ON A QUESTION OF AYOUB, CHOWLA AND WALUM CONCERNING CHARACTER SUMS

BY
N. J. Fine

Let p be a prime $\equiv 3(\bmod 4)$, and let

$$
S(k)=\sum_{n=1}^{p-1}\left(\frac{n}{p}\right) n^{k},
$$

where

$$
\left(\frac{n}{p}\right)
$$

is Legendre's symbol. The authors mentioned in the title have pointed out [1] that $S(0)=0, S(1)<0$, and $S(2)<0$. They have also proved that for $k=3$ and for some other small values of k, there are infinitely many $p \equiv 3(\bmod 4)$ for which $S(k)>0$ and infinitely many for which $S(k)<0$. They raise the question whether a similar result holds for other values of k. In this note, using methods similar to theirs, we answer this question for all real $k>2$.

Theorem 1. For each real $k>2$, there are infinitely many primes $p \equiv 3(\bmod 4)$ for which $S(k)>0$ and infinitely many for which $S(k)<0$.

This is an immediate consequence of the following theorem.
Theorem 2. Let f be a real-valued function on $[0,1)$ such that $f^{\prime \prime}$ exists and is non-decreasing, non-constant, and integrable on $[0,1)$, and such that $\delta=f(1-)-f(0)>0$. Then for infinitely many primes $p \equiv 3(\bmod 4)$,

$$
\begin{equation*}
S(f ; p)=\sum_{n=1}^{p-1}\left(\frac{n}{p}\right) f(n / p) \tag{1}
\end{equation*}
$$

is positive and for infinitely many it is negative.
Proof of Theorem 2. We can expand f in a Fourier series with period 1:

$$
\begin{equation*}
f(x)=a_{0} / 2+\sum_{m=1}^{\infty}\left(a_{m} \cos 2 \pi m x+b_{m} \sin 2 \pi m x\right) \tag{2}
\end{equation*}
$$

for $0<x<1$. Using the facts that

$$
\sum_{n=1}^{p-1}\left(\frac{n}{p}\right) \cos \frac{2 \pi m n}{p}=0, \quad \sum_{n=1}^{p-1}\left(\frac{n}{p}\right) \sin \frac{2 \pi m n}{p}=\left(\frac{m}{p}\right) \sqrt{p},
$$

we obtain (by substitution of (2) in (1))

$$
\frac{1}{\sqrt{p}} S(f ; p)=\sum_{m=1}^{\infty}\left(\frac{m}{p}\right) b_{m} .
$$

Received January 22, 1968.

Now

$$
\begin{aligned}
b_{m} & =2 \int_{0}^{1} f(x) \sin 2 \pi m x d x \\
& \left.=-\frac{1}{\pi m} f(x) \cos 2 \pi m x\right]_{0}^{1}+\frac{1}{\pi m} \int_{0}^{1} f^{\prime}(x) \cos 2 \pi m x d x \\
& \left.=-\frac{\delta}{\pi m}+\frac{1}{2 \pi^{2} m^{2}}\left\{f^{\prime}(x) \sin 2 \pi m x\right]_{0}^{1}-\int_{0}^{1} f^{\prime \prime}(x) \sin 2 \pi m x d x\right\} \\
& =-\delta / \pi m+c_{m}
\end{aligned}
$$

where

$$
c_{m}=-\frac{1}{2 \pi^{2} m^{2}} \int_{0}^{1} f^{\prime \prime}(x) \sin 2 \pi m x d x
$$

Our hypotheses yield the conclusions that $c_{m}=o\left(m^{-2}\right)$ and that $c_{m}>0$. We have

$$
\begin{equation*}
\frac{1}{\sqrt{p}} S(f ; p)=-\frac{\delta}{\pi} L\left(1, \chi_{p}\right)+\sum_{m=1}^{\infty}\left(\frac{m}{p}\right) c_{m} \tag{3}
\end{equation*}
$$

where

$$
L\left(s, \chi_{p}\right)=\sum_{n=1}^{\infty}\left(\frac{n}{p}\right) n^{-s} .
$$

Now Bateman, Chowla and Erdös [2] have proved that for an infinite sequence of primes $p \equiv 3(\bmod 4), L\left(1, \chi_{p}\right) \rightarrow 0$ and that for another infinite sequence of such primes, $L\left(1, \chi_{p}\right) \rightarrow+\infty$. In [3], Mrs. P. T. Joshi has shown that this result is still valid if the p 's are further required to lie in any consistent arithmetic progression $a n+b$ (with $(a, b)=1$). Since in (3) the series is dominated in absolute value by $\sum c_{m}<\infty$, the right side can be made negative for infinitely many $p \equiv 3(\bmod 4)$. On the other hand, we can find an N so large that

$$
D=\sum_{m=1}^{N} c_{m}-\sum_{m=N+1}^{\infty} c_{m}>0
$$

It is easy to see that if p belongs to a certain arithmetic progression P, we will have

$$
\rho \equiv 3(\bmod 4) \quad \text { and } \quad\left(\frac{m}{p}\right)=1 \text { for } m=1,2, \cdots, N
$$

It will then follow that

$$
\sum_{m=1}^{\infty}\left(\frac{m}{p}\right) c_{m} \geq D
$$

Applying the extended result from [3], we see that there are infinitely many $p \in P$ for which $(\delta / \pi) L\left(1, \chi_{p}\right)<D$, and for these p, the right side of (3) is positive. This completes the proof.

References

1. R. Ayoub, S. Chowla and H. Walum, On Sums Involving quadratic characters, J. London Math. Soc., vol. 42 (1967), pp. 152-154.
2. P. T. Bateman, S. Chowla and P. Erdös, Remarks on the Size of $L(1, x)$, Publ. Math. Debrecen., vol. 1 (1950), pp. 165-182.
3. Padmini T. Joshi, The size of $L(1, \chi)$ for real non-principal residue characters χ with prime modulus, J. Number Theory, to appear.

The Pennsylvania State University
University Park, Pennsylvania

