SOME PROPERTIES OF LATTICES IN A LIE GROUP

BY

S. P. WANG¹

1. Introduction

Let G be a connected Lie group, Γ a discrete subgroup and G/Γ be the space of left cosets. Given any right Haar measure μ over G, μ induces a measure μ over G/Γ . If $\mu(G/\Gamma)$ is finite, Γ is called a *lattice*. If G/Γ is compact, Γ certainly being a lattice is called a *c*-lattice. Let S(G) be the set of all lattices of G. We give S(G) a topology induced from the notion of *limit of lattices* introduced by Chabauty in [2]. We denote A(G) to be the group of all open continuous automorphisms of G with the compact open topology. It is clear that A(G) operates continuously on S(G). In [2], Chabauty conjectured that given any lattice Γ of G, $A(G)\Gamma$ with the induced topology from S(G) is homeomorphic to the homogeneous space $A(G)/N(\Gamma)$, where

$$N(\Gamma) = \{ \alpha : \alpha \in A(G), \alpha(\Gamma) = \Gamma \}.$$

In [11], the author proved that if Γ is a finitely generated lattice of G such that the restriction map²

$$H^1(G, \hat{G}) \xrightarrow{\operatorname{res}} H^1(\Gamma, \hat{G})$$

is surjective, then $A(G)\Gamma$ is homeomorphic to $A(G)/N(\Gamma)$. Here we shall study this conjecture in linear Lie groups. We shall establish the following.

THEOREM A. Let Γ be a finitely generated lattice of a linear Lie group which is semi-simple without compact factor. If the set tr $(\Gamma) = \{ \text{trace } (\gamma) : \gamma \in \Gamma \}$ is discrete, then $A(G)\Gamma$ is homeomorphic to $A(G)/N(\Gamma)$.

Let μ be a fixed right Haar measure. There is a map $v : S(G) \to \mathbb{R}$, defined by $v(\Gamma) = \overline{\mu}(G/\Gamma)$. In general v is not continuous. For an example, see [6]. However the following is true.

THEOREM B. Let G be a connected semi-simple Lie group without compact factor and Γ_0 a lattice of G. If W is a subset of S(G) containing Γ_0 such that the restriction of v on W is continuous at Γ_0 , then there exists a neighborhood \mathbb{U} of Γ_0 in W and a positive integer n such that each $\Gamma \in \mathbb{U}$ is contained in at most n discrete subgroups of G.

2. Some density properties

Suppose G is a topological group. A subgroup H of G will be said to have Selberg property (or property (S)) if for any neighborhood U of e in

Received December 27, 1967.

¹ Partially supported by the National Science Foundation.

² \hat{G} denotes the Lie algebra of G and the action of G on \hat{G} is given by the adjoint representation.

G and any element x in G, there exists an integer n > 0 with $x^n \in UHU$. As shown by Selberg [9], every lattice has property (S). We show the converse for nilpotent groups.

PROPOSITION 2.1. Let G be a connected nilpotent Lie group and H a subgroup of G with property (S). Then G/\overline{H} is compact.

Proof. Without loss of generality, we may assume that G is simply connected. First consider the case that $G = \mathbb{R}^r$. Let $\tilde{H} = \mathbb{R}^s \oplus \mathbb{Z}^t$. Suppose that \mathbb{R}^r/\tilde{H} is not compact. Then $\mathbb{R}^r = A \oplus B$ where $\tilde{H} \subset A \approx \mathbb{R}^{s+t}$, $B \approx \mathbb{R}^l$, l > 0. Let $\pi : \mathbb{R}^r \to \mathbb{R}^r/A$ be the natural projection map. From [1], we know that $\pi(H)$ has property (S) in \mathbb{R}^r/A . But $\pi(H) = \{0\}$ and $\mathbb{R}^r/A \approx \mathbb{R}^l$, l > 0 which is absurd. We now return to the general case. Let $G_2 = [G, G]$ and $\lambda : G \to G/G_2$ be the natural projection map. It is clear that $G/G_2 \approx \mathbb{R}^r$, for some r and $\lambda(H)$ has property (S). By what we have just proved above, $\lambda(G)/\overline{\lambda(H)}$ is compact. Hence $G/\overline{G_2 H}$ is compact. By a theorem of Malcev [7], we obtain that G/\overline{H} is compact.

