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Introduction
The purpose of this paper is to prove the following

THEOREM 1. Let G be a finite group, and suppose that G contains a subgroup
M of order m, satisfying the following conditions"

(i) for all h e M, Ca (h

_
M;

(ii) for somefixed prime p, the Sylow p-subgroup ofM is cyclic and nontrivial;
(iii) q [Na(M)’M] 1, p-- 1;
(iv) if z is an element ofM of order p, and if xy z, where x and y are ele-

ments of G of order p, then x e M, except possibly in the case that both x and y are
conjugate to z- in Go, where Go is the minimal normal subgroup of G containing
M.
Then one of the following statements is true.

(I) G is a Frobenius group with M as the kernel.
(II) Na (M)/M is a cyclic group, M is cyclic of odd order, and if K denotes

the Fitting subgroup of G, then

G Na(M)K, K Na(M) 1.

In particular, G is solvable.
(III) G is isomorphic to PSL (2, p ), m p > 3.
(IV) G is isomorphic o SL(2, 2+), w >_ 1, m 2+ - 1, q 2, p 5.

Groups corresponding to statements (I), (II), (III) and (IV) will be called
of type (I), (II), (III) and (IV), respectively. It is not hard to check that
the simple groups of types (III) and (IV) indeed satisfy the assumptions of
Theorem 1. As an immediate corollary we get

COROLLARY. Let G be a non-solvable finite group, and suppose that G con-
tains a subgroup M satisfying conditions (i)-(iv). Then G is a simple group,
either of type (III) or of type (IV).

In three recent works, finite simple groups G with a subgroup M containing
the centralizer in G of each of its nonu.nit elements were investigated under the
condition that q [Na(M)’M] 2. M. Suzuki [7] has shown, that if it is
also known that the centralizer of an involution of G has order M 1, then
G is isomorphic to SL (2, 2"), MI 2 - 1 > 3. W.B. Stewart [6] has
shown, that if 311M ], then G is isomorphic to PSL(2, r) for some r. K.
Harada [1] has shown, that if G - 4 (I M + 1)’, then G is isomorphic to
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PSL (2, r) for some r, and if G contains two non-conjugate subgroups satisfy-
ing the conditions imposed on M, then G is isomorphic to SL (2, 2"), 2" > 2.
As a variation on that theme, we will prove the following.

THEOREM 2. Let G be a simple finite group, and suppose that G contains a
subgroup M of order m, such that

(a ) for all h M, Ca (h M,
(b) q-- [Na (M ) M] 2.

Assume, also, that M satisfies condition (iv) for some prime divisor p of m.
Then one of the following statements is true.

(A) p 3, G is isomorphic to PSL (2, r), where r mk +/- 1, (r 1, 2).
(B) p 5, G is isomorphic to SL(2, 2+), w >_ O, where m 2+ + 1.

Conditions (i)-(iii) of Theorem 1 exclude the case p 2. If p 3, the
above mentioned theorem of Stewart shows that if G is simple and q 1, then
assumptions (i) and (ii) alone force G to be isomorphic to some PSL(2, r).
Finally, if no exceptions are allowed in condition (iv) of Theorem 1, then it
follows from [4], Theorem 5, that G is either of type (I) or of type (II).
Theorem 1 and its corollary generalize the results of [2]. While in [2] the

subgroup M was assumed to be cyclic of prime order p, in the present paper
the corresponding restriction on M is that its Sylow p-subgroup is cyclic and
nontrivial. This generalization forces a more extensive use of previous results
and notation than was necessary in [2]. Therefore, although all the necessary
notation is summarized below, and the partial results of [3] and [4] which are
used in the proof of Theorems 1 and 2 are clearly indicated, the reader is ex-
pected to be familiar with the above mentioned papers.
The author is grateful to the referee for pointing out a mistake in the original

manuscript. In the original version of this paper, the exceptional case of
condition (iv) was stated in the form "unless both x and y are conjugate to z-1

in G". However, this condition does not necessarily hold for a normal sub-
group of G containing M, a fact which is needed in the proof. As now stated,
condition (iv) holds for every normal subgroup of G containing M. Indeed,
it is easily seen that M is a Hall subgroup of G. Since Na (M) is a Frobenius
group, M is nilpotent. Thus by [8], M is conjugate in G to A (M), where A is
any automorphism of G. It follows that Go is a characteristic sugbroup of G,
and therefore if G1 is a normal subgroup of G containing M, then Go is the
minimal normal subgroup of G1 containing M. Unfortunately, a similar slip
occurs in [2] and [4]. In both papers, condition (iv) (in our notation) should
be modified to read as stated in this work.
The proof of Theorems 1 and 2 requires a slightly more general result than

those stated in [4]. It has been mentioned in that work that the results of [3]
with respect to the prime number 3 hold for an arbitrary odd prime, provided
that we assume condition (iv) to hold, and under the additional assumption
that M is noncyclic. However, the only place where the noncyclicity of M is
used in [3] is in the proof of Corollary 4.1, which clearly requires only the fact
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that G is not of type (II). Therefore, if G is not of type (II), and if condition
(iv) holds for some prime p, then the results of [3] can be applied to that p.
We use the standard notation Ca(T), Na(T), TI and T, where T is a

subset of the group G, to denote respectively" the centralizer, normalizer, num-
ber of elements and the nonunit elements of T. The commutator subgroup
of G will be denoted by G, and T G means: T is a normal subset in G.

Proof of Theorem 1. If m p, then the result follows from the theorem of
[2]. Although conclusion (II) was stated there differently, it is easy to see
that the two forms of (II) are equivalent. Therefore, from now on, it will be
assumed that m > p.
As Na (M) is a Frobenius group, q divides p 1, hence q

_
(p 1 )/2, and

for each prime factor u of m, q divides u 1. It follows that q < (m 1
Before proceeding, the necessary notation will be introduced, following that

of [3] and [4] as closely as possible. By [3], Theorem 2.3, the order of G, g, is
given by the formula g qm (nm - 1 ). The conjugate classes of G meeting
M are denoted by C1, C, C, of which the first to contain elements of
order p; to (p 1)/q. The conjugate classes of Na(M) meeting M are
C n M, i 1, t. The elements hi, h, of M are representatives of
the C’s and also of the C n M’s. The irreducible characters of No(M),
vanishing outside M, are denoted by , i 1, t. At least one of the
characters , say , is of degree q. The exceptional characters of G associ-
ated with the ’s are X, i 1,... t. If h M, X(h) e(h) - zc,
where e and c are integers independent of i and h, e d:l and z (1)/q.
The degree of X, which is associated with the above mentioned , will be de-
noted by x, and is given by the formula

x am-q(- vc)
where a is a nonnegative integer and v (m 1)/q. Those nonexceptional
irreducible characters of G which do not vanish on Ma are denoted by
i 1, d, and each of them takes a constant integral value c on M. t is
the principal character of G. The following notation will also be needed"

c/O (1),

where i ranges over 1, d;

B ’(h’)’(h)5(hT’)

where s ranges over 1, t; and finally

B {(i,i,i*)[1

_
i_ t01, E {(i,j,k)il _i,j,k_< to}

where C. C(1.
We will proceed now with the proof. If M <3 G, then (I) holds. There-

fore, from now on, we will also assume that g :> qm. By Theorem 3.1 of [3],
the assumption that q < (m 1)/ yields c 0, T q. By Theorem 1 of
[5], we have c +/-1, i 1, q d.
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Finally, it will also be assumed that G satisfies neither conclusion (II), nor
conclusion (IV), and G is of minimal order satisfying all the above mentioned
conditions. Since G does not satisfy conclusion (II), it is easily seen that
Na (M) has no normal complement in G. It will be our aim to derive a contra-
diction from these assumptions.
From the minimality of G it follows easily that G’ G. Indeed, by Theorem

2.3, parts e and f, of [3], G 3 M, M G, M Na, (M), G G’N(M) and
G does not satisfy conclusion (II) of the theorem. Since M c G < G, G’
satisfies condition (iv). If G’ G, then by the minimality of G,
G SL(2, 24w+), p 5. But then q divides 4 and by (iii) q < 4; hence
q 2 andN(M) G, G G, a contradiction.

It has been mentioned in the introduction, that the results of [3], Sections 4
and 5, are also applicable to the present situation, after replacing the number 3
by the odd prime p, as long as G does not satisfy conclusion (II), which is one
of our assumptions. Therefore we will refer to the hypotheses and the results
of [3] in the above mentioned sense.

It follows from the assumptions (i)-(iii) that to (p 1)/q > 1 and
hence E-B is a non-empty set. It is easy to check that G satisfies Hypothe-
sis B of [3], and therefore it follows from Corollary 4.5 there, that e
and for each (i, j, k) E B the following holds"

g qm(B "t- q)(-qB/x, + S)-1.
By Corollary 4.4 of [3], for all (i, j, k) E-B,

B mA/q- q

where A is a positive integer given by

A (q- 1)/t0 if t0-- 2,

q/to otherwise.

The above formulas yield

(1) g mA[(-mA -t- q)/x -F S]-,
where x is the degree of the exceptional character X of G. By the formula
mentioned for x and in view of the fact that c 0 and e -1,

(2) x am q,

where a is a positive integer.
Since c =i=l for all i, T q and G’ G, the definition of S and the

formulas for 0(1 in section 3 of [3] yield the following inequalities:

(3) 1 (q-- 1)/(m-- 1)

_
S_ 1-F (q-- 1)/(m-l- 1).

We notice, furthermore, that the denominator in formula (1) is a positive
real number, and by the definition of A, q" < Am. Consequently, in view of
(2) and (3), we get

(mA q)/ (ma q) < S <_ 1 -I- (q 1)/(m -F 1)
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yielding

(4) re(A- a) -q- q < q- 1
ma q m-I-1

A contradiction will be derived now separately for the following two com-
plementary cases" a _< A 1 and a _> A.

Case 1. Suppose that a < A 1. Since in this case A a > 1, inequality
(4) yields

Consequently

and

(m q)/ (mA m q) < q/(m q- 1).

m- q-+- i < qA q

q/2 > q/to >_ A > m/q- q,

(5) 3q/2 > m.

However, since to > 2 and m > p, 2q < p < m/q, in contradiction to (5).
Thus Case 1 cannot occur.

Case 2. Suppose that a > A. It follows then from (1), (2), and (3) that

g <_ mA[(-mA -+- q2)/(mA q) + 1 (q- 1)/(m- 1)]-1

mA(mA q)(m- 1)
(q-- 1)(q-- A)

As A <_ q/to <_ q/2, we get

(6) g <_ qm(m- 2)(m- 1)
2(q 1)

Since g qm (nm q- 1 ), where n is a positive integer, inequality (6) yields

(7) n <_ m/q.

As G G’, it follows trom the Corollary in [5], that either m p,
GPSL(2, p)orq= 2, m= 2bq-1 >3andGSL(2,2b). Sincere>p,
the former possibility cannot occur. In the latter case, it would follow from
the fact that A q/to is an integer and to >_. 2, that p to q q- 1 5, hence
b 4w W 2, and G SL (2, 24+), w >_ 1, in contradiction to our assumptions.
Thus Case 2 cannot occur, and the proof of Theorem 1 is complete.

Proof of Theorem 2. Since M is an abelian group, the number of elements of
M of order p equals p" 1, for some positive n. Let to be the number of
conjugate classes of G, containing elements of order p; then to (p 1)/q.
Suppose first that 2 q _>_ (p" 1)/. Then, either p" 5 or p" 3.

In each case the Sylow p-subgroup of M is cyclic. In the former case, G is of
type (B) by Theorem 1, (PSL (2, 5) SL (2, 4)), and in the latter case G is
of type (A) by [6].

It remains to deal with the case q < (p 1 )1/ < (m 1)n, to _> 2. But
then, by Corollary 4.4 of [3] (in the general sense, as mentioned in the intro-
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duction), to divides q, and therefore to 2, p 1 4, p 5 and again by
Theorem 1 G is of type (B).
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