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1. Introduction
The Hochschild-Serre spectral sequence for homology of groups (Lie

algebras or restricted Lie algebras) gives rise to an exact sequence of terms of
low degree. Let N be a normal subgroup of G with factor group Q, and let
H,(G, M), H,(Q, M) denote respectively the nh ordinary homology groups
of G, Q with coefficients in the Q-module M. Then the sequence is

Us(G, M) ---> H.(Q, M) -- N/IN, N] @ i
(I)

-+ Hi(G, M) ---+ HI(Q, M) -- O.

As usual, [N, N] denotes the commutator subgroup. This sequence was
studied by various authors [9], [10], [11], [7], and also applied to interesting
non-homological problems. Recently Knus proved ia [6] the existence of a
similar exact sequence for augmented algebras under slightly restrictive con-
ditions concerning the coefficient modules. In view of the many applica-
tions of these sequences it is desirable to have general and direct proofs, it is
one of the main purposes of this paper to furnish such proofs involving merely
standard homological techniques; to do so we use methods due to Barr and
Rinehart [1]. The same techniques also yield various similar exact sequences,
valid in higher dimensions but assuming hypotheses. These latter sequences
again are known in the special case of groups (or Lie algebras) as corollaries
of the ttochschild-Serre spectral sequence.

In view of the applications to the cases of groups, Lie algebras, and restricted
Lie algebras we deal mainly with augmented algebras, although a large portion
of the results carry over to the more general case of associative algebras.
The corresponding results are listed in section 6.
Our methods and general results can be summarized as follows. Let T

be an augmented algebra over the commutative ring K [8, p. 180]. The kernel
of the augmentation e T -- K is denoted by JT and called the augmenta-
tion ideal. Let T - R be a surjective morphism of augmented algebras,
with kernel S. We define a homology/.(T,-) with respect to as the
derived functor (in the category of R-modules) of the -differentials JT (R)T-.
In the special case, where I:R --+ R, our homology I.(R,-) turns out
to be essentially the ordinary (i.e. Hochschild) homology H.(R,-) (Proposi-
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tion 2.1). Our definition of a -homology obviously is the "dual" of the def-
inition of am cohomology of Barr-Rinehart in [1]. As they do, we obtain for
every R-module M a long exact sequence (Theorem 2.2)

i*,( T, M) ---. I(R, M) ---, Tor_I(S/JT.S,M) in_,(T, M)
(II)

---. S/JT.S (R) M ---* JT (R)r M JR (R) M ---* O.

The analogous statements for groups (Lie algebras, restricted Lie algebras)
are obtained in Section 4, mainly by applying the results for augmented
algebras to the group ring (enveloping algebra, restricted enveloping al-
gebra).
The low dimensional part of the long exact sequence (II) and of the

analogous sequence for groups (Lie algebras, restricted Lie algebras) is used
in Sections 3 and 4 to deduce 5-term sequences in ordinary homology. We
obtain in that way: in the case of augmented algebras, a generalization of the
exact sequence due to Knus [6]; in the case of groups (Lie algebras, restricted
Lie algebras), the exact sequence of terms of low degree in the Hochschild-
Serre spectral sequence. Assuming special hypotheses, we are able to give
more information about the groups at the bottom of our sequence (II).

Let " T -- R be a surjective morphism of augmented algebras, with ker-
nel S, and let M be an R-module. Suppose that R is K-proje(.tive and
H(T, R (R) M) 0 for 1 i n. Then the following sequence in ordinary
homology is exact:

(III)
RH,(T, M) H,,(R, M) ---. Tor._, (S/JT.S, M) ---, H,,_I(T, M)

---. S/JT.S (R) M ---, H,(T, M) Hi(R, M) O.

In the case of groups (Lie algebras, restricted Lie algebras) the special hy-
potheses may be reformulated. In the setting of sequence (I), we have that
if H(N, M) 0 for 1 < i < n, then there is an exact sequence analogous to
(III).

It turns out that in these three cases sequence (III) is well known as a
corollary of the Hochschild-Serre spectral sequence [5], [10]. The correspond-
ing portion of the present paper may therefore be viewed as a spectral-
sequence-free proof of that sequence.

Finally similar techniques are used in Section 5 to prove the following.

Suppose R is K-projective.
following sequence is exact:

If Tor(R, M) 0 for 0 < i < n, then the

(IV)
Hn(T, M) H,+(R, M) K (R) Tor (R, M) H,,(T, M)

H,,(R, M) ---, O.

Again it is possible to obtain the analogous sequences in the case of groups,
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Lie algebras, and restricted Lie algebras as corollaries of the Hochschild-Serre
spectral sequence.
We wish to thank G. S. Rinehart for many stimulating discussions. The

present general form of the crucial Lemma 3.2 is his.
It is obvious that each theorem of the present paper has a straightforward

"dual" in the corresponding cohomology theory. Throughout the paper we
use- (R) -, without subscript, to denote the tensor product over K.

2. The long exact sequence of Barr-Rinehart in homology
Let K be any commutative ring with unit. Let R be an augmented K-al-

gebra; i.e. a unitary K-algebra together with an algebra map e" R --* K,
called the augmentation. The kernel of e is denoted by JR and is called the
augmentation ideal. By ,M(M) we denote the category of left (right)
modules over R.

DEFINITION. Let T --* R be a morphism of augmented algebras. The
-homology t(T, -) of T, defined in the category .M (!), is the n left-
(R, K)-relative-derived functor of the differentials Diff(R)(T,-)
JT (R)r-. More explicitly,

/(T, M) Wor (JT (R)r R, M),

where M is in M and Tor (B, -) denotes, for every B in M, the n left-
(R, K)-relative-derived functor of B (R) -.
In [1], a -cohomology was defined as the derived functor of the C-deriva-

tions Der (T, M) -- Homr (JT, M). The above therefore is the obvious
"dual" of this definition.

Denoting by H.(R, -) the ordinary (relative Hochschild) homology of R
we get

PROPOSITION 2.1. t(R, M) . H,.(R, M) for n >_ 1.

This follows immediately from the exact sequence 0 --* JR R K 0
and the related Tor-sequence. In addition we see that the ordinary first
homology group H(T, M) may be identified with the kernel of the obvious
map JT (R) M M.
Dually to [1] we obtain

THEOREM 2.2. Let " T ---* R be a surjective morphism of augmented al-
gebras, which is K-split. Denote by S the kernel of and let M be in M. Then,
for all n > 0, there is a connecting homomorphism from /(R, M) into
Tor (S/JT. S, M), such that the following sequence is exact"

..--*/+(R, M) --, Tor (S/JT.S,M)--t(T,M)---.t(R,M)
(V)

S/JT.S (R) M JT @ M ---. JR @ M O.
The proof depends on the sequence 0 --* S/JT. S JT (R) R ---, JR 0,
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which is obviously K-split and short exact. Sequence (V) is the long exact
Tor-sequence obtained from this short exact sequence.

3. Exact sequences in ordinary homology
As we shall see in this section we are able to replace the low dimensional

)-homology groups in sequence (V) by ordinary homology groups. We obtain
in this way, firstly, a 5-term exact sequence in ordinary homology, valid with-
out any restrictive conditions, and secondly, using special hypotheses, a
longer exact sequence, also in ordinary homology.

Clearly a surjective morphism " T -- R induces for every M in RM a
unique map

a."/(T, M) --+/(T, M),

and hence by Proposition 2.1 for n >_ 1 a unique map

H.+I( T, M) --*/( T, M),

also denoted by a.

LEMMA 3.1. For every M in RM, a" H(T, M)/(T, M) is an epi-
morphism.

Proof. Consider the exact sequence 0 --* M’ R (R) M -- M ---, O. This
is an (R, K)-projective presentation of M in M, and also a K-split short exact
sequence in TM. Applying the functors JT (R)r- and (JT @r R) @- we
obtain the commutative diagram

M’---, i T, M --- JT @ r --- JT @r(R @ M ---, JT @M-*0

M’0 ---. t(T, M) JT @ ---. JT @r (R @ M) JT @r M --* 0

The Five Lemma gives the result.

LEMMA 3.2. Suppose R is K-projective. If H(T, R @ M) 0 for
1 <i<n, then

H+(T, M) t(T, M)

are isomorphisms for 1 <_ i < n- 1 and

,,_ H,,( T, M) ---. t,,_( T, M)

is an epimorphism.

Proof. Consider as above 0 -- M’ -- R (R) M M ---, O. First we shall
prove that H(T, R @ M) 0 for 1 ,( i < n implies H(T, R @ M’) 0
for 1 < i < n 1. Since R is K-projective,

O---- R @ M’ --- R @ R @ M--- R @ M--- O

is exact, and H(T, R (R) R @ M) H(T, R @ M) @ R. The assertion
then follows easily from the long exact sequence in the second variable.
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Now we proceed by induction. For n 2 the hypothesis is empty and the
conclusion follows by Lemma 3.1. Assume Lemma 3.2 is true for n 1. We
have to show that ,_ is isomorphic and ,-1 is epimorphic. Applying
the functors JT @ r and (JT (R) r R) (R) R to the exact sequence 0 --. M’
R (R) M -- M --* 0, we get the following commutative diagram (] >_ 2):

--*/(T, R (R) M) /(T, M) -- _I(T, M’) --/-I(T, R (R) M)

----> 0 I(T,M) t,(T,M’) 0

Using the remark at the beginning of the proof we have H( T, R (R) M’)
for 1 < i < n 1. Applying the induction hypothesis we know that
is isomorphic and ._ is epimorphic. Since

I_.(T, R (R) M). H,,_(T, R (R) M) O,

we have, by the Five Lemma applied to the above diagram, a_ isomorphic
and a_ epimorphic.

Remark. For n 3, Lemma 3.2 is also tree without the assumption that
R is K-projective.

Lemma 3.1 and sequence (V) lead to

THEOREM 3.3. Let T ---* R be a surjective homomorphism of augmented al-
gebras, with kernel S. Suppose is K-split. Then, for every M in RM, the
following sequence is exact:

(VI)
H( T, M) -- H(R, M) ---. S/JT. S (R) M

---, H(T, M) -- H(R, M) ---, O.

Remark. Denoting by P the pull-back of the two maps

H(T, M) -- t(T, M) and Wor (S/JT.S, M) t(T, M),
we are able to extend sequence (VI) by two further terms:

P H(T,M)

Ha(R, M) ---+ Tor (S/JT.S, M) ---. t[(T, M) H,.(R, M)
It is easy to see that Ha(R, M) P H(T, M) H.(R, M) is
exact.

Lemma 3.2 and sequence (V) lead to

THEOREM 3.4. Let T R be a surjective homomorphism of augmented
algebras, with kernel S. Suppose R is K-projective, and H(T, R (R) M) 0
for 1 < i < n. Then the following sequence is exact:

H,(T, M) ---. H,(R, M) ---. Tor,,_(S/JT.S, M) H,,_I(T, M)
(VII) -- S/JT.S (R) M ---, H(T, M) ---, g(R, M) O.
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4. The case of groups, Lie algebras, restricted Lie algebras
(a) Groups. Let : G --, Q be a group homomorphism. induces a

map of the group rings over the integers ZG --. ZQ, which is a map of
augmented algebras over Z. If G -- Q is suriective, so is ZG -- ZQ.

PROPOSITION 4.1. Let G --, Q be a surjective group homomorphism with
kernel N. Denote by S the kernel of the corresponding map " ZG --, ZQ.
Then SJZG. S -- N/[N, N], where IN, N] denotes the subgroup of N generated
by all elements of the form nmn-m- with n, m N.

Proof. It is to be shown that the kernel of the map JZG (R) ZQ JZQ
is isomorphic to N/IN, N]. This is done by considering the exact sequence
0 JZG ---, ZG Z ---, 0 and its tensor product over ZG with ZQ:

0 --* Wora (Z, ZQ) ---, JZG (R) ZQ ZQ Z O.

By [2, Proposition 7.4, p. 196] we have
Tor a(Z, ZQ) ._ Tot (Z, Z) H(N, Z) --- N/[N, N].

The Q-module-structure in N/[N, N] is induced by the coniugation G.
Let/(G, M denote the group/(ZG, M and H.(G, M) the n ordinary

(Eilenberg-MacLane) homology group. Proposition 2.1 suys that/(Q, M)
is isomorphic to H,+(Q, M) for n >_ 1. We shall now use the notation
/ for N/IN, N],-(R)- for- (R) z-, and Tor (-,-) for Tor (-,-). Recall
that Totz (B,-) denotes the n (ZQ, Z)-relative derived functor of B @
for every right Q-module B. Then Theorem 2.2, with the remark after
Proposition 2.1, leads to

THEOREM 4.2. Let q’G ---) Q be a surjective group homomorphism with
kernel N. Then for every Q-module M we have the following exact sequence"-- H,+(Q, M) -- Tor (f, M) -- t(G, M) H,,+(Q, M)
(V’)

---, N (R) M H(G, M) H(Q, M) O.

THEOREM 4.3. Let q" G Q be a surjective group homomorphism with
kernel N. Then for every Q-module the following sequence is exact:

(VI’) H(G, M) H,.(Q, M) ---, N (R) M ---, H(G, M) H(Q, M) ---, O.
If further H(N, M) 0 for 1 < i < n, then (VI’) may be extended to

H,,(G, M) H,,(Q, M) ---, Tor._ (1, M) H,,_(G, M)
(VII’)

N M) M) O.

Proof. We merely have to show that H(N, M) .. H(G, ZQ (R) M).
Since N acts trivially in M, this is done by [2, Proposition 7.4, p. 196].

(b) Lie algebras. Let " G-- Q be a homomorphism of Lie algebras
over K. induces a map of the enveloping algebras UG UQ, which is
a morphism of augmented algebras over K. If G --, Q is surjeetive, so is

UG UQ.
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PROPOSITION 4.4. Let " G -- Q be a surjective homomorphism of Lie
algebras over K, with kernel N. Suppose N and Q are K-free. Denote by S
the kernel of the corresponding map UG -- UQ. Then S/JUG. S -N/IN, N], where IN, N] denotes the Lie ideal generated by all Lie products
In, m] with n, m N.

Since the Lie algebras are K-free, the proof is similar to that of Proposition
4.1. The Q-module structure in N/IN, N] is easily seen to be induced by the
Lie product in G.
Let/(G, M) denote the group/ UG, M and H,(G, M) the n ordinary

homology group. Proposition 2.1 says that /(Q, M) is isomorphic to
H.+(Q, M) for n >_ 1. We sh11 use the notation 2 for N/[N, N], @
for- (R)e-, and Tor (-,-) for Tor (-,-). Recall that Tor (B,-)
denotes the n (UQ, K)-relative derived functor of B (R) for every right
Q-module B. Then Theorem 2.2, together with the remark after Proposition
2.1, leads to results analogous to Theorems 4.2 and 4.3, and exact sequences
(V’), (VI’), (VIIi). TheonlythingtocheckisH(N,M) .H(G, UQ (R) M).
Since the Lie algebras are K-free, this is done by [2, Proposition 4.2, p. 275].

(c) Restricted Lie algebras. Let G --. Q be a homomorphism of restricted
Lie algebras over K. Denote the p-map by m -* m. The map induces
a map of the restricted enveloping algebras VG --, VQ, which is a morphism
of augmented algebras over K. If G --. Q is surjective, so is VG --, VQ.

PROPOSITION 4.5. Let G --, Q be a surjective homomorphism of restricted
Lie algebras over K, with kenel N. Suppose N and Q are K-free. Denote by
S the kernel of the corresponding map " VG --, VQ. Then S/JVG. S
N/IN, N], where IN, N] denotes the ideal generated by all In, n] - m’ with
n, n, m 2V.

Proof. First we must show that in the given circumstances VG is VN-free.
This is well known, and proved analogously to the corresponding statement
for the enveloping algebras. The rest is again done by [2, p. 196] similarly to
the proof of Proposition 4.1; it is well known that H (N, K) . N/IN, N].
The Q-module structure in N/IN, N] is easily seen to be induced by the Lie
product in G.

Let /(G, M) denote the group t(VG, M), and H,,(G, M) the n
ordinary homology group (see [4]). Proposition 2.1 says that/(Q, M) is
isomorphic to H,,/(Q, M) for n >_ 1. We shall use the notation / for
N/IN, N]’,- @- for- (R)r-, and Tor (-,-) for Tor (-,-). Also recall
that Tor (B,-) denotes for every right Q-module B the n (VQ, K)-rela-
tire derived functor of B @ -. Then Theorem 2.2 leads to results analogous
to Theorems 4.2, 4.3 and exact sequences (V), (VI), (VII). Again the
only thing to check is H(N, M) H(G, VQ @ M). This is done by [2,
Proposition 7.2, p. 196] using the fact that in the given circumstances VG is
free as a VN-module.
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Remark. In the cases (a), (b), and (c) considered in this section there
exists a Hochschild-Serre spectral sequence

H(Q, Hq(N, M) H,,(G, M).

It is easily checked that sequence (VI’) is the exact sequence of terms of low
degree in the above spectral sequence. Assuming H(N, M) 0 for 1 < i < n
a longer exact sequence may be deduced [5], [10]"

H,,(G, M) H,(Q, M) ---. H,_.(Q, H(N, M)) H,,_(G, M)
(VIII)

---.... -- (R) M H(G, M) ----> H(Q, M) ----> O.

To show that the sequences (VII’) and (VIII) are identical, it remains to
prove, that for 0 <_ k < n 1,

H(Q, H(N, M) Wor (, M).

We shall prove this in the group case only; the proofs for Lie algebras and
restricted Lie algebras are similar. For n 2 we obviously have

Z(R)H(N,M)Z(R)(N(R) M) N(R)M.

Letn > 2. ThenH(N,M) O. This impliesTor(,M) 0byan
argument similar to that used in the proof of Lemma 3.1. Consider the
(ZQ, Z)-relative-proiective presentation of M

O---. M’ --- ZQ (R) M ---* M ---->0.

Tensoring with . over Z leads to

0--- (R) M’ --- @ ZQ @ M --- (R) M---0.

In each of these modules we consider the Q-action via the diagonal map of ZQ.
The sequence remains exact; N @ ZQ (R) M with the new Q-module-structure
is still relative-projective. We therefore obtain exact sequences

M’0 --. Tor_ (Z, / (R) M) --* Tor,_a (Z, . (R)- Tor_a(Z, . (R) ZQ (R) M) ...,
0 --* Wor_ (., M) --* Tor_ (., M’) --* Tor_a (, ZQ (R) M) ---* ....
For n 3 the claimed isomorphism follows immediately. For n > 3 the
right most terms are trivial. We therefore have to prove that

Tor_a (g, (R) M’) Wor_ (/, M’).

This is done by induction, since 0 H(N, M) H(G, ZQ (R) M) for
1 < i < n implies

H(G, ZQ (R) M’) H(N, M’) 0

for 1 < i < n 1 by an argument used in the proof of Lemma 3.2.
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5. Exact sequences in higher dimensions
Under suitable conditions the Hochchild-Serre spectral sequence also gives

rise to 5-term exact sequences in higher dimensions. Methods which are
closely related to the techniques used so far in this paper also lead to spectral-
sequence-free proofs of these sequences. In addition, an analogous sequence
in the case of augmented algebras is proved.
THEOREM 5.1. Let " T R be a surjective morphism qt augmented al-

gebras ove K. Suppose R is K-projective, and let M be in M. If
Tor" (R, M) Ofor 0 < i < n, then H( T, M) H(R, M)for 0

_
k < n

and the following sequence is exact"

H,+(T, M) ---. H,,+(R, M) --+ K (R), Tor (R, M) H,,(T, M)
(ix)

H,,(R, M) -. O.

Proof. Let --* P. --* P --+ P0 --* M --. 0 be a (T, K)-relative projective
resolution of M. Define Q for i >_ 1 to be the kernel of P --. P_, and Q0
to be the kernel of P0 --* M. The fact that Tor" (R, M) 0 for 0 < i < n
gives rise to exact sequences

O---.R (R)rQo---R (R).Po---R (R)M--*0,
O---.R @rQ----R (R)rP---*R (R)Q_---O for0 <: i < n 1,

0 --. Torr (R, M) --* R @ r Q,_ ’; R (R) r P,- --* R @ r Q,- --* 0.

Trivially H0(T, M) _----- K @ r M K @ M H0(R, M). Let 0 < k < n,
then

H(T, M) Tor’ (K, M) Tor (g, Q_).
Since R is K-projective the absolute Tor (K,-) is equal to the (R, K)-
relative Tor (K, -). Since R @ r P are (R, K)-relative projective, we
obtain

Wor (K, Q_) . Wor (g, R @r Q-) Wor (K, M) g(R, M).
Denote the image of , by B, and apply the functor K @- to the resulting
short exact sequence

0 -- Tor (R, M) --* R (R)r Q,- B --* 0.

We obtain
--. Tor (K, R (R) r Q,-) --* Tor (K, B) --* K (R) Tor (R, M)

---K (R)rQ,_--.*K (R) B-- 0.

Because R @ r P is (R, K)-relative projective, we have

T (K,B) =or Tor(K, R (R)r Q.-)-- Tor+(K, R (R) M) H,,+(R, M).

Set Q_ M.
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Moreover the kernels of the maps

K (R) Q_--. K (R)r P_ and K (R) B-, K @r P_

may be identified with H(T, M) and H,,(R, M) respectively. Finally, it is
easy to prove (using the method of Lemma 3.1) that H,,(T, M) --Tor[ (K, Q_) is mapped epimorphically onto Tor (K, R @r Q_). This
completes the proof of Theorem 5.1.

In the cases considered in Section 4, i.e. groups, K-free Lie algebras, and
K-free restricted Lie algebras, sequence (IX) again may be obtained using
the corresponding Hochschild-Serre spectral sequence.

THEOREM 5.2. IfH(N,M) OforO < i < n, thenH(G,M) N(Q,M)
J’o 0 <_ 1 < n and the following sequence is exact"

H,+(G, M) H,+(Q, M) K (R) H,(N, M) H,(G, M)
(ix’) ---- H,,(Q, M) ---. O.

Proof. The only thing to check is that

H(N, M) Tor (K, M) Wor (R, M),
where R denotes ZQ, UQ, VQ respectively, and K denotes the ground ring
Z, K, K respectively. For proofs, see [2, Proposition 7.5, p. 196] and [2,
Corollary 4.4, p. 275].

6. The case of associative algebras
In this section we denote by T -- R a morphism of unitary associative

K-algebras. T* and R* are the opposite algebras. Define JT to be the
kernel of the map e T (R) T* --, T given by e(s (R) t*) s. for s, T.
Let M be an R-bimodule. We. define a C-homology by

t(T,M) Tor (R (R)JT (R)rR, M),

where Tor (B, denotes, for every R-bimodule B, the n left-(R @ R*, K )-
relative derived functor of B (R)(R). -. Again/.t (R, M) for 1 R --, R
is essentially the ordinary (i.e. relative Hochschild) homology H,(R, M).
From now on let " T --, R denote a surjective morphism with kernel S.
By S we understand the ideal genersted by s. with s, S. SIS carries a
natural R-bimodule-structure induced by the multiplication in T. It was
shown in [1] that the sequence

O S/S R (R) JT (R)r R JR O

is exact and K-split. This leads immediately to

THEOREM 6.1. Let ff T R be a surjective norphism of unitary K-algebras,
wi$h kernel S. Let M be an R-bimodule, and suppose is K-split. Then
here is an exac sequence"

__,/t+,(R, M --* Wor S/S, M I0 T, M t (R, M
(V’)

---.... ---* SIS @(R). M -- JT @ (R), M ---* JR (R) (R). M ---* O.
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It is easy to see that the statements corresponding to Lemmas 3.1 and 3.2
are also valid in the case of associative algebras. Therefore

THEOREM 6.2. Let 4 T ---* R be as in Theorem 6.1. Then the following
sequence is exact"

H(T, M) H(R, M) SIS (R)R(R). M ---. Hi(T, M)
(VI")

---, HI(R, M) O.

If further R is K-projective and if H( T, R (R) R* (R) M) 0 for I < i < n,
then (VIpp) may be extended to

H,(T, M) H,,(R, M) ---. Tor._ (SIS2, M) H,_(T, M)
(VII")

SIS (R)R(R),. M Hi(T, M) ---. Hi(R, M) ---. O.
Finally the procedure used in Section 5 also carries over to associative algebras.
We obtain
THEOREM 6.3. Suppose R is K projective. If Tor (R (R) R*, M) 0

]or 0 < i < n, then HA(T, M)

_
HA(R, M) for 0

_
k < n and the fol-

lowing sequence is exact"

H.+I( T, M) -* H, (R, M) --* R (R) (R). Tor (R (R) R*, M)
(IX")

H,,(T, M) H,(R, M) O.
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