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0. Introduction.
The study of orders has grown out of an attempt to generalize the results of

algebraic number theory to non commutative algebras. In this study, the
ground ring has remained a Dedekind ring and the full ring of integers has been
replaced by maximal orders in a finite-dimensional algebra L with 1 over K,
the quotient field of R.
One of the main results of this theory is that certain ideals of maximal orders

are invertible [1] (in fact, locally principal [2], [7]) in an appropriate sense.
These modules are distinguished by the fact tiat they are finitely generated
as R-modules and span L over K. On the other hand, it is standard that with
with any module of the above type contained in L, we can associate two orders
(not necessarily maximal) and give a definition of invertibility. This sug-
gests that we deal with invertibility from a different point of view. We
shall consider the modules as the basic units of study and pose questions of
invertibility about them. In this way, all orders are brought into play, not
just the maximal ones. This point of view is further motivated by Dedekind’s
description of the composition of quadratic forms with rational coefficients in
terms of multiplication of modules [3] (recently generalized by Kaplansky to
Bezout domains [4]) and by a result of Dade, Taussky and Zassenhaus [5],
which says that when L is a field such that (L:K) n, the (n 1 )-st power
of any module is invertible.

If the study of modules is restricted to the distinguished ones with inver-
tibility the goal, it is natural to ask of the ground ring only that it fulfil this
goal with respect to its quotient field. So, theorems proving invertibility will
require only that R be a Priifer ring (a commutative domain with i with every
non-zero, finitely generated ideal invertible).
The general notation of this paper is as follows. R will always be a commu-

tative domain with 1 and will have quotient field K. L will always be a finite-
dimensional algebra with 1 over K. We shall use to mean a module direct
sum and - to mean a ring direct sum.
In I, we give the basic definitions and prove some preliminary results. In

II, we show that the Dade, Taussky Zassenhaus result generalizes to the case
where R is a Prtifer ring and L is a commutative algebra. Using this result,
we show that if T is the integral closure of R in L, then any ideal of T which
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contains a non zero divisor of L is invertible in T. This says, in particular,
that when L is a field, T is a Priifer ring. We also prove a new result con-
cerning the local principality of invertible modules. In III, we give two con-
ditions on L, each of which is enough to insure that L contain a non invertible
module. We show, also, that if L satisfies neither condition, and if R is a
Prtifer ring, then L contains only invertible modules.

I. Preliminaries.
1. Basic concepts. We now make explicit the concepts mentioned in

the introduction.

DEFINITION. An R-module contained in L is called admissible if it is finitely
generated over R and generates L over K. We shall be concerned with ad-
missible modules only so that, from now on, unless otherwise stated, all modules
will be assumed admissible.

DEFINITION. A subring P of L is called an order if it is admissible as an
R-module and contains R. We note that, since P is finitely generated over
R, all its elements are integral over R.

DEFINITION. Let A be any R-module contained in L. We call

the left order of A,

the .right order of A and

P {xeLIxA A}

Q {xeKIAxAI

A-1 {xeLIAxA A}
the inverse of A. We write A pA to indicate that P and Q are the left and
right orders of A respectively. We say that A is left (resp. right) invertible
if A-1A Q (resp. AA- P) and that A is invertible if it is both left and
right invertible. It is clear that both P and Q contain R. When A is ad-
missible, P and Q will consist of integral elements and it is easy to see that
P, Q and A- all generate L over K. We shall show shortly that, when R is
a Prtifer ring, P, Q and A-1 are finitely generated as well. Hence, when R is a
Priifer ring, P and Q are orders and A- is admissible.
Note that if A pA ,then A- is a left Q-module and a rightP-module,

although P and Q are not necessarily its orders. If L is commutative, the
left and right orders of A are equal and we write P for the order of A. We
remark, finally, that R will be assumed infinite throughout, since otherwise
R K and questions of invertibility become trivial.

2. A norm and localization. For any x e L, we define N(x), the norm of
x, to be the determinant of x in the right regular representation of L. Thus,
taking norms defines a multiplicative map from L to K. Using the norm,
we define a map from modules to fractional ideals of R as follows. For any
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module A, we let N(A) be the fractional ideal of R generated by the norms of
the elements of A. We call N(A) the norm of A. We remark that this
latter map is not, in general, multiplicative nor is N(A), in general, finitely
generated. An example of these facts will appear later.