COROLLARY 2.2. Let G be a connected nilpotent Lie group and Γ a discrete subgroup. Then Γ is a lattice iff Γ has property (S).

In [11], we see that Chabauty's conjecture is always true for nilpotent Lie groups. For solvable groups, we have the following.

THEOREM 2.3. Let G be a connected solvable Lie group and Γ a lattice such that $\mathfrak{A}(\operatorname{Ad} \Gamma)$, the Zariski closure in the ambient real linear group, contains Ad (G). Then $A(G)\Gamma$ is homeomorphic to $A(G)/N(\Gamma)$.

Proof. G/Γ is compact; in particular Γ is finitely generated. Furthermore by [8, Theorem 8.1],

$$H^1(G, \hat{G}) \xrightarrow{\operatorname{res}} H^1(\Gamma, G)$$

is an isomorphism. Hence from [11], $A(G)\Gamma$ is homeomorphic to $A(G)/N(\Gamma)$

3.

Groups considered in this section are linear Lie groups. Given any subset T of $GL(m, \mathbb{R})$, we denote tr $(T) = \{ \text{trace } (t) : t \in T \}$ and l(T) be the linear span in $M_m(\mathbb{R})$.

LEMMA 3.1. Let Γ be a connected semi-simple Lie group and H a finitely generated subgroup of G such that $\mathfrak{A}(H) \supset G$. If $r_n : H \to G$ is a sequence of trace-preserving homomorphisms with $r_n \to 1_H$, then there exists $\alpha_n \in A(G)$ such that $\alpha_n \to 1_G$ and $r_n = \alpha_r |_H$ for large n.⁸

Proof. Since $l(H) \supset \mathfrak{A}(H) \supset G$, l(H) = l(G). From $\lim_n r_n = 1_H$, it follows that there exists an integer $n_0 > 0$ such that $l(r_n(H)) = l(G)$ for $n > n_0$. In the sequel, n is assumed to be $> n_0$. Define $\beta_n : l(G) \to l(G)$

⁸ The argument used in the proof essentially follows [9, Lemma 4].

by

$$\beta_n(\sum_{i=1}^q s_i h_i) = \sum_{i=1}^q s_i r_n(h_i), \text{ for } s_i \in \mathbb{R}, h_i \in H, 1 \le i \le q$$

We have to verify that β_n is well defined. Let $B: l(G) \times l(G) \to \mathbb{R}$ be defined by $B(x, y) = \text{trace } xy, x, y \in L(G)$. Since G is semi-simple, l(G) is a semi-simple associative algebra and B is a nonsingular bilinear form. Let $\sum_{i=1}^{q} s_i h_i = 0$. For any $\sum_{j=1}^{v} t_j k_j \in l(G), t_j \in \mathbb{R}, k_j \in H, 1 \leq j \leq v, (\sum_{i=1}^{q} s_i h_i) (\sum_{j=1}^{v} t_j k_j) = 0$. As r_n preserves trace,

$$B(\sum_{i=1}^{q} s_i r_n(h_i), \sum_{j=1}^{v} t_j r_n(k_j)) = 0.$$

However $l(r_n(H)) = l(G)$, and *B* is nonsingular, we have that $\sum_{i=1}^{q} s_i r_n(h_i) = 0$. Thus β_n is well defined. It is obvious that β_n is an algebra homomorphism. Since β_n is surjective and l(G) is of finite dimension, β_n is an isomorphism.

$$\mathfrak{A}(r_n(H)) = \mathfrak{A}(\beta_n(H)) = \beta_n(\mathfrak{A}(H)) \supset \beta_n(G).$$

Hence $\mathfrak{A}(G) \supset \beta_n(G)$. But dim $G = \dim \beta_n(G)$ and $\mathfrak{A}(G)^0 = G$ where $\mathfrak{A}(G)^0$ is the topological connected component of e in $\mathfrak{A}(G)$, so this yields $\beta_n(G) = G$. Clearly $\beta_n \to \mathbf{1}_{l(G)}$. Set $\alpha_n = \beta_n|_G$; the proof of the lemma is thus completed.

