le v(p) \le y(p)$. Hence $\phi([u; v] \text{ is in } [w; z]$. Therefore [x; y] is properly situated relative to [w; z] with respect to Φ .

LEMMA 5.2. If each of (S, T) and (S', T') is contained in S, ϕ_1 is the member of Φ in $P_{S,T}$, and ϕ_2 is the member of Φ in $P_{S',T'}$, then these are equivalent:

- (1) $\phi_1 \text{ precedes } \phi_2$,
- (2) S is contained in S' and T is contained in T'

Proof. Suppose that (1) holds and [x; y] is a member of R. Let (w, z) be an ordered pair in $\Omega \times \Omega$ such that [w; z] is in R, if p is in S then z(p) = x(p), if p is in T then w(p) = y(p), and $w(p) \le x(p) < y(p) \le z(p)$ otherwise. [x; y] is properly situated relative to [w; z] with respect to Φ . Since

 $1_{[w;z]}(\phi_1([x;y])) \leq 1_{[w;z]}(\phi_2([x;y])),$

S is contained in S', and T is contained in T'.

Suppose that (2) holds, each of [x; y] and [w; z] is in R, [x; y] is properly situated relative to [w; z] with respect to $\{\phi_1, \phi_2\}$ and

$$1_{[w;z]}(\phi_1([x;y])) > 1_{[w;z]}(\phi_2([x;y])).$$

There is an integer p in [1, n] such that either

$$\phi_2([x; y])_p < w(p) \text{ or } \phi_2([x; y])_p > z(p).$$

Suppose the former. For each integer q in [1, n], let v(q) = w(q) if q = p and v(q) = y(q) otherwise. [x; v] is a member of R contained in [x; y] and [x, v] contains a member of [w; z]. Hence $\phi_1([x; v])$ is in [w; z] and so p is in T. But p is not in T'. We have a similar situation if $\phi_2([x; y])_p > z(p)$. Therefore (2) implies (1).

The proof of the second part of Lemma 2 also shows that if

$$1_{[w;z]}(\phi_1([x;y])) = 1$$

and p is an integer in [1, n] which is in neither S nor T then

$$w(p) \leq x(p) < y(p) \leq z(p).$$

LEMMA 5.3. Suppose that each of [x; y] and [w; z] is in R, [x; y] is properly situated relative to [w; z] with respect to Φ , (S, T) is in S, ϕ is the member of Φ in $P_{S,T}$, and

$$1_{[w;z]}(\phi([x;y])) - f_{\phi}([x;y], [w;z]) = 1,$$

then for each member u of [x; y] these are equivalent:

(1)
$$u is in [w; z],$$

(2)
$$u(p) = x(p)$$
 for each p in S and $u(p) = y(p)$ for each p in T.

Proof. Suppose that (1) holds, p is a member of S, and u(p) > x(p). Let S' denote $S - \{p\}$ and ϕ' the member of $P_{S',T}$ in Φ . For each integer q in [1, n], let v(q) = u(q) if q = p and v(q) = y(q) otherwise. Then [x; v] is a member of R contained in [x; y] and [x; v] contains a member of [w; z]. Furthermore, $\phi'([x; v])$ is in [w; z] and so $\phi'([x; y])$ is in [w; z]. A similar situation holds if p is a member of T and u(p) < y(p). Hence

$$1_{[w;z]}(\phi([x;y])) - f_{\phi}([x;y], [w;z]) = 0.$$

This is a contradiction and so (1) implies (2).

Suppose that (2) holds and u is not in [w; z]. There is an integer p in [1, n] such that either u(p) < w(p) or u(p) > z(p). Suppose the former. For each integer q in [1, n], let v(q) = w(q) if q = p and v(p) = y(q) otherwise. Then [x; v] is a member of R contained in [x; y] and [x; v] contains a member of [w; z]. Hence $\phi([x; v])$ is in [w; z]. But this is impossible. A similar situation holds if u(p) > z(p). Hence u is in [w; z] or (2) implies (1).

LEMMA 5.4. If each of [x; y] and [w; z] is in R, [x; y] is properly situated relative to [w; z] with respect to Φ , and [x; y] contains a point of [w; z], then there is a member ϕ of Φ such that $\phi([x; y])$ is in [w; z].

Proof. Let a be a member of [x; y] in [w; z]. For each integer p in [1, n], let u(p) = x(p) if a(p) = z(p) and

$$u(p) = \frac{1}{2}(x(p) + w(p) + |x(p) - w(p)|)$$

otherwise and v(p) = y(p) if a(p) = w(p) and

$$w(p) = \frac{1}{2}(y(p) + z(p) - |y(p) - w(p)|)$$

otherwise. [u; v] is in R and is contained in [x; y]. Furthermore, [u; v] contains a member of [w; z]. Let S be the set of integers in [1, n] to which p belongs only in case a(p) = z(p). Let T be the set of integers in [1, n] to which p belongs only in case a(p) = w(p). Let ϕ be the member of $P_{s,T}$ in Φ . Then $\phi([u; v])$ is in [w; z] and so $\phi([x; y])$ is in [w; z].

Proof of Theorem 5.4. Clearly Φ is finite. Suppose that each of (S, T) and (S', T') is in S, ϕ_1 is the member of Φ in $P_{S,T}$, ϕ_2 is the member of Φ in $P_{S',T'}$, ϕ_1 precedes ϕ_2 , and ϕ_2 precedes ϕ_1 . Then by Lemma 5.2 we have S = S' and T - T'. Hence $\phi_1 = \phi_2$.

Suppose that each of [x; y], [w; z], and [u; v] is in R, [u; v] is properly situated relative to each of [x; y] and [w; z], (S, T) is a member of S, ϕ is the member of $P_{s,\tau}$ in Φ , and

 $1_{[x;y]}(\phi([u;v])) - f_{\phi}([u;v], [x;y])$

$$= 1 = 1_{[w;z]}(\phi([u;v])) - f_{\phi}([u;v], [w;z]).$$

Again by Lemma 5.2 a member a of [u; v] is in [x; y] only in case a(p) = u(p) for each p in S and a(p) = v(p) for each p in T. The same holds for [w; z]. Hence the common part of [x; y] and [u; v] is the common part of [w; z] and [u; v]. For each integer p in [1, n], let b(p) = v(p) if p is in T and b(p) = u(p) otherwise and

if p is in T and

$$c(p) = \frac{1}{2}(y(p) + z(p) - |y(p) - z(p)|)$$

$$c(p) = \frac{1}{2}(x(p) + w(p) + |x(p) - z(p)|)$$

otherwise. [b; c] is a member of R.

Suppose that each of [x; y] and [w; z] is in R, [x; y] is properly situated relative to [w; z] with respect to Φ , and [x; y] contains a point of [w; z]. By Lemma 5.4 and the finiteness of Φ there is a least member ϕ of Φ such that

$$1_{[w;z]}(\phi([x;y])) = 1.$$

But this means that $1_{[w;z]}(\phi([x; y])) - f_{\phi}([x; y], [w; z]) = 1$. Lemma 5.3 shows that there is no more than one such ϕ in Φ .

Suppose that (S, T) is in S, ϕ is the member of $P_{s,T}$ in Φ ; each of p and q is a non-negative integer, and F is a function from Φ to the number plane. If $I^{p+q}(\phi)$ is empty then

$$\sum_{\lambda \text{ in } I^{p}(\phi)} \sum_{\mu \text{ in } I^{q}(\lambda)} F(\mu) = 0 = \binom{p+q}{q} \sum_{\nu \text{ in } I^{p+q}(\phi)} F(\nu).$$

Clearly the proposition holds if either p or q is 0. Suppose that $I^{p+q}(\phi)$ is not empty and $p \neq 0 \neq q$. Then there are at least p + q integers in [1, n] which are in neither S nor T. Suppose that (S', T') is in S, ν is the member of Φ in (S', T'), and ν is in $I^{p+q}(\phi)$. Let H denote the set of integers in the union of S' and T' which are not in the union of S and T. H contains exactly p + qelements and there are $\binom{p+q}{p}$ subsets of H which contain p elements. Hence

$$\sum_{\lambda \inf I^p(\phi)} \sum_{\mu \inf I^q(\lambda)} F(\mu) = \binom{p+q}{q} \sum_{\nu \inf I^{p+q}(\phi)} F(\nu)$$

Hence we have Theorem 5.4.

THEOREM 5.5. $B(\Omega, R)$ is an algebra.

Proof. A function f from Ω to the number-plane is said to be quasicontinuous provided if x is a point in Ω ; [w; z] is a member of R which contains x in its interior; for each integer p in [1, n], N_p is the set of numbers to which ubelongs only in case u = w(p) or u = x(p) or u = z(p); M is the collection of subsets of R to which [u; v] belongs only in case, for each integer p in [1, n]each of u(p) and v(p) is in N_p and no member of N_p lies between u(p) and v(p); (S, T) is in S; [u; v] is in M; and z is a sequence with values in [u; v] such that for each integer p in [1, n] and positive integer q, $z_q(p) = x(p)$ if p is in either S or T and $z_q(p)$ is between u(p) and v(p) and z(p) has limit x(p)otherwise; then f[z] has a limit. The set M is the partition of [w; z] in D which contains both [w; x] and [x; z] with the fewest members. Let \mathfrak{N} denote the space of functions from Ω to the number-plane which are quasi-continuous and have compact support.

Suppose that f is in \mathfrak{M} , [x; y] is a member of R which contains the support of f, and b is a positive number. Let F denote the set of ordered pairs to which (a, A) belongs only in case a is in [x; y]; A = [w; z] is a member of R which contains a in its interior; and if M is the partition of [x; z] in D which contains [x; a] and [a; z] with the fewest members, (S, T) is in S, [u; v] is in M, each of r and s is in [u; v], and, for each integer p in [1, n], r(p) = s(p) = a(p) if p is in either S or T and each of r(p) and s(p) is between u(p) and v(p) otherwise; then |f(s) - f(r)| < b. There is a finite subset A of [x; y] such that the interiors of the elements of the final set of the contraction of f to A covers [x; y].

For each integer p in [1, n], let N_p denote the set to which u belongs only in case there is an a in A such that either u = a(p) or u = w(p) or u = z(p), where F(a) = [w; z]. Let M denote the subset of R to which [u; v] belongs only in case, for each integer p in [1, n], u(p) and v(p) are in N_p and no member of N_p lies between u(p) and v(p). Let M' denote the collection of subsets of Ω to which B belongs only in case there is a member [u; v] of M and a member (S, T) of S such that a point a of Ω is in B only in case, for each integer f in [1, n], a(p) = u(p) if p is in S, a(p) = v(p) is p is in T, and u(p) < a(p)< v(p) otherwise. There is a function ψ from M' into Ω such that $\psi(B)$ is in B for each B in M'. Let g denote the function from Ω to the plane defined by

$$g = \sum_{B \text{ in } M'} f(\psi(B)) 1_B.$$

g is in $B(\Omega, R)$ and |f - g| < b. Since \mathfrak{M} is an algebra the closure of \mathfrak{M} , which is $B(\Omega, R)$, in the space of functions from Ω to the plane which have bounded final sets with respect to $|\cdot|$ is an algebra.

BIBLIOGRAPHY

1. J. S. MAC NERNEY, A linear initial-value problem, Bull. Amer. Math. Soc., vol. 69 (1963), pp. 314-329.

CLEMSON UNIVERSITY CLEMSON, SOUTH CAROLINA