Localization is a valuable tool in dealing with both the question of in-
vertibility and with the question of when the norm is multiplicative on modules.
For, standard arguments show that a module A is invertible if and only if A
is invertible (as an RM-module) and that, given modules A and B, N (AB)
N (A)N (B) if and only if N (AMBM) N(A)N (BM) where M runs over the
maximal ideals of R. The value of localization as u tool derives from the well
known fact that the ring R is a Prtifer ring if and only ifR is valuation ring
for each maximal ideal M of R.

3. Admissibility of orders and inverses. We show that, when R is a Prtifer
ring, orders and inverses of admissible modules are admissible.

LEMM.4. 1. Let A be an admissible module. Then A is generated by invertible
elements of L.

Proof. LetA (t, xl, ...,x,,)/RwithteKandt 0. Then, for any
r e R, x tr A. Since L is finite dimensional over K, x tr is invertible
if and only if it is a non-zero divisor as an element of End L, i.e., if and only
if N (x tr) O, i.e., if and only if tr is not a characteristic root of x. Since
R is an infinite domain, we may choose r0 R so that tro is not a characteristic
root of any x. Since

A (t, xl tro, x,, tro)/R,
we are done.

It is a well known fact [6] that if M is any R-module with submodules
and I. such that I1, I2 and I1 W I2 are finitely presented, then I1 n I is finitely
generated. When we apply this fact to our setup, we get the following.
If A1 and A are any finitely generated R-modules contained in L, then
A and A1 W A are torsion free and so, since R is a Prtifer ring, they are pro-
jective and, afortiori, finitely presented. Hence A1 n A2 is finitely generated.
If As is another finitely generated R-module contained in L, then applying the
above argument to A1 A and As, we see that A A2 n A3 is finitely gen-
erated. Continuing in this way, we see that the intersection of a finite number
of finitely generated R-modules contained in L is finitely generated. This
enables us to prove the following

LEMMA 2. Let R be a Pri’fer ring. Let A and B be finitely generated R-mod-
ules contained in L such that A is generated by units of L. Let

C {x e L IxA c B}. Then C is finitely generated.

Proof. Let A (x, x,)/R with each x a unit of L. Then
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y C :* yA B = yxi B for each i ,: y Bx71 for each i. Hence, C
Bx-1. Since R is a Prtifer ring, the remarks preceding the lemma may be
used to complete the argument.

As a corollary, we deduce the desired result.

COROLLARY. Let R be a Prifer ring and let A pA be an admissible module.
Then P, Q and A-1 are admissible.

Proof. We need only prove finite generation. For P and Q, this follows
immediately from Lemma 2 and the definitions. As for A-1, it is enough to
note that it could be equally well defined as the set of all x e L such that xA Q

We remark, finally, that if R is a valuation ring and if (L’K) n, then any
admissible module is free on n generators. For, any free basis would have to
have exactly n elements and a free basis always exists since finitely generated
projectives over quasi-local rings are free.

II. Invertibility of powers of modules.
1. Dade, Taussky and Zassenhaus [5] have shown that when R is a Dede-

kind ring and L is an n-dimensional field extension of K, then An-1 is in-
vertible for any admissible module A. We generalize this result to the fol-
lowing.

THEORE 1. Let R be a Prifer ring with quotient field K. Let L be a com-
mutative, n-dimensional algebra with 1 over K. Let A be an admissible module.
Then An-1 is invertible.

We prove the theorem by a series of lemmas and assume, unless otherwise
stated, that L is commutative and that R is a valuation ring.

It is a standard result that if F is any infinite field and if f(xl, x,) is
a polynomial over F which is not the zero polynomial, then f is not identically
zero on F. We use this fact to prove

LEMA 3. Let R be a valuation ring with maximal ideal M such that RIM
is infinite. Let f (xl x,) be a polynomial with domain R and coejcients in
K. Then the fractional R-ideal generated by the image of f is generated by the
coecients of f.

Proof. Since R is a valuation ring, f has a minimal coefficient; call it
Then

f(, ..., x) g(x, ..., )
where g has a coefficient equal to 1 and all coefficients in R. Hence, the co-
efficien of g generate R. Now the image of g is contained in R and
g (rood M) 0, so that g has a value which is a unit of R. So the fractional
R-ideal generated by the image of g is R. Therefore, the lemma is true for g
and so for f.
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DEFINITIOI. Let A be any R-module contained in L. We say that x e A
has minimal norm in A if, for every y e A, N (x) divides N (y).

Assume that R satisfies the conditions of Lemma 3, and that A is an
R-module. Then the norm form on A with respect to some fixed basis of A
over R is a polynomial satisfying the conditions of Lemma 3 so that the ideal
generated by its image, i.e. N (A), is finitely generated. Since N (A) is
generated by the norms of its elements, a finite number of these norms suffice.
By choosing an element of A corresponding to the minimal of these norms, we
prove

LEMM/k 4. Let R be a valuation ring with maximal ideal M such that RIM
is infinite. Let A be an admissible module. Then A contains an element of
minimal norm (i.e. N (A is principal).

We remark that when A is admissible and x e A is an element of mini-
real norm, then x is invertible. For, since A is admissible, it contains some
non zero element of K. Since N(t) li O, N(A) 0 and so N(x) O.
Hence x is invertible as noted in Lemma 1.
The importance of an element of minimal norm is revealed in"

LEMX 5. Let R be a valuation ring with maximal ideal M such that RIM is

infinite. Let A be an admissible module with x A having minimal norm. Then
B x-A consists entirely of elements integral over R.

Proof. Choose any z e B. Since I e B, we have that z u e B for any u e R,
n--1and so N (z u) e R. NowN (z u) u d- a_l d- d- a0, the char-

acteristic polynomial for z. Choose u, ..., u_ units of R with u and u in
different cosets of RIM for i j. Substituting these units for u and noting
that a0 N (z), we get the system of equations

n--2
a,_iu - +ai rR, i= 1,...,n- 1.

Now the system of equations

X_u- -t- W X r e R, i 1, ,n 1,

has a unique solution in R if its determinant is a unit of R. But the determi-
nant is the Vandermonde determinant and equals l-I<.(u u) which is a
unit of R. Since a, ..., a_ is manifestly a solution, each a e R. Since z
satisfies its characteristic polynomial, it is integral over R and we are done.

This lemma motivates the following

DEFINITION. An admissible module which contains 1 and consists of inte-
gral elements (over R) is called a semi-order.

In the language of this definition, we have shown in Lemma 5, that B x-A
is a semi-order. We give some simple properties of semi-orders.
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LEMMA 6. If B is a semi-order, then some power of B is an order.

Proof. Since B is finitely generated with each generator satisfying a monic
polynomial with integral coefficients and since L is commutative, it is easy to
see that there is a positive integer m such that B c Bm-1. Hence, B’-1 is an
order.

LEMM. 7. Suppose that L (not necessarily commutative) has radical T. Sup-
pose that A is a semi-order such that A’ A (mod T) is an order. Then some
power of A is an order.

Proof. Since (A’) A’, we know that A c A W T. Now, there is an
A.integer such that T 0. Choose x, x Then there are y A

and n e T such that x y; - n. Then

Expanding the left hand side, we see that II- x is contained in A*-. Since
II-i x has the form of an arbitrary generator of A, we have A* A-,
i.e., A*-1 is an order.
We note that if LIT is commutative, the preceding two lemmas imply that

some power of any semi-order is an order.
We can now show that when RIM is infinite, some power of any module is

invertible. For if B x-lA (in the notation of Lemma 5), then B is a semi-
order and by Lemma 6 there is an integer m such that B x-A is an order.
Then A" x’B is invertible with inverse x-B. Therefore, to prove
Theorem 1 when RIM is infinite, we need only show that we can choose
m n 1. We follow the technique in [5].

LEMMA 8. Let S be an n-dimensional, commutative algebra with 1 over a field
F. Let V be a linear subspace of S, containing 1 and such that V generates S as
an algebra over F. Then V"-1 S.

Proof. The conditions on V imply that (V:K) > 1 and that dimK V >_
dimK V-1 W 1 as long as V- is contained in S properly. It follows that
V- S.

Now B is free on n generators; hence, (B"/MB":R/M) n. Set

V (B + MB’)/MB’.

Then, by Lemma 8, Vn- B’/MB’. Therefore, B’*- + MB B" and
the result follows from Nakayama’s lemma, i.e., we have proved Theorem 1.
when RIM is infinite.

Suppose that R/M is finite. We employ the following well known device.
Let Ro R[x]u,r,, i.e., R0 is the ring whose elements are the rational func-

tions f(x)/g (x) where x is an indeterminate, f, g R[x], and g has some coeffi-
cient a unit of R. Then R0 is a valuation ring and its quotient field is just
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K (x). Let Lo LK (x) and Ao ARo for any admissible module A. Then
A0 is an admissible R0-module. Since Ro/MRo is infinite and (L0:K (x)) n,
we have that A-1 is invertible. The following two lemmas show that A
is invertible.

LEMM) 9. Let B be an admissible R-module and let Bo BRo. Then
p (x)/q (x) (Bo)-I if and only if the coecients of p (x) are in B-.