We now prove Theorem A. Let $\{\alpha_n(\Gamma)\}\$ be a sequence of lattices of G converging to Γ in S(G). From [11], we know that there exists $r_n: \Gamma \to \alpha_n(\Gamma)$ a homomorphism, such that $r_n \to 1_{\Gamma}$. Suppose for the moment that r_n preserves trace for large n. Then by the preceding lemma, there is an $\alpha'_n \in A(G)$ such that $r_n = \alpha'_n|_{\Gamma}$.

$$\alpha'_n(\Gamma) \subset \alpha_n(\Gamma) \text{ and } \overline{\mu}(G/\alpha'_n(\Gamma)) = \overline{\mu}(G/\Gamma) = \overline{\mu}(G/\alpha_n(\Gamma)).$$

It follows that $\alpha'_n(\Gamma) = \alpha_n(\Gamma)$. By the same lemma, $\alpha'_n \to 1_G$. This shows that the map

$$\phi: A(G)\Gamma \to A(G)/N(\Gamma), \quad \phi(\alpha(\Gamma)) = \alpha N(\Gamma)$$

is continuous at Γ . By action of A(G), ϕ is continuous. It is clear that ϕ^{-1} is always continuous. Hence $A(G)\Gamma \approx A(G)/N(\Gamma)$. Thus in order to complete the proof, it remains to show that r_n preserves trace for large n. Let $\gamma_1, \dots, \gamma_{2q}$ be a set of generators of Γ with $\gamma_{2i} = \gamma_{2i-1}^{-1}$, $1 \leq i \leq q$. Let ω be a word on 2q elements w_1, \dots, w_{2q} . Given any $\omega = w_{i_1} \dots w_{i_q}$, we define $\omega(\gamma) = \gamma_{i_1} \dots \gamma_{i_q}$ and $W: M_m(\mathbb{R})^{2q} \to M_m(\mathbb{R})$ by

$$W(X) = X_{i_1} \cdots X_{i_a}, \text{ where } X = (X_1, \cdots, X_{2q}) \epsilon M_m(\mathbb{R})^{2q}.$$

Since the polynomial rings with coefficients in a field are Noetherian, there are finitely many words $\omega_1, \dots, \omega_b$ such that $\operatorname{tr} W(X) - \operatorname{tr} \omega_i(\gamma) = 0, 1 \leq i \leq b$ implies $\operatorname{tr} W(X) - \operatorname{tr} \omega(\gamma) = 0$ for all word ω . But $\operatorname{tr} (\Gamma) = \operatorname{tr} (\alpha_n(\Gamma))$ is discrete and $r_n \to 1_{\Gamma}$. It follows that $\operatorname{tr} W_i(r_n(\gamma)) - \operatorname{tr} \omega_i(\gamma) = 0, 1 \leq i \leq b$ holds for large n where $r_n(\gamma) = (r_n(\gamma_1), \dots, r_n(\gamma_{2q}))$. Therefore r_n preserves trace for large n. COROLLARY 3.2. Let Γ be as in Theorem A and $\Gamma_1 \in S(G)$ with $\Gamma_1 \supset \Gamma$. Then $A(G)\Gamma_1 \approx A(G)/N(\Gamma_1)$.

Proof. Let $\{\alpha_n(\Gamma_1)\}$ be a sequence of lattices converging to Γ_1 . Let $r_n: \Gamma_1 \to \alpha_n(\Gamma_1)$ be the sequence of homomorphisms constructed in [11].

Clearly $[\Gamma_1: r_n^{-1}(\alpha_n(\Gamma))]$ is bounded. Since Γ_1 is finitely generated, Γ_1 has only finitely many subgroups with bounded index. Hence there is a subgroup Γ_0 of Γ with finite index and $r_n(\Gamma_0) \subset \alpha_n(\Gamma)$ for all n. Since tr (Γ) is discrete, as shown above that $r_n|_{\Gamma_0}$ preserves trace for large n. By Lemma 3.1, there exists $\beta_n \in A(G)$ with $\beta_n|_{\Gamma_0} = t_n|_{\Gamma_0}$ for large n and $\beta_n \to 1_G$. Then

$$\beta_n^{-1} \circ r_n \to 1_{\Gamma_1} \text{ and } \beta_n^{-1} \circ r_n(\Gamma_1) \supset \Gamma_0.$$

By [10], there are only finitely many lattices containing Γ_0 . Therefore $\beta_n^{-1} \circ r_n = \mathbf{1}_{\Gamma_1}$ for large *n*. It follows that $\beta_n(\Gamma_1) = \alpha_n(\Gamma_1)$ for large *n*. Same argument as used in the above proof leads to the conclusion

$$A(G)\Gamma_1 \approx A(G)/N(\Gamma_1).$$

4.

In this section, we shall give a proof of Theorem B which essentially follows that given in [10] with some modification. Suppose the theorem is false. Then there is a sequence $\{\Gamma_n\}$ of lattices in \mathbb{W} such that $\Gamma_n \to \Gamma_0$ and the cardinal number of the set $a(\Gamma_n) = \{\Gamma : \Gamma \in \mathcal{S}(G), \Gamma \supset \Gamma_n\}$ increases with *n* unboundedly. Since $\lim_n \Gamma_n = \Gamma_0$, there is a compact subset *K* of *G* such that $\Gamma_n \cap K$ generates a subgroup of type (P) [10]. By the main lemma in [10], $\bigcup_{n=1}^{\infty} a(\Gamma_n)$ is uniformly discrete.⁴ Hence $[\Gamma : \Gamma_n]$ is bounded for all *n* and all $\Gamma \in a(\Gamma_n)$. Thus we may assume that the cardinal number of the set

$$a(\Gamma_n:l) = \{\Gamma: \Gamma \in \mathcal{S}(G), [\Gamma:\Gamma_n] = l\}$$

is not bounded for certain fixed positive integer l. Since S(G) is separable metric [11] and Γ_0 is contained in only finitely many lattices of G [10], there exists a subsequence $\{i_n\}$ of $\{n\}$ with $b(\Gamma_{i_n}:l) \subset a(\Gamma_{i_n}:l)$ and there is $\Gamma' \in S(G)$ such that

(1) the cardinal number of $b(\Gamma_{i_n}; l) = 2^n$,

(2) $\Gamma' \supset \Gamma_0$,

(3) $d(\Gamma, \Gamma') < 1/n$ for $\Gamma \in b(\Gamma_{i_n}; l)$ where d is a fixed metric which induces the topology of S(G).

Let $\{H_n\}$ be the sequence of lattices of G defined by

$$\{H_{2^{n+1}}, \cdots, H_{2^{n+1}}\} = b(\Gamma_{i_n}; l).$$

It is clear that $\lim H_n = \Gamma'$. Since $\overline{\mu}(G/\Gamma_{i_n}) \to \overline{\mu}(G/\Gamma_0)$, by the assumption,

⁴ A set S of discrete subgroups is uniformly discrete if there is a neighborhood V of e such that $V \cap \Gamma = \{e\}$ for all $\Gamma \in S$.

we have

$$\overline{\mu}(G/H_n) \to (1/l)\overline{\mu}(G/\Gamma_0).$$

From [2], we know that $\liminf \ \overline{\mu}(G/H_n) \geq \overline{\mu}(G/\Gamma')$. Therefore $\infty > [\Gamma':\Gamma_0] \geq l$. Let $\alpha_1, \dots, \alpha_k$ $(k \geq l)$ be a set of representatives of Γ'/Γ_0 and β_1, \dots, β_m in Γ_0 such that $\alpha_i^{-1}\beta_j\alpha_i \in \Gamma_0$, $1 \leq i \leq k, 1 \leq j \leq m$ and $\{\beta_1, \dots, \beta_m\}$ generates a subgroup of type (P). Since $H_n \to \Gamma'$, there exists $\alpha_i(n), \beta_j(n) \in H_n$ such that $\alpha_i(n) \to \alpha_i, \beta_j(n) \to \beta_j$. As $\bigcup_{n=1}^{\infty} a(\Gamma_n)$ is uniformly discrete, $\alpha_i(n), \beta_j(n)$ are uniquely determined for large n. Further we have

