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BY

FINE

Let p be a prime --3 (mod 4), and let

Z: n

where

is Legendre’s symbol. The authors mentioned in the title have pointed out
[1] that S (0) 0, S (1) < 0, and S (2) < 0. They have also proved that for
k 3 and for some other small values of k, there are infinitely many
p 3 (mod 4) for which S (k) > 0 and infinitely many for which S (k) < 0.
They raise the question whether a similar result holds for other values of k.
In this note, using methods similar to theirs, we answer this question for all
real k > 2.

TIEOlE 1. For each real } > 2, there are infinitely many primes
p 3 (mod 4) for which S (k) > 0 and infinitely many for which S (k) < O.

This is an immediate consequence of the following theorem.

ToaE 2. Let f be a real-valued function [0, 1 such that exists and
is n-decreasing, non-constant, and integrable on [0, 1), and such that

f(1- f(0) > O. Th for infinitely many primes p 3 (mod 4),

(1) S(f; p) f(n/p)
nl

is positive and for infinitely many it is negative.

Proof o] Theorem 2. We can expand f in a Fourier series with period 1:

(2) f(x) ao/2 + :. (a cos 2mx + b sin 2mx)

for 0 < x < 1. Using the facts that

cos 0, sin
2mn

we obtain (by substitution of (2)in (1))
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Now

where

b 2 f(x) sin 2rmx dx

__1 f x) cos 2’mx -{- - if(x) cos 2rmx dx

rm
1 ’(x) sin 2’mx f’(x) sin 2rmx d-t" 2..m

1 Jo f’’ (x) sin 2rmx dx.Cm 2rm

Our hypotheses yield the conclusions that c o (m-) and that c 0.
have

where

We

S(f; p) - L(1, x,) -t-
-1

c,

L(s,,) _1
Now Bateman, Chowla and ErdSs [2] have proved that for an infinite se-

quence of primes p 3 (rood 4), L(1, x) -- 0 and that for another infinite
sequence of such primes, L(1, x) --* -t- . In [3], Mrs. P. T. Joshi has shown
that this result is still valid if the p’s are further required to lie in any consistent
arithmetic progression an - b (with (a, b) 1). Since in (3) the series is
dominated in absolute value by c < , the right side can be made nega-
tive for infinitely many p -= 3 (mod 4). On the other hand, we can fred an
N so large that

D -c _,+, c > 0.

It is easy to see that if p belongs to a certain arithmetic progression P, we will
have

p=-- 3 (mod4) and

It will then follow that

()= l form= 1,2,...,N.

(;)., c,,, >_ D (peP).

Applying the extended result from [3], we see that there are infinitely many
p e P for which (/)L(1, x) D, and for these p, the right side of (3) is
positive. This completes the proof.
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