Proof. The "if" part is obvious. For the "only if" part, let p/ql and
p/q, be in B0 and p/q (Bo)-l. It is sufficient to prove the result when p and
p are in B B0. Then p pp has coefficients in B. The result is clear once
we have written out p as a polynomial and carried out the multiplication.

LEMM 10. Let B be an admissible R-module. Then, if BRo is invertible, so
isB.

Prog. Let I = (p/q) (p/q with p/q e Bo and p/q e B7. Since
some coefficient of= q q as a unit u, say, of R, we get from

that u

_
ab where a e B and b e by Lemma 9. Therefore, I e BB-and we are done.

We have shown that An-i is invertible for any admissible module A and so,
have completed the proof of Theorem 1.

It is well known that, when R is a Prfifer ring and L is a finite-dimensional
field extension of K, then the integral closure of R in L is again a Prfifer ring.
Theorem 1 provides the following generalization.

LEMM 11. Let R be a Prer ring with quotit field K. Let L be a finite-
dimsional, commutative algebra with 1 over K. Let S be the integral closure of
R in L. Let A be a finitely generated S-module contained in L which contains a
n-zero divisor of L. Then A is invertible.

Proof. Since S contains a basis of L over K and A contains a non-zero di-
visor (i.e. a unit), weknow that A contains a basis of L over K. Let a, a
be u generating set for A over S which contuins a basis of L over K. Let
Ao (a, a)/R. Then A0 is admissible. Since A is invertible with
inverse B, say, for some integer m and since all orders are contained in S, we
have that S ABS A (A-B), since A0 S A. Hence, A is invertible
by Lemmu 15.

2. An extension to the non commutative case. We may ask to what ex-
tent the result of Theorem 1 is true when L is no longer assumed to be com-
mutative. Assume that/i is a valuation ring with infinite residue class field.
If we examine the relevant proofs in the preceding section, we see that the exist-
ence of an element of minima] norm and the fact that B x-lA is a semi-order
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are independent of the commutativity of L. Suppose that L has the property
that some power of any semi-order is an order. Then there is an integer m
such that (x-lA) CA is an order where C is the admissible module
(x-lA)-x-. Since L has the above property when it is commutative modulo
its radical, the above discussion is meaningful and proves the following

LEIM. 12. Let R be a valuation ring with maximal ideal M such that R/M
is infinite. Let L have the property that some power ofany semi-order is an order.
Let A be an admissible module. Then there are admissible modules C and D such
that CA and AD are orders.

3. Principal modules. Dade, Taussky and Zassenhaus [5] show, also,
that when R is a quasi-local domain and A is a fractional ideal of R, then A
is invertible if and only if it is principal. We generalize this result in Lemma
13, but first we remind the reader of some well known facts and motivate the
lemma.

DEFINITION. Let A A be any R-module contained in L. We say that
A is left (right) principal if there is an x e L such that A Px (= xQ).

If A is admissible, it is clear that x is a unit of L so that Px is invertible with
inverse x-lP. Further, A x (x-Px) and it is easy to check that x-Px Q,
so that left principal implies right principal.

If R is any quasi-local ring (a commutative ring with 1, with a unique maxi-
mal ideal) with maximal ideal M and S is an R-algebra with 1, finitely gen-
erated as an R-module. Then it is well known that MS or. J (S), the Jacobson
radical of S. Since S/MS is a finite dimensional vector space over R/M, it is
Artinian; then S/J (S) is Artinian over RIM and it follows that S has only a
finite number of maximal, 2-sided ideals. In the context of this paper, this
implies that orders over quasi-local rings have only a finite number of maximal
2-sided ideals.

Since MS c J (S), MS is contained in every maximal left ideal of S and so
there is a one to one correspondence between the maximal left ideals of S and
those of S/MS by the obvious map. Hence J(S/MS) J(S)/MS and,
since S/MS is Artinian over R/M, we have that J (S)/MS is the radical of
S/MS.
Now, let M, ..., M. be all the maximal 2-sided ideals of S and suppose

that S/M is a division ring for each i. Then each M is a maximal left ideal
and, so, MS )1 M. But the maximal 2-sided ideals of S/MS are just
the Mi/MS, and it follows from Wedderburn’s theorem that the radical of
S/MS is N_ (Mi/MS) (N= M)/MS. It follows that J (S) N= M.
For a concrete example of the above situation, we might choose R quasi-local

and L with radical T such that LIT is coramutative (triangularm m matrices
over K will do). Then an order P with maximal ideals M1, Mn takes on
the role of the algebra S in the above discussion. Since T is nilpotent, so is
T n P, and it follows that T n P is contained in each M,. Since pl. p. p2 p e T
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for any pl, p2 e P, we have that PIT f P is commutative. Therefore

with eeh P/M field.

LEMMA 13. Let R be a domain with quotient field K. Let A vA be ad-
missible. Let M ..., M be all the maximal 2-sided ideals of P and assume
that P/M is a division ring for each i. Asme, further, that J (P =MThen A is invertible if and only if it is principal.

Proof. The "if" part of the lemma follows from preceding remarks. For
the "only if" part, it is enough to show that AA- P implies that A is left

A-1principal Suppose that AA- P. Then there are a e A and b e such
that a b M for each i. Since

(1) P(A= M) H= P/M,,

there re e e P such that e, m 1 (rood M) nd e, m 0 (mod M) for i j. L&
a $- e, a nd b -be. Then ab P nd ab a b 0 (rood M,)
for ech i. Suppose that this implies that ab is left invertible in P. Then,
since Ab P nd is left P-ideal containing the left unit ab, we hve that
Ab P. But b is unit ofL (it is non-ero divisorin End L). So A Pb-nd we hve proved the result.

It remains to prove that ab is left unit of P. Since ab is not contained in
ny M, it is enough to prove that ny mximl left idel of P is one of the
M. Let I be mximl left ideal of P distinct from the M. It follows that
for ech i

(2) M M... M_ M,+ M, I M.
Since P/M is division ring for ech i, (1) nd (2) together imply that there
re x e I such that x m 0 (rood M) for i j nd x m 1 (rood M). Let
x 7- x,. Then x m 1 (rood (O- M,)) so x m 1 (mod J (P)). Hence,
x is ut of P, i.e., I P and we re done.

4. The multiplicativeness and finite generation of the norm. We give the
promised examples to show that the norm is not necessarily multiplicative on
modules and that the norm of a module need not be finitely generated.
The first example deals with multiplicativeness. Let R be a valuation ring

with maximal ideal M such that RIM Zo.. (For example, R could be the
ring of formal power series over Zs.) Let L K - K K and let A have
generators (1, 0, 1 ), (0, 1, 1 and (0, 0, t) over R with a non unit of R. Then,
the norm form on A is xy (x + y + zt) with x, y and z arbitrary elements of R.
Since RIM Z, we need only evaluate the norm form over Z to convince
ourselves that N (A) c M. On the other hand, As is generated by (1, 0, 1 ),
(0, 1, 1 and (0, 0, 1 ), so that N (As) R. So, the norm is. not multiplicative
even on powers of modules.
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We turn, now, to the finite generation of the norm. Let K be the field of
infinite series whose general term x has the form x ’-1 am b where am e Z,
is an indeterminate and the b’s are real numbers for each positive integer n

with the property that all but a finite number of them are positive and that
b < b+l for each n.
We define a valuation, v, on K by v (x) b, where m is the smallest integer

with am 0. Then, the value group of v is the additive group of the real
numbers. The valuation ring R associated with v is the subring of elements y
of K such v (y) _> 0, and the maximal ideal M of R is the subring of R consist-
ing of elements of positive value. Then M is not finitely generated since it
contains no element of minimal, positive norm. Further, RIM Z..
We let L K - K K and let A have generators (1, 0, 1 ), (0, 1, 1 and

(0, 0, t) as before, so that the norm form onA is xy (x - y zt) andN (A) c M.
It suffices to show that N (A) M. For this, it is enough to show that N (A)
contains elements of arbitrarily small, positive value. Now

v(xy(x "b y -b zt)) v(x) -b v(y) + v(x -t- Y -t- zt).

Choose y e M such that v (y) is arbitrarily small. Let x be a unit of R. Then
v (x -[- y -b zt v (x O and so, v (xy (x -[- y q- zt v (y ). Since v(y) is
arbitrarily small, we are done.
On the positive side, it is clear that the norm is multiplicative on principal

modules and, in fact, on modules which are only locally principal. Fadeev
[7] has shown that when L is separable and R is Dedekind, then ideals of maxi-
mal orders are modules of this latter kind. In Lemma 14, we give another
criterion for the norm to be multiplicative. Preliminary to the lemma, we
make the following remarks. Suppose that L has radical T and that LIT is
commutative. Let A and B be semi-orders. We claim that AB is a semi-
order. We need only show that for any a e A and b e B, both ab and a -b b are
integral. There is a monic polynomialf(x) with integral coefficients such that
f(ab) 0 (rood T). Since T is nilpotent, it follows that ab is integral over R.
The same argument applies to a -t- b, and so we have proved our claim. We
note that if x e L and n e T, then N (x) N (x -t- n). We can now prove

LEMMA 14. Let R be a valuation ring with maximal ideal M such that R/M
is infinite. Let L have radical T and suppose that LIT is commutative. Then,
for any admissible modules A and B, N (AB N (A )N (B ).

Proof. Let x and y be elements of minimal norm in A and B respectively.
Then x-A, y-B and x-Ay-B are semi-orders and, so, have norm R. Since
LIT is commutative, the above remark implies that x-Ay-B and - -xyAB
have the same norm. Hence

N (x-lA)N (y-IB) N (x-y-lAB)
and the result follows.
Those acquainted with the literature are aware that Deuring [1] has defined
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a norm N1 which, for valuation rings can be characterized as follows. If
A- (al, an /R has left orderP (pl, ,pn)/Randifa= j-ll%p,
then N1 (A) det (ko’). The representation norm and N1 are, in general,
different. For instance, if L (1, u, )/K with u c e R, and
A (1, u, tu2)/R where is a non-unit of R, it is not hard to show that
N1 (A) t-R while N (A) R.

III. Algebras with All modules invertible
In this section, we deal with the question of when L contains only invertible

modules. We shall give two conditions, each of which is sufficient to insure
that L contain a non invertible module when R K. Then, in the spirit of
this paper, we calculate all the algebras which satisfy neither condition and
show that, when R is a Priifer ring, these algebras contain only invertible
modules.

1. Lemmas. Before entering the main discussion, we prove two lemmas to
be used later. The first says, essentially, that when L is commutative, a
module can be invertible only in its order. The second shows that, under
suitable conditions, the product of invertible modules is invertible.

LEMMA 15. Let L be commutative and let A be any R-module contained in L.
Let P be an order such that AP A. Let A1 L be such that AA1 P. Then
P P and A is invertible. Further, if A1P A1, then A1 A-1.

Proof. That P P follows from multiplying the equation AP. A by
A1. Since the opposite inclusion is clear, P P and A is invertible. If
A1 P A1, then multiplying the equation AA1 P. by A- gives A1 A-1.

DEFINITION. Let A and B be R-modules contained in L. We call the or-
dered pair (A, B) concordant if the left order of B equals the right order of A.

LEMMA 16. Let (A, B) be a concordant pair ofmodules with A eAo ,B B,
and AB e,AB,, IfA and B are invertible, so is AB and (AB )-I B-1A-1,
Q,=Q’,p--.p’.

Proof. Multiplying the equation ABQ" AB on the left by B-A-1 and
using concordance, we get that Q" Q’ and equality follows. Similarly,
P P’. If x e (AB)-, then xAB Q’, i.e. xABB-1A- Q’B-A-1 B-1A-.
Since ABB-1A- P, we get that x B-1A-1 and, so, (AB)- B-A-1, i.e.
(AB )-I B-A-1. Now the invertibility of AB follows from B-1A-AB Q’
and ABB-A-1 P.

COROLLARY. Let L be commutative and let A and B be R-modules contained
in L. If A and B are invertible, so is AB and (AB)- A-B-1. Further,
Pa, Pa P.

Proof. An xamination of h proof of h lmma shows ha eoneordane
is no ndd when L is eommuaiw. So, w nd only prov h
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P8 P P. This follows easily from multiplication of the equation
ABP, AB by A-1B-1.

As an application of this corollary, we prove

LEMMA 17. Let L be commutative. Then an invertible semi-order is an order.

Proof. Let A be an invertible semi-order. We know that A is an order
for some integer m. Since 1 e A, we have that P c A and A c Am. So, we
need only show that A A when A is invertible. If A is invertible, then A
is invertible in P by the above corollary. Since Am is an order, A P,
and we are done.

2. Two conditions for non-invertibility. We give two conditions, each of
which insures that L contains a non invertible module when R K.

CONDITION A. L is non quadratic over K, i.e., there is u L such that 1, u
and u are linearly independent over K.

CONDITION S. There are x and y in L such that 1, x, y and xy are linearly
independent over K.

We assume that L satisfies Condition A and construct a non-invertible
module. Let u e L be a non quadratic element of degree n > 2. It is standard
that we may assume that u is integral over R. Construct the basis

n--l1, u, ..., vl, ..., vm of L over K. Express the products u’v., v u and
v va as K-linear combinations of this basis for each i 1, ..., n 1 and
h, j 1, ..., m, and let p be the product of the denominators of all the coeffi-
cients which occur. Let ]c be a non-unit of R. Replacing u by ]pu and each
v by ]c"p"v, we get a new basis of L over K which we fix for the rest of he dis-
cussion. Now the products u:’v, v u and v v are R-linear combinations of
the basis elements and each coefficient in these combinations is divisible by k.
Let

u-2, u-, Vl, v,, )/RA eA (1, u,

We assert that A is not invertible. Let

n--1q ro -[- flU -t- + r_l -t- sv -t- -[- SmVm

be an arbitrary element of A-. Since 1 e A, A-1 A, so that k divides
r_l. From the fact that lqu e A for 0 _< i <: n 2, we get that k divides
r, r_2 and from uqu- e A, we get that k divides r0.

A-Suppose that a e A and b e When we express ab (similarly ba) as a
linear combination of the basis elements, we see that the coefficient of 1 is
divisible by k. Hence, if 1 e AA-, lc would have to be a unit of R, a contra-
diction. So, A is neither left nor right invertible.
We deal with Condition B in a similar manner. Assume that L satisfies

Condition B. Let k be a non-unit of R and let x and y in L be such that
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1, x, y and xy are linearly independent over K, and integral over R. By a
method similar to the one already used, we construct a basis 1, x, y, xy,
of L over K with the property that the product of both x and y with either xy
or any of the v, the product of xy with any of the v, and the products v v are
expressible as R-linear combinations of the basis with coefficients divisible by
k. Then the module

A (1, x, y, lcxy, vl, v)/R

is not invertible. The proof proceeds in much the same way as for algebras
satisfying Condition A. We let

q ro-[-rxWr.yWrexyWslv-[- Ws,

and examine the products xql, lqy and xqy to show that ] divides each r.
We then show that/c must be a unit of R if A is to be invertible, and thus de-
duce the required contradiction.

3. Algebras satisfying neither condition. We shall now uncover the alge-
bras which satisfy neither Condition A nor Condition B. If an algebra
satisfies neither condition, it is clear that the same is true for its subalgebras
and quotient algebras as well as for its simple components in case it is semi-
simple. We shall make free use of these facts in the discussion below. As-
sume for the remainder of the discussion that L satisfies neither condition.
Suppose that K F L where F is a 2-dimensional field extension of K.

Then, we may consider L as a vector space over F and it follows that if L F,
then F Fy (and so L itself) will satisfy Condition B for any y e L F. If
L does not contain such an extension, then every element of L must satisfy a
quadratic equation which factors over K. Therefore, we may choose a basis
1, u, ..., u. for L over K such that either u u or u 0 for each i.
Suppose, in this latter case, that L is commutative and that u u. Then

(u + u a (u + u -t-- b and (u u c (u u + d

for some a, b, c, d e K.
Adding these equations, we get

2u-[- 2u (a + c)u- (a-- c)u+ (b + d).

Since u u and u 0 or ui, it follows that a W c 2.
Subtracting the equations, we get

(3) 4uu (a-- c)u-{- 2u+ (b d).

Multiplying (3) by ul, we get that

2uu (a c W b d)u

and comparing with (3) implies that 2 0, i.e., ch K 2.
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If ch K 2 and is any non-zero element of K, it follows from

u[ + (tu) (u, + tu,)’
that u u and that K Z, i.e., L is a Boolean algebra over Z. We re-
mind the reader that this case is of no interest for us.
We are left with the case u 0 for each i. But if x and y are elements of L

such that x y 0, then it follows from the dependence of 1, x, y and xy
that xy O. This is independent of the commutativity of L. (If x and y are
dependent, xy is clearly equal to zero. If 1, x and y are independent, then,
multiplying the equation xy e fx gy first on the left by x and then on the
right by y, we get the result. Hence, if u 0 for each i, then L K triv-
ial algebra.
Now, assume that L is a simple algebra. Then L Mn (D), a total matrix

algebra over the division ring D. IfD K, then L contains a two dimensional
field extension of K and so is equal to that extension. If D K, L will satisfy
Condition A if n > 2; if n 2, L is a quaternion algebra and satisfies Condition
B. So, if L is simple, it equals K or a tw-dimensional field extension of K.
We come, now, to the general L and we let T denote its radical. Then LIT

is semi-simple. If any of its simple components is a 2-dimensional field over
K, L will contain such a field and so is equal to it. If not, each simple com-
ponent is just K, so that, since LIT is commutative, LIT K orLIT K K.
Since K K are separable algebras over K, we know from general theory that
each can be imbedded in L with T as a complementary summand, i.e.,
L K T or L (K K) T. Since L is quadratic and every element of
T is nilpotent, we have that x 0 for every x e T. If x and y are in T, it
follows from the dependence of 1, x, y and xy that xy 0 as was remarked
earlier. Hence, T is a trivial algebra and so, the structure of K T is clear.
We investigate further the structure of L (K - K) T. Let 1 and v be

a basis for K K over K with v v. If T 0, we need go no further. If
not, choose u e T, u 0. Then

(4) vu a -t- by -t- cu.

Hence vu 0 au -t- bvu. If b O, vu --b-au which is impossible in
view of (4). Also, vu vu av + cvu, i.e. (1 c)vu av. If c 1, then
a 0andvu u. Ifc 1, thenvu (1 -c)-avwhichimpliesby (4)that
a c 0, i.e. vu O. Now suppose tha u and w are in T such that vu 0
and vw w. The above argument applied to u + w gives that v (u + w) 0
or v (u -t- w) u + w. It follows that one of u and w must be zero. This
implies that we have vu 0 for each u e T or vu u for each u e T. By sym-
metry, uv 0 for each u e T or uv u for each u e T. Since T 0, L is not
commutative. Therefore, the structure of L is as follows" it has a basis
1, v, ux, un where v e K K and u e T for each i, and a multiplication
table given by v v, u u 0 for all i and j, u v u and vu 0 for all i.
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Consider the algebra of m m matrices of the form

where a, b K, each quadrant is a block and 11 and I. are identity matrices.
It is easy to see that such algebras have the same structure as L does and that,
for m sufficiently large, L is isomorphic to a subalgebra by the map

for each i. For this reason, we call L an algebra of generalized 2 X 2 tri-
anlar matrices.
We collect our results and say what is left to be done in the following theorem.

THEORE 2. Let R 5e a commutative domain with I and with quotient field K.
Let L be a finite-dimensional algebra with 1 over K. Then the following is true.

1. If L satisfies either Condition A or Condition B and R K, then L con-
tains a non invertible module.

2. If L satisfies neither condition, it is either K trivial algebra, K K, a
2-dimensional field extension of K or an algebra of generalized 2 X 2 triangular
matrices, and, wh R is a Praer ring, it will conin only invertible modules.

Proof. It remains to prove that the algebras in the second statement con-
tain only invertible modules and, for this, we may assume that R is a valuation
ring.

We equip each of these algebras with an involution * as follows.
(i) When L is a 2-dimensional field extension, * is the non-trivial Galois

automohism when it exists and the identity otherwise.
(ii) IlL KK, then (a,b)* (b,a).
(iii) If L K tribal algebra, then * is the identity on K and u* -u

for each u in the tribal algebra.
(iv) When L is an algebra of generalized 2 X 2 triangular matrices, we

embed L in a matr algebra in the way previously described so that Iz I and
use the involution defined by interchanging a and b and replacing the matrix
by-%.
This involution induces a norm Nz on L defined by Nz (x) xx* for each

x L. In each case, Nz (x) K and Nz (xy) Nz (x)Nz (y) for any x, y L.
Let A be an admissible module. Since Nz is defined via an involution,N (A)

is finitely generated, so that A contains an element of minimal norm with
respect to Nz. Call it x and let P x-ZA. We claim that R is a pure sub-
mode of P. For, suppose that there are a R and u P such that au R.
Therefore u a-ZR, i.e., u K. Hence Nz (u) u and so, u R since norms of
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elements in P are in R. Since R is integrally closed in K, u e R. So R is
pure. Since R is a pure submodule, it is a direct summand of P, so that we
may include 1 in a free basis of P over R.
We complete the proof of the theorem by showing that P is a ring. For

once this is known, it is easily seen that P is the right order of A so that A is
principal and, so, invertible. We separate into cases.

(i) If L is 2-dimensional, it is commutative so that A is invertible directly
as a corollary to Theorem 1.

(ii) Suppose that L K trivial algebra. Fix a basis 1, vl, v for
L over K, with vi e trivial algebra for each i. Let 1, ul, u be a basis for
P over R. Then ui a W . a. v. for some a, aj e K, and it is easy to
compute that N (u) a e R for each i, so that a e R. Since 1 is a basis
element of P, we can subtract the a from each u and so, assume that all the
u are in the trivial algebra. Then P is clearly a ring.

(iii) Let L be an algebra of generalized 2 X 2 triangular matrices with basis
1, v, u, ..., u, and multiplication table as previously described. Let
1, w, t, ..., t be a basis of P over R. By the same argument used in (ii),
we can assume that w av - ... au, with a, a e K. SinceN (1 W w) e R,
it follows that w W w* e R, so that a e R. That P is a ring now follows from the
equations w aw, t w ate, wt 0 and t t. 0.

This completes the proof of Theorem 2.
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