CERTAIN SEMIGROUPS OF LINEAR FRACTIONAL TRANSFORMATIONS CONTAIN ELEMENTS OF ARBITRARILY LARGE TRACE

BY

KENNETH B. STOLARSKY¹

1. Introduction

The main purpose of this paper is to prove the

THEOREM. Let Γ be a semigroup of linear fractional transformations acting on the Riemannsphere S. Then if every punctured neighborhood of some $p \in S$ contains both fixed points of infinitely many elliptic transformations of Γ , Γ contains elements whose trace is arbitrarily large in absolute value.

In §3 this is used to give a new proof of the well-known fact that a discrete group of 2×2 elliptic matrices is finite [Lehner, pp. 91–92].

By definition, a semigroup Γ of linear fractional transformations consists of elements V such that for $z \in S$

$$V(z) = (az + b)/(cz + d);$$
 a, b, c, d complex, $ad - bc = 1.$

With V it is convenient to associate the two matrices $\pm V'$,

$$V' = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

since whenever V_1 , $V_2 \in \Gamma$, $V_1 V_2$ is then associated with $\pm V'_1 V'_2$. The prime marks will be dropped for notational convenience; this causes no confusion.

For $V \in \Gamma$, let $\chi(V)$ denote the trace of V. If $\chi(V)$ is real, V is said to be elliptic, parabolic, or hyperbolic depending upon whether $|\chi(V)| < 2$, =2, or >2 respectively. It is well known that if V is elliptic, and has finite fixed points α_1 , α_2 , then V(z) = z' where

(1)
$$(z' - \alpha_1)/(z' - \alpha_2) = \kappa(z - \alpha_1)/(z - \alpha_2); \quad \kappa = e^{i\theta}, \quad 0 < \theta < 2\pi.$$

Thus

$$V = \begin{bmatrix} \frac{\kappa^{-1/2} \alpha_1 - \kappa^{1/2} \alpha_2}{\alpha_1 - \alpha_2} - (\kappa^{-1/2} - \kappa^{1/2}) \frac{\alpha_1 \alpha_2}{\alpha_1 - \alpha_2} \\ \frac{\kappa^{-1/2} - \kappa^{1/2}}{\alpha_1 - \alpha_2} & \frac{\kappa^{1/2} \alpha_1 - \kappa^{-1/2} \alpha_2}{\alpha_1 - \alpha_2} \end{bmatrix}$$

Here κ is called the multiplier of V.

Received March 12, 1968.

¹ This research was supported in part by a National Science Foundation grant.

2. Proof of the theorem

LEMMA. Let V_1 , V_2 be elliptic transformations with finite fixed points and multipliers $\{\alpha_1, \alpha_2, e^{i\theta_1}\}, \{\beta_1, \beta_2, e^{i\theta_2}\}$ respectively. Then

(3)
$$\chi(V_1 V_2) = 2 \left[\frac{\mu_1}{\lambda} \cos\left(\frac{\theta_1 - \theta_2}{2}\right) - \frac{\mu_2}{\lambda} \cos\left(\frac{\theta_1 + \theta_2}{2}\right) \right]$$

where

$$\mu = (\alpha_{1} + \alpha_{2})(\beta_{1} + \beta_{2}) - 2\alpha_{1}\alpha_{2} - 2\beta_{1}\beta_{2}, \quad \lambda = (\alpha_{1} - \alpha_{2})(\beta_{1} - \beta_{2})$$

$$\mu_{1} = (\alpha_{1} - \beta_{1})(\alpha_{2} - \beta_{2}), \quad and \quad \mu_{2} = (\alpha_{1} - \beta_{2})(\alpha_{2} - \beta_{1}).$$

Proof. Let $\kappa = e^{i\theta_{1}}, \kappa' = e^{i\theta_{2}}.$ A direct calculation from (2) yields

$$\lambda\chi(V_{1} V_{2}) = [(\kappa\kappa')^{1/2} + (\kappa\kappa')^{-1/2}](\alpha_{1}\beta_{1} + \alpha_{2}\beta_{2} - \alpha_{1}\alpha_{2} - \beta_{1}\beta_{2}) + [\kappa^{1/2}\kappa'^{-1/2} + \kappa^{-1/2}\kappa'^{1/2}](\alpha_{1}\alpha_{2} + \beta_{1}\beta_{2} - \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1}).$$

Formula (3) follows.

Remark. If V_1 and V_2 have a fixed point in common, say $\alpha_1 = \beta_1$, it follows from (3) that $V_1 V_2$ is elliptic or parabolic, since $\chi(V_1 V_2) = 2 \cos [(\theta_1 + \theta_2)/2]$.

To prove the theorem we clearly may assume p is finite. Let $S = \{V_n\}_{n=1}^{\infty}$ be a sequence of elliptic elements of Γ such that V_n has fixed points $\beta_1(n)$, $\beta_2(n)$, neither of which is p, multiplier $e^{i\theta(n)}$, $0 < \theta(n) < 2\pi$, and

$$\lim \beta_1(n) = \lim \beta_2(n) = p.$$

We may also assume $\lim \theta(n) = \theta_2$, $0 \le \theta_2 \le 2\pi$. For each $W \in S$ with fixed points α_1 , α_2 and multiplier $e^{i\theta_1}$ there is a $\delta > 0$ such that $|\alpha_1 - p| > \delta$, i = 1, 2. Set $t(n) = (\beta_1(n) - \beta_2(n))\chi(WV_n)$ and $f(x) = |\cos x|$. Then by (3),

$$t = \limsup |t(n)| \ge \frac{2\delta^2}{|\alpha_1 - \alpha_2|} \left| f\left(\frac{\theta_1 - \theta_2}{2}\right) - f\left(\frac{\theta_1 + \theta_2}{2}\right) \right|.$$

Thus it suffices to show S can be chosen so that t > 0.

f(x) = f(y) yields $x - y = \pi k$ or $x + y = \pi + \pi k$, where k is an integer, so the only cases which cause any difficulty are $\theta_2 = 0$, π , 2π and $\theta_1 = \pi$. If $\theta_1 = \pi$, and this cannot be avoided by a new choice of W, then clearly $\theta_2 = \pi$. If $\theta_2 = 0$ or 2π , V_n is a rotation through an angle which tends to zero as $n \to \infty$, so there is an integer m = m(n) such that V_n^m tends to a rotation through an angle of π as $n \to \infty$. Replace S by $S' = \{V_n^m\}$. Hence only the case $\theta_2 = \pi$ need be considered. Choose W so that $\theta_1 = \pi + \varepsilon$, $|\varepsilon| < \pi/2$. By (3),

$$\lim t(n) = 2 \frac{(\alpha_1 - p)(\alpha_2 - p)}{(\alpha_1 - \alpha_2)} \left[\cos\left(\frac{\theta_1 - \pi}{2}\right) - \cos\left(\frac{\theta_1 + \pi}{2}\right) \right]$$

$$=4\frac{(\alpha_1-p)(\alpha_2-p)}{(\alpha_1-\alpha_2)}\cos \varepsilon/2>0,$$

and this proves the theorem.

3. An application

Topologize any set Γ of 2×2 matrices by embedding it in 4-space in the obvious manner. Let $S = \{V_n\} \subseteq \Gamma$ denote a sequence of *distinct* elliptic elements V_n having fixed points $\beta_1(n)$, $\beta_2(n)$, with $\lim \beta_1(n) = \beta_1$, $\lim \beta_2(n) = \beta_2$, β_1 , β_2 possibly infinite. From (2), if $\beta_1 \neq \beta_2$ then some subsequence of S converges to an elliptic or parabolic transformation.

THEOREM. A discrete group Γ of 2×2 elliptic matrices is finite.

Proof. If Γ is infinite, choose S as above. Then $\beta_1 = \beta_2$, and by applying the theorem of §1 there is a subsequence S' of S such that $\beta_1(n) = \beta_1$ for all $V_n \in S'$. Only now is Γ required to be a group rather than a semigroup: the commutator $V_n V_m V_n^{-1} V_m^{-1}$ is parabolic and not the identity for $n \neq m$ [Lehner, p. 73], a contradiction.

Remark. The author would like to thank Professor Marvin Knopp for much encouragement.

Reference

J. LEHNER, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, Amer. Math. Soc., Providence, R. I., 1964.

THE INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY