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1. Introduction
Suppose that 2 is set, R is a non-empty collection of subsets of , and D is

the collection of finite non-empty subsets of R to whichM belongs only in case
M*, the union of all the members of M, is in R and the members of M are rela-
tively prime in R, i.e., if A and B are in M then there is no non-empty member
of R which is contained in both A and B. We will assume that each non-empty
A in R contains a point x such that if M is in D and A is in M then no other
member of M contains x.

Let B (2, R) denote the closure ia the space of functions from 2 to the
number-plane which have bounded final sets of the linear space spanned by the
characteristic functions of members of R with respect to the supremum norm

J. We will assume that B (2, R) is an algebra. An integral on B (2, R) X R
is a function K from B (, R) X R to the number-plane such that (1) for each
(f, A in B (, R) R, K[ A] is a linear functional on B (2, R) and K[f,
is additive on R, i.e., K (f, M*) . i. M K (f, H) for each M in D, and (2)
there is an additive function X from R to the non-negutive numbers such that
g (f, A -< la f ), (A), for each (f, A in B (2, R) X R. This paper is
concerned with the existence and representation of integrals on B (2, R) X R.

2. Bounded variation

A finite subsetM of R is said to partition member A of R provided M* A.
If each ofM and M. is a finite subset of R thenM is said to refine Mx provided
that M M* and each member of M. is contained in some member of M.
If (A, B) is in R X R then [A, B] will denote the collection of non-empty mem-
bers of R which are contained in both A and B. A subset A of 2 is said to be
R-measurable if for each B in R there is a partition M of B in D such that each
H in M is either contained in A or [H, A] 0 and if [A, B] # 0 then the com-
mon part of A and B is the union of those members of M contained in A.
THEOREM 2.1. If each member of R is R-measurable, each of Mi and M_ is in

D, andM M, then there is a member M of D which refines each of Mx and
M. such that each A in M is the union of those members ofM contained in A.

Proof. Let {B} ’, be a reversible sequence with final set M.. There is a
sequence {Nv} with values in D such that No M and, for each integer p
in [1, hi,

(1) N is a refinement of N_x such that each A in N_x is the union of
those members of N contained in A, and
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(2) if A is in N then either A is contained in B or [A, B] 0.

N. is a refinement of M such that each A in M is the union of those mem-
bers of N. contained in A. Suppose that A is in N. and x is a member of A
which is not in (M {A} )*, for any M in D which contains A. There is a
member of M. which contains x and hence a member of M. which contains A.
Therefore N refines M..

ConoLav. If each ofM andM is in D and M. refinesM then each A in
M is the union of those members ofM contained in A.

Proof. Let M be a member of D which refines each ofM andM such that
each A in M is the union of those members of M contained in A. If A is in
M then, since each member of M is contained in a member of M, A is the
union of those members of M contained in A.
We will assume from this point that each member of R is R-measurable and

if (A, B) is in R R then there is a member of D which contains a partition
of each of A and B.
A function W from R to the plane is said to have bounded variation on a

member A of R provided there is a number b such that . i M W(H) -< k,
for each member M of D which partitions A. If W has bounded variation on
A then we will denote the least such number by f W I. Let BV denote the
set of additive functions from R to the plane to which W belongs only in case
W has bounded variation on each member of R.

THEOREM 2.2. If W is in BV then the set of ordered pairs k to which (A, b)
belongs only in case A is in R and t fa W is an additive function from R to
the non-negative numbers.

Proof. Suppose thatM is inD andN is a functionfrom M intoD such that,
for each H in M, N (H) partitions H. Then

H in M ( in N(H)

Hence ’. i M k (H) __< k (M*). Suppose that M’ is a member of D which
partitions M*. There is a member M’ of D which refines each of M and M.
Hence X (M*) _< , X (H) and so X is additive.

3. An existence herem
A choice function for R is function from R into 2 such that (1) q (H) is

contained in H, for each H in R, and (2) if each of A and B is in R then there is
member M of D which prtitions B such that if H is member of M which
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contains a point of A, G is a member of R contained in H, and G contains a
point of A, then (G) is in A only in case (H) is in A. A member A of R
is said to be properly situated relative to a member B of R with respect to a
collection of choice functions on R provided either A and B are disjoint or
for each in and each member H of R which is contained in A and contains
a point of B we have (H) is in B only in case (A) is in B.

THEOREM 3.1. There is a choice function for R.

Proof. There is a function from R into 2 such that, for each A in R and
M in D which contains A, (A) is contained in A but no other member of M.
Suppose that each of A and B is in R andM is a member of D which partitions
B such that for each H inM eitherH is contained in A or [H, A] 0. Suppose
that H is a member of M and G is a member of R which is contained in H and
contains a point of A. If (G) is in A then G is contained in A and so H is
contained in A. Hence b (H) is in A. If (H) is in A then, similarly, (G)
is in A. Therefore is a choice function for R.

THEOREM 3.2. If is a choice function for R, (A, B) is in R X R, and W is
in BV then fs 1 [b]W exists.

LEMMA. For each positive number b there is a member M of D which parti-
tions B such that

.for each refinement M’ of M in D.

Proof of the lemma. Suppose that the lemma is false. Then there is a posi-
tive number b and a sequence M with values in D such that M (0)* B and,
for each positive integer n, M (n) refines M (n 1 and

EH in M(.--1),[’IA E(Y in M(n),(_.,n- W(G) b.

If n is a positive integer then

H in M(O),tIA

H in M(O),HNA (Y in M(1),(Y_H,GA

+ E f lw!
in M(1),

> nb + fo IwI.
This contradicts the assumption that W is in BV.
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Proof of Theorem 3.2. If A and B are disjoint then we are through. Sup-
pose that A contains a point of B and b is a positive number. There is a
member M of D which partitions B with the property that if H is in M then
H is properly situated relative to A with respect to {}. There is a member
M’ of D which refines M such that

w (G) < b,

for each M" in D which refines M’. Hence for each M" in D which refines
we have

_< in ,.n. , ...n- W(G) < b.

Therefore fB la[]W exists.

COROLLARY. If is a choice function, A is in R, W is in BV, and f is in
B (, R) then f. f[]W exists.

An integral K on B (o, R) R is called a refinement integral provided there
is a positive integer n and a sequence , W}, where, for p 1, 2, n,

is a choice function for R and W is in BV, such that

for each f in B (9, R) and A in R. Mac Nerney [1] has provided a partial
answer to the question of what integrals are refinement integrals. In the next
section we will extend Mac Nerney’s representation theorem to give a better
but still incomplete answer.

z$. A representation theorem
A choice function @1 for R is said to precede a choice function @2 for R pro-

vided that if each of A and B is in R and A is properly situated relative to B
with respect to {1, ,.} then 1B (1 (A)) _< 1 (,. (A)). Suppose that is a
collection of choice functions for R. For each @ in let f denote the set of
ordered pairs to which (x, k) belongs only in case x is an ordered pair (A, B)
in R R such that A is properly situated relative to B with respect to and k
is the least non-negative number rn such that 1 (k (A) _< m, for each k in
different from which precedes @. The collection is said to be complete
provided (1) if each of 1 and 2 is in , @1 precedes ,., and ,. precedes 1 then
1 2 (2) if each of A, B, and C is in R, C is properly situated relative to
each of A and B with respect to , is a member of , and

1. (.;b (C)) f. (C. A 1 1 (@ (C)) f (C. B)

then [A, B] and the common part of A and C is the common part of B and
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C; and (3) if each of A and B is in R, A is properly situated relative to B
with respect to , and A contains a point of B, then there is only one member

of such that 1 ( (A) f (A, B) 1.
Furthermore, for each in , let I () denote the subset of to which X

belongs only in case , , precedes , and if ’ is in and precedes X and
,’ precedes , then either X’ X or ,’ . Let I () denote the set {} and
if n is a positive integer let In+l () denote the subset of to which , belongs
only in case there is a member X’ of I () such that I (,’) contains . The
collection is said to be coherent provided if each of p and q is a non-negative
number and F is a function from to the plane then

k in IP() # in Iq(X) q in

THEOREM 4.1. If K is an integral on B (, R) X R, and is a finite com-
plete collection of choice funcgons for R which is coherent then there is a function
W from into BV such that

K(f, A) : f./[]w,
for each (f, A ) in B (, R) X R.

Our proof of Theorem 4.1 follows in outline Mac Nerney’s proof of Theorem
1 [1, p. 322] and requires the introduction as an intermediate step of a function
V from into BV from which W will be constructed. If each of M and
is in D then M’ is called a proper refinement of M with respect to provided
that M is a refinement of M and if (A, B) is in M X M then A is properly
situated relative to B with respect to . Let V(), for each in , denote the
set of ordered pairs to which (A, k) belongs only in case A is in R, k is a com-
plex number, and for each positive number b there is a member M of D which
contains a partition of A such that

I H,, ,,M,acK({1H((G)) f(G, H)}I, G)[ < b,

for each member M of D which contains a refinement of M and each member
M" of D which is a proper refinement of M with respect to

THEOREM 4.2. V is a function from into BV.

Proof. Suppose that is a member of and A is a member of R. If M is
a member ofD which contains a partition of A andM is a proper refinement of
M with respect to then

_<,-. ,,_=_ {I((G)) h(G,H)}X(G) <_ X(A).

Suppose that each of M, M, and M" is a member of D, M contains a partition
of A, M contains a refinement of M, and M" contains a proper refinement of
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M with respect to and a proper refinement of M with respect to . For
each F in M, let N (F) denote the subset of Mt to which H belongs only in
case H is contained in A and 1 ( (H)) f (H, F) 1 and N’ (F) the subset
of M" to which H belongs only in case H is contained in A and I((H))
f (H, G) 1, for some G in M which is contained in F. N (F) is contained

in N’ (F), for each F in M.

If F is in M then

in ,.:_.HinN K({I((H)) f(H, G)}I, H)

(),.K({I((H)) f(H, G)}I, H)

g(, H).
Hence

,.,,_{((g) f(g,,,,, {I((H)) -h(H, G)}X(H)

, i ,. 1((H) h (H, F )} X (H).

Therefore A is in the itial set of V (). It is easily seen that V() is ad-
ditive on R.

THEOaE 4.3. If each of A and B is in R, A is properly situated relative o B
wih respec o , is in , and 1( (A)) f (A, B) 1, h

, A) fK(

Proof. Suppose that b is a positive number. There is a member N of D
which partitions A such that

f ls[]V l((g))V(H) 5/3,
H inn

for each memberN ofD which refines N. There is a memberM of D which
refines N such that if M’ is a member of D which refines M then

iM. i’.:,s-- X (G) < 5/3.
There is a member M’ of D which contains a refinement of each of {B} and
M such that

n. (H),, i,,=g({l((G)) h(G, f)}l, G)[ < 5/3,
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for each member M" of D which is a proper refinement of M’ with respect to .
If M" is a member of D which is a proper refinement of M’ with respect to
then

P
1, A) Jx :[4]V,

_< f ,,[,], .,(,,(H))()
HinM

f(G, F)}I,, G)

(, )}1,, )

+ g(, A) .i,n.n’ o.,o=,on.
(, f)},, )

< 25/3 + iM,ns in M’,O=,On-- (G)

+ K(I,A) s,,,o,ons iM’ K({I((G))

-/(, F)}, ) < b.

Therefore we have the theorem.

THEOREM 4.4.
with respect to , and contains n elements then

K(1,.A) 1,[4.1 V. + (-1)"
in I () in r()

Proof. Suppose that X is and ls (k (A) fx (A, B) 1.

in =1 (p) in IP()

(--1) I[X]V((q))
+q0 (p) inlP(h) (q)

+qo q in (X)

If (A, B) is in R X R, A is properly situated relative to B

V(u.)t
Then

v((q))t

fa ID]Vx K(1., A).
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Proof of Theorem 4.1. Suppose that contains n elements. Let W denote
the function from into BV defined by

W v +

_
(-)( ( v().

If each of A and B is R and M is a refinemen of A D such that each
member of M is properly situated relative to B with respeot to then

K(I, A) M K(I, H)

HinM

in

Hence we have the theorem.

5. Some examples

Suppose tha R is a field and F is a continuous linear function from B (f, R)
to the plane. Let K denote the function from B (, R) X R to the plane de-
fined by K (f, A F (1f). K is an integral and any complete set of choice
functions is degenerate. Hence

K(f, A) f f[]K[1,
for each choice function for R.
Suppose that n is positive integer and fl is the space of n-tuples of real

numbers. A subset A of fi is called a rectangular interval provided that there
is an ordered pair (x, z) in 2 )< fl such that x (p) < z (p) (p 1, 2, n)
and a member w of 2 is in A only in case

x(p) <_ w(p) <_ z(p)(p 1, 2, ..., n).

Briefly. A Ix; z]. Let R denote the set of all rectangular intervals contained
in 2.

THEOREM 5.1. Suppose that each of Ix; y] and [w; z] is in R and [x; y] con-
tains a point of [w; z]. For each integer p in [1, n],/et

u(p) 1/2((p) + (p) + ](p) -w(p)])
and

v(p) 1/2(y(p) + z(p) y(p) z(p)l).

[x; y] is relatively prime to [w; z] only in case u (p ) v(p for some integer p in
[i, n].

Proof. One way is clear. Suppose that [a; b] is a member of R contained
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in each of [x; y] and [w; z]. Then u (p) a (p) < b (p) _< v (p) for each integer
p in [1, n]. Thus we have the theorem.

Suppose that Ix; y] is in R, w (p) 1/2 (x (p) - y (p) for p 1, 2, n, M
is a member of D which contains [x; y] and [u; v] is a member of M which con-
tains w. For each integer p in [1, n], let

and

a(p) + u(p) + -u(v)l)

(p) 1/2(y(p) - v(p) Y(P)

There is an integer p in [1, n] such that (p) (p). But then

x(p) < 1/2(x(p) + z(p)) (p) u(p) O(p) u(p) z(p)

and this is a contradiction. Hence no member of M other than [x; y] con-
rains w.

TEOaE 5.2. Each member of R is R-measurable.

Proof. Suppose that each of Ix; y] and [w; z] is in R and Ix; y] contains a
point of [w; z]. Let {N} denote the sequence of sets defined as follows:
N is the set to which u belongs only in case either u x (p) or u y (p) or
u w(p)and x(p) < w(p) < y(p)oru z(p)and x(p) < z(p) < y(p).
Let M denote the collection of subsets of R to which [u; v] belongs only in
case, for each integer p in [1, n], u (p) and v(p) are in N and there is no
member of N between u (p) and v (p). M partitions [x; y]. Suppose that
each of [u; v] and [; ] is in M and [u; v] is not relatively prime to [; O] with
respect to R. Then for each integer p in [1, n]

1/2(u(p) +(p) + lu(p) --(p)[) < 1/2(v(p) -O(p) --Iv(p) --O(p)]),

and so u (p) (p) and v (p) (p). Thus M is in D. Similarly, suppose
that [u; v] is in M and [u; v] is not relatively prime to [w; z] with respect to R.
Then [u; v] is contained in [w; z]. Therefore each member of R is R-measur-
able.

Clearly each pair of elements in R is contained in a third member of R.
Theorem 2.1 shows that if (A, B) is in R R then there is a member M of D
which contains a refinement of each of A and B.

Let $ denote the class of ordered pairs to which (S, T) belongs only in
case each of S and T is a subset of the first n positive integers and S contains
no member of T. For each member (S, T) of $ let Ps,r denote the class of
functions from R into to which belongs only in case, for each [x; y] in R and
integer p in [1, n], ([x; y]) x(p) if p is in S, ([x; y]) y(p) if p is in T,
and x (p) < ([x; y]) < y (p) otherwise.

THEOREM 5.3. If (S, T) is in $ and is in Ps.r then is a choice function
for R.
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Proof. Suppose that each of [x; y] and [w; z] is in R and [x; y] contains a
point of [w; z]. Let {N} and M be as in the proof of Theorem 5.2. Suppose
that [u; v] is a member of M which contains a point of [w; z], [; ] is a member
of R contained in [u; v] and [; ] contains a point of [w; z]. If ([; ]) is in
[w; z] and p is in S then

If p is in T then
([u; v]) u(p)

_
a(p) <_ v(p).

([u; v])v v(p)

_
O(p)

_
u(p).

Since, for each integer p in the union of S and T, w (p)

_
(p) and (p)

_
z (p)

we have u (p) (p) and v (p) (p). If p is an integer in [1, n] and p is
in neither S nor T then

u(p) < ([u; v]) < v(p).

Again u (p

_
(p < ([%; ]) <_ (p v (p ). Hence

w(p) < ([u; v]) < z(p).

Therefore ([u; v]) is in [w; z].
Suppose that b ([u; v]) is in [w; z]. Let a be a point of [; ] in [w; z]. If p

is ins thanw(p)

_
(p)

_
u(p)

_
a(p)

_
z(p). If p is in T then

w (p)

_
a (p) _< (p)

_
v (p)

_
z (p). If p is an integer in [1, n] and p is in

neither S nor T then u (p) < ([u; v]) < v (p). Hence

w(p)

_
u(p) <_ (p)

_
([; ]) < o(p)

_
v(p)

_
z(p).

Therefore ([; ] ) is in [w;z] and so is a choice function for R.

THEOREM 5.4. Let be a collection of choice functions for R with the property
that, for each (S, T) in $, contains exactly one member of P.r is a finite
complete collection of choice functions for R which is coherent.

LEMMA 5.1. Suppose that each of [x; y] and [w; z] is in R. If there is a
member (S, T) of $ such that a member u of [x; y] is in [w; z] only in case
u (p) x (p) for each p in S and u (p) y (p) for each p in T then Ix; y] is
properly situated relative to [w; z] with respect to .

Proof. Suppose that [u; v] is a member of R contained in Ix; y] which con-
tains a member of [w; z], (S, T) is a member of $, and is the member of
in Ps,,r, If b([u; v]) is in [w; z] and p is in S then

x(p) <_ u(p)

_
([u; v])v x(p).

Hence S is contained in S’. Similarly, T is contained in T’. Therefore
([x; y]) is in [w; z]. Suppose that ([x; y]) is contained in [w; z]. Let a be a

member of [u; v] in [w; z]. If p is in S then x (p)

_
u (p)

_
a (p) x (p) and

if p is in T then y(p) a(p) <_ v(p)

_
y(p). Hence ([u; v] is in [w; z].

Therefore [x; y] is properly situated relative to [w; z] with respect to .
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LEMMA 5.2. If each of (S, T) and (S’, T’) is contained in $, is the member
of in P.r and 4 is the member of in Ps,.r,, then these are equivalent"

(1) precedes
(2) S is ctained in S’ and T is contained in T’

Proof. Suppose that (1) holds and Ix; y] is a member of R. Let (w, z) be
an ordered pair in X such that [w; z] is in R, if p is in S then z (p) x (p),
if p is T then w (p y(p), and w (p x (p < y (p z otheise.
[x; y] is properly situated relative to [w; z] wih respect to . Sce

S is contaed S’, and T is contaed in T’.
Suppose that (2) holds, each of [x; y] and [w; z] is R, Ix; y] is properly

situated relative to [w; z] with respect to {, } and

1(;.] ( ([x; y])) > 1[;,] ( ([x; y]) ).

There is an teger p [1, n] such that either

([x;y]) < w(p) or ([x;y]), > z(p).

Suppose the former. For each teger q [1, n], let v(q) w(q) if q p and
v (q) y (q) otheise. Ix; v] is a member of R contained in [x; y] and [x, v]
contains member of [w; z]. Hence ([x; v]) is in [w; z] and so p is in T. But
p is not T’. We have a silar situation ff ([x; y]) > z (p). Therefore
(2) implies (1).
The proof of the second part of Lemma 2 also shows that if

1 (, (Ix; y]))

and p is an teger [1, n] which is neither S nor T then

() (p) < y(p) z(p).

LEMMA 5.3. Suppose that each of Ix; y] and [w; z] is in R, Ix; y] is properly
tuated relative to [w; z] with respect to , (S, T) is in $, is the member of in
Ps.r and

1;. ( (Ix; y]) , (Ix; y], [w; z]) ,
then for each member u of Ix; y] these are equivalt"

( ) u i in [w;z],
(2) u @) x (p for each p in S and u (p ) y (p for each p in T.

Proof. Suppose that (1) holds, p is a member of S, and u(p) > x(p).
Let S’ denote S {p} and ’ the member of Ps,. . For each integer q

[1, n], let v(q) u(q) if q p and v(q) y(q) otherwise. Then Ix; v] is a
member of R contaed [x; y] and Ix; v] confabs a member of [w; z]. Fur-



110 JAMES A. RENEKE

thermore, ’ ([x; v] is in [w;z] and so ’ ([x; y]) is in [w; z].
holds if p is a member of T and u (p) < y (p). Hence

A similar situation

lw;, (([x; y])) f([x; y], [w; z]) 0.

This is a contradiction and so (1) implies (2).
Suppose that (2) holds and u is not in [w; z]. There is an integer p in [1, n]

such that either u (p) < w (p) or u (p) > z (p). Suppose the former. For
each integer q in [1, n], let v (q) w (q) if q p and v (p) y (q) otherwise.
Then [x; v] is a member of R contained in [x; y] and [x; v] contains a member of
[w; z]. Hence ([x; v]) is in [w; z]. But this is impossible. A similar situ-
ation holds if u (p) > z (p). Hence u is in [w; z] or (2) implies (1).

LEMM 5.4. If each of [x; y] and [w; z] is in R, [x; y] is properly situated rela-
tive to [w; z] with respect to , and [x; y] contains a point of [w; z], then there is a
member of such that ([x; y] is in [w; z].

Proof. Let a be a member of Ix; y] in [w; z].
let u (p) x (p) if a (p) z (p) and

For each integer p in [1, n],

u(p) 1/2(x(p) + w(p) - Ix(p) w(p)l)

otherwise and v (p) y (p) if a (p) w (p) and

v(p) 1/2(y(p) - z(p) Y(P)
otherwise. [u; v] is in R and is contained in [x; y]. Furthermore, [u; v] con-
rains a member of [w; z]. Let S be the set of integers in [1, n] to which p
belongs only in case a(p) z (p). Let T be the set of integers in [1, n] to
which p belongs only in case a (p) w (p). Let be the member of Ps.r in

Then ([u; v]) is in [w; z] and so ([x; y]) is in [w; z].

Proof of Theorem 5.4. Clearly is finite. Suppose that each of (S, T) and
(S’, T) is in $, 1 is the member of in P,r, . is the member of in Ps,.r,
1 precedes , and precedes . Then by Lemma 5.2 we have S S
andT- T’. Hence .
Suppose that each of [x; y], [w; z], and [u; v] is in R, [u; v] is properly situated

relative to each of [x; y] and [w; z], (S, T) is a member of $, is the member of
Ps.r in , and

1; (([u; v])) h ([u; v], [x; y])

1 lw; (6([u; v])) h([u; v], [w; z]).
Again by Lemma 5.2 a member a of [u; v] is in Ix; y] only in case a(p) u(p)
for each p in S and a (p) v (p) for each p in T. The same holds for [w; z].
Hence the common part of [x; y] and [u; v] is the common part of [w; z] and
[u; v]. For each integer p in [1, hi, let b (p) v (p) if p is in T and b (p) u (p)
otherwise and

c(p) 1/2(y(p) - z(p) --]y(p) --z(p)l)
;f v is in T and

c(p) 1/2(x(p) W w(p) + Ix(p) -z(p)l)
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otherwise. [b; c] is a member of R.
Suppose that each of Ix; y] and [w; z] is in R, Ix; y] is properly situated rela-

tive to [w; z] with respect to , and [x; y] contains a point of [w; z]. By Lemma
5.4 and the finiteness of there is a least member of such that

y]))

But this means that 1[,] (([x; y])) ] (Ix; y], [w; z]) 1. Lemma 5.3
shows that there is no more than one such in .
Suppose that (S, T) is $, is the member of Ps. ; each of p and q is a

non-negative teger, and F is a function from to the number plane. If
I+() is empty then

Clearly the proposition holds ff either p or q is 0. Suppose that I+q() is not
empty and p 0 q. Then there are at least p W q tegers [1, n] which
are in neither S nor T. Suppose that (S’, T) is S, is the member of in
(S’, T’), and is in I+q (). Let H denote the set of tegers the on of
S’ and T’ which are not in the union of S and T. H contains exactly p W q
elements and there are (q) subsets of H which conta p elements. Hence

in I() in Iq() q in

Hence we have Theorem 5.4.

THEOREM 5.5. B (e, R) is an algebra.

Proof. A fction f from to the number-plane is said to be quasic-
tinuous prodded ff x is a point ; [w; z] is a member of R which contains x
its interior; for each teger p in [1, n], N is the set of numbers to which u
belongs only case u w (p) or u x (p) or u z (p); M is the collection of
subsets of R to which [u; v] belongs oy in case, for each teger p in [1, n]
each of u (p) and v @) is in N and no member of N lies between u (p) and
v (p); (S, T) is in $; [u; v] is M; and z is a sequence with values [u; v] such
that for each teger p in [1, n] and positive teger q, zq(p) x (p) if p is in
either S or T and zq (p) is between u @) and v (p) and z (p) has lit x (p)
otherse; thenf[z] has a limit. The set M is the paition of [w; z] in D which
contains both [w; x] and [x; z] with the fewest membem. Let denote the
space of functions from to the number-plane which are quasi-continuous and
have compact support.

Suppose that f is , [x; y] is a member of R which contains the support
of fi and b is a positive number. Let F denote the set of ordered pairs to which
(a, A belongs only in case a is in Ix; y]; A [w; z] is a member of R which
contains a in its terior; and ff M is the paition of [x; z] D which contains
[x; a] and [a;z] with the fewest members, (S, T) is in $, [u; v] is in M, each of r
and s is [u; v], and, for each integer p in [1, n], r(p) s(p) a(p) if p is in
either S or T and each of r (p) and s (p) is between u (p) and v (p) otherwise;
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then If(s) :(r)l < b. There is a finite subset A of [x; y] such that the
interiors of the elements of the final set of the contraction of f to A covers
Ix; y].
For each integer p in [1, n], let N denote the set to which u belongs only in

case there is an a in A such that either u a (p) or u w (p) or u z (p),
where F (a) [w; z]. Let M denote the subset of R to which [u; v] belongs
only in case, for each integer p in [1, hi, u (p) and v (p) are inN and no member
of N lies between u (p) and v (p). Let M’ denote the collection of subsets of
to which B belongs only in case there is a member [u; v] of M and a member

(S, T) of $ such that a point a of f is in B only in case, for each integer f in
[1, n], a(p) u(p) if p is in S, a(p) v(p) is p is in T, and u(p) < a(p)
< v(p) otherwise. There is a function b from M into f such that /(B)
is in B for each B in M. Let g denote the function from f to the plane de-
fined by

g inM, f(b(B))lB.

g is in B (, R) and If g < b. Since 91Z is an algebra the closure of
which is B (2, R), in the space of functions from f to the plane which have
bounded final sets with respect to I" is an algebra.
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