- (a) $\alpha_i(n)^{-1}\beta_j(n)\alpha_i(n) \to \alpha_i^{-1}\beta_j\alpha_i$,
- (b) $\beta_j(2^n + 1) = \cdots = \beta_j(2^{n+1}),$
- (c) $\alpha_i^{-1}(m)\beta_j(m)\alpha_i(m) \in \Gamma_{i_n}, 2^n + 1 \leq m \leq 2^{n+1},$

(d) the subgroup B(n) generated by $\{\beta_1(n), \dots, \beta_m(n)\}$ is of type (P), where n is sufficiently large.

From (a) through (c), we see that $\alpha_i(s)\alpha_i(t)^{-1}$, $2^n + 1 \leq s, t \leq 2^{n+1}$, belongs to the normalizer N(B(n)) of B(n) in G for large n. Again by the main lemma in [10], and the fact that normalizer of subgroup of type (P) is discrete [10], $\bigcup_{n=1}^{\infty} N(B(n))$ is uniformly discrete. It follows that $\alpha_i(s) = \alpha_i(t)$, $2^n + 1 \leq s, t \leq 2^{n+1}$ for large n. Since $\Gamma_{i_n} \to \Gamma_0$, $\alpha_i(n) \to \alpha_i$, $1 \leq i \leq k$ and $\alpha_i^{-1}\alpha_j \notin \Gamma_0$, we must have that $\alpha_i(m)^{-1}\alpha_j(m) \notin \Gamma_{i_n}$, $2^n + 1 \leq m \leq 2^{n+1}$ for large n. Since $k \geq l$, and $[H_m:\Gamma_{i_n}] = l$, $H_{2^{n+1}} = \cdots = H_{2^{n+1}}$ holds for large n which contradicts our choice of $\{H_n\}$. Thus the proof is completed.

References

- 1. A. BOREL, Density properties for certain subgroups of semi-simple groups without compact factor, Ann. of Math. (2), vol. 72, 1960, pp. 179–188.
- C. CHABAUTY, Limite d'ensemble et geometrie des nombres, Bull. Soc. Math. France, vol. 78 (1950), pp. 143-151.
- 3. C. CHEVALLEY, Theory of Lie groups I, Princeton University Press, Princeton, 1946.
- 4. H. GARLAND AND M. GOTO, Lattices and the adjoint group of a Lie group, vol. 124 (1966), pp. 450-460.
- 5. S. HELGASON, Differential geometry and symmetric space, Academic Press, N.Y., 1962.
- 6. A. M. MACBEATH AND S. SWIERCZKOWSKI, Lattices in a compactly generated group, Canad. J. Math., vol. 7 (1960), pp. 427-438.
- A. I. MALCEV, On a class of homogeneous spaces, Amer. Math. Soc. Transl. no. 9 (1962), pp. 276-307.
- G. D. MOSTOW, Cohomology of topological groups and solvmanifolds, Ann. of Math., vol. 73 (1961), pp. 20-48.
- 9. A. SELBERG, Discontinuous groups in symmetric spaces, contributions to function theory, Tata Institute of Fundamental Research, pp. 147-164.
- 10. H. C. WANG, On a maximality property of discrete subgroups with fundamental domain of finite measure, Amer. J. Math., vol. 89 (1967), pp. 124-132.
- 11. S. P. WANG, Limit of lattices in a Lie group, Trans. Amer. Math. Soc., vol. 133 (1968), pp. 519-526
- 12. A. WEIL, Remark on the cohomology of groups, Ann. of Math., vol. 80 (1964), pp. 149-158.
 - THE INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY