ON THE ZEROS OF STIELTJES AND VAN VLECK
POLYNOMIALS!

BY
G. M. SHAm

1. Introduction

The generalized Lamé differential equation with which we shall be con-
cerned is

1) JTm@ — adly” + Craa/@ — a))y] + Vz)y = 0,

where all ; are positive and a; < a2 < --- < @,. Also V(z) is a polynomial
of degree (p — 2) in z to be specified presently. It is known [5] that there
exist exactly C(n + p — 2, p — 2) polynomials V (z) of degree (p — 2)
such that corresponding to each such V (x) the equation (1.1) has a poly-
nomial solution S (z) of degree n. Such S (z) are called Stieltjes polynomials
and the corresponding V (z) are known as Van Vieck polynomials in the litera-
ture (see e.g. [2]). It has been shown that the zeros of all such S(x) lie in
(a1, a,) and those of the V(a) also lie in (a1, a,) ([1] and [7]). Given a
decomposition of the positive integer n into n;, ns, -, 7,1 nNonnegative
integers with Y 7= n; = m, it was shown by Stieltjes [5] that there exists
exactly one polynomial solution S(z) of degree n with n; (j = 1, 2, «--,
p — 1) zeros in (a;, @;41). This result gives completely the location of the
zeros of S(x) in various intervals (a;, a;1) (j = 1,2, -++, p — 1). The
object of this paper is to give such information about the zeros of Van Vleck
polynomials V(z). In Section 2 we prove two lemmas which, in turn, are
used in Section 3 to show that each V (z) can have at most two zeros in
any interval (a;, aj1),2 < j < p — 2. It is also shown that each of the
intervals (a1, @2), (@p-1, a,) contains at most one zero of V(z). Section 4
deals with the bounds for the zeros of S(z). These bounds can be used to
give some known bounds for various classical polynomials.

2. Lemmas

In this section we intend to construct a function whose only zeros are the
zeros of S(z) and those of the corresponding V (x). This will be done by
proving the following two lemmas.

Lemma 1. A necessary and sufficient condition that an a; (j = 1,2, -+, p)
be a zero of V (z) is that it be a zero of the derivative S’ (x) of the corresponding
S(x).
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Proof. (Necessity). Suppose that a;,1 < j < pisa zero of V(z). Since
the equation (1.1) holds for = a;, it follows that either ; is zero or 8’ (z)
has a zero at a;. In view of the hypothesis that all o, are positive we have
that a; is a zero of S (x).

(Sufficiency) Suppose that a; is a zero of 8'(z). Then equation (1.1)
yields for z = az, V (a)S(ax) = 0. Since S(ax) # 0, (S(x) has all its zeros
simple) it follows that V (z) has a zero at as .

For convenience we denote by P the class of Van Vleck polynomials V (x)
which have each no zero at any a;, 1 < j < p and the class consisting of the
remaining V (x) will be denoted by Q. It is easy to construct examples to show
that neither P nor @ need be empty. The next lemma and the results of
section 3 will deal with members of class P. It will, however, be shown at the
end of Section 3 how the results obtained for the members of class P can be
modified for the members of class Q.

LemMa 2. The zeros of a Van Vieck polynomial V (x) of degree (p — 2)
and of class P and those of the corresponding Stieltjes polynomial S (x) of degree
n are the zeros of the function

Fe)= 20531/ (x — %) + Liaa/(x — ay)

and conversely, where z; (j = 1,2, -+- ,n — 1) are the zeros of the derivative of
S (x).

Proof. Let S(x) be a Stieltjes polynomial of degree » such that the cor-
responding V (z) is of class P. Let

8@) = - @ — 25), 8'@) =n]lS @ —2),
V) = AIIRS @ — ),
A a constant. Since S’ (x;) 5 0, for zeros of S(x) are all real and distinet

[4], we have from equation (1.1), for z = a,

8" (21)/8" (1) + 2tm1as/ (@ — a;) = 0 k=1,2---,n)
or
(1) 291/ (@ — @) + 2ty (@—a;) =0 k=1,2,---,n).
Now, consider a zero & of V (z). In view of the fact that V(z) e P, & = a;,
1 <j<pand &) # 0by Lemma 1. Hence for # = #, equation (1.1)
yields ,
8" )/ () + 2Fm i/ (e — ;) = 0 k=1,2--,p—2)
or
@2) XY/ G—=)+ Ximai/ G —a) =0 (k=1,2--,p—2)
Equations (2.1) and (2.2) show that the zeros of any S (z) and those of the
corresponding V (z), if V (z) ¢ P, are among the zeros of the function

(23) Fz)= 251/ @ — @) + Zimai/ @ — o).
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On the other hand, it is easy to see that F (z) has only (n + » — 2) zeros,
equal to the number of zeros of S(z) and of V (x).

To prove the converse, we note that if » is a zero of F (z), then for z = »,
equation (1.1) becomes

24) T4 0 = a)I8"0) + S'0) 2tma/( — a)l + VE)SE) = 0.

We assert that S’(») = 0, for otherwise V(») = 0 and » = a; for some k
by Lemma 1, which would contradict that V (z) ¢ P. Hence equation (2.4)
can be simplified to

S (») 2 ooy V(»)8(v)

o TR T IO R e —a = °
which in turn gives V (»)S(v) = 0. Hence » is either a zero of S(z) or of the
corresponding V (z).

3. Zeros of V(x)

Strong use of Lemma 2 is made in obtaining the results of this section.

Taeorem I. Any interval (ax, o), 1 < k < p — 1, which does not
contain any zero of S’ (x) contains at most one zero of the corresponding V (x),
if V(z)eP.

Proof. By Lemma 2, since V (x) ¢ P, the zeros of V (z) are among the zeros
of the function

3.1) F)= 251/ @ — a7) + Zraes — ay).
Differentiating the identity (3.1), we have

Fle) = =219/ (0 — @) — Xla/ (@ — a;)

Thus F(z), apart from (» + p — 1) points of discontinuity, namely
;(j=1,2---,n—1)and a, (s= 1,2, -+, p), is differentiable in [a , a,]
and a decreasing function of x in each interval of continuity.

We now restrict our attention to a fixed interval (ax, ari1). As z— ai +,
F(x) — 4+ and as £ — az_y —, F () > — 0. Thus, if (ax, ars1) does not
tain any z;, F (z) is continuous in (ax, @x1) and decreases from + o to — ®
as x varies from a; to az.1. Hence F (z) changes sign just once in (ax, Gry1).
In view of Lemma, 2, either V (z) or S (x) has one zero, namely the zero of F (x)
in (ak , a;H.I).

An immediate sequence of the above result is the following:

CoroLLARY 1. Any interval (ax, ar1), 1 < k < p — 1, which does not
contain any zero of S’ (x) and S (x) contains precisely one zero of the correspond-
g V(z), i V(x)eP.

It is easy to see that among C(n + p — 2, p — 2) Stieltjes polynomials
S (z) of degree n there are (p — 1) polynomials which have each all its zeros
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in one interval (a;, aj1) (G = 1,2, -+, p — 1). It follows from Lemma 1
that all V(z) corresponding to such S(z) are in class P. The following
result gives the distribution of the zeros of such V ().

TreoreEMm II. If oll the zeros of a Stieltjes polynomial S (x) of degree n lie in
(@i, a11), 1 < 7 < p — 1, then no zero of the corresponding V (x) lies in (a;,
a;41) and each of the remaining (p — 2) intervals (ar, orp) (k # 7,
1 <k < p — 1) contains precisely one zero of V(x).

Proof. As all the zeros of S(z) are in (a;, aj), all &, the zeros of S’ (z)
are contained in this interval [4]. Consequently no «; or «; is contained in
any (ax, aepn) K #£j,k=1,2, -+ ,p — 1). It follows by Corollary 1 that
¥ (x) has one zero in each interval (ax, ) (B = j, bk =1,2, -« ,p — 1).
Since V (z) is of degree (p — 2) and the number of the intervals (ax, @r41)
k#=4k=1,2---,p— 1)isalso (p — 2), we have that V () has no zero
in (aj, aj1)-

Tuaeorem III.  Any two consecutive zeros of S (x) if not separated by any a; are
not separated by a zero of the corresponding V (x), if V(x) e P. More generally,
any q (¢ < n) consecutive zeros of S (x) if not separated by any a; are not sepa-
rated by zeros of the corresponding V (x), if V (x) ¢ P.

Proof. Let x, &xya1 be two successive zeros of S (z) with 2, < 2441 which
are not separated by any a;. Thus both x; and ;41 lie in the same interval,
say (aj, a;y1). We have to show that V (z) has no zero in (xx, Zx41).

By Rolle’s theorem, S’ (x) vanishes once between x; and Ty, say ab .
Thus @, < 2 < Zxs. F(z) = O0andasz — 2 —, F (&) > — . Hence
F (x) decreases continuously from 0 to — « as z varies from @, to 7. Con-
sequently 7 (z) has no zero in the open mterval (2, 2). Similarly F (z)
decreases from + to 0 as z moves from @ to @1 and has, therefore, no
zero in the open interval (¥, Zis).

To prove the last assertion, let #, < 21 < +++ < Zuye—1 be ¢ consecutive
zeros of S(x) not separated by any a;. These zeros, then, lie in the same
interval, say in (a;, a;11). In view of the simplicity and reality of the zeros
of S(z) the inequalities

’ ’
< T < T < Tppr < 200 < Tppg—2 < Tipo1 < Gjpa

hold, wherez; (j =k, - -+ , k 4+ ¢ — 2) denote the zeros of S’ () in (21 , Ta4q1).
By repeated application of the argument used in the proof of the first part of
this theorem it follows that V (z) has no zeroin (2, Tr1g-1)-

The following result gives information about the zeros of those V (z) ¢ P
whose corresponding S (z) have their zeros in more than one interval (a;, ¢;1).

THEOREM IV. Leét Zrpn < Tige < -+ ¢ < Trqr berzerosof S(x), 1 < r < m,
m (a;, aj11), 1 £ J < p — 1, then the corresponding V (x), if V (z) € P, has at
most ome zero i (aj, Trp1), at most one zero i (Tryr, @jy1) and no zero in
(@r41 5 Tetr)-
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Proof. That V (z) has no zero in (x4 , %x4r) is the content of Theorem III.
It is obvious that (a@;, 241) contains at most one zero of S’(z). In case
(@;, 2r41) does not contain any zero of S’ (z), then F (x) is a continuously
decreasing function of z in (aj, %%41). Also as ¢ — a;+, F(x) — + o and
F(2x11) = 0. Thus F(z) and by Lemma 2, V (z) has no zero in (a;, @i41).

In case (a;, Tx41) does contain one zero of 8’ (x), say 2 , then a; < zp < Thi1,
for V(x) ¢ P and zeros of S(x) are simple. Again, F(z) is a continuously
decreasing function of z in (a;, zz). As # — a;+, F(z) > +» and as
¢ — x,—, F(z) » —». Hence F(z) has precisely one zero in (a;, 2i).
This zero of F (z) cannot be a zero of S(z), since the smallest zero of S(z)
in (a;, @jp), by hypothesis, is @y and @, < 1. Therefore, this zero of
F (x) must be a zero of V(). It is easy to see that no zero of V (z) lies in
(@x , Trpa), for F (z) decreases continuously from + « to 0 in this interval. Tt
can be shown similarly that V (z) has at most one zero in (Zp1r, @j41).

The following corollaries follow from the proof of the above theorem.

CoroLLARY 2. Any interval (a;, a1), 1 < J < p — 1, which contains
(n — 1) zeros of S(x), contains at most one zero of the corresponding V (x), if
V(x)elP.

CoRrOLLARY 3. The intervals (ax, az) and (@p—1, a,) contain each at most one
zero of V(x), of V(x)eP.

We take up now the class @ of Van Vleck polynomials V (z) which have
some of the zeros at a;,2 < j < p — 1. Inview of Lemma 1, the correspond-
ing 8’ (z) have also zeros at these a¢;. We intend to show that all the results
following Lemma, 2 are still valid except that open intervals (a;, ;1) are to
be replaced by closed intervals [a;, @;.].

For convenience, let us suppose that V (2) has a zero at a; and that the re-
maining (p — 3) zeros of V (x) do not coincide with any a;. By Lemma 1,
the corresponding 8’ (z) has a zero at ax. Then, let

8@)=n@—a) ot (@—z;) and V(z) =A@ —a) [J2= (@ —t;).
For a zero z; of S(x), we have then, from equation (1.1)
8 @:)/8 () + 2P/ (@i — a;) = 0 G=12 --,n)
or
(32) X1/ (@ — 35) + 1/ (@ — &) + Dimay/ @ —a;) =0
=12 :,n).

We have used the fact that noz; = a; ( = 1,2, - -+, p) which is well known.
Also, for a zero t; # a; of V (z), equation (1.1) gives,

8" () + 8" t:) Drr s/t — a;) =0 =12 --,p—3).
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In view of Lemma 1, 8’ (¢;) # 0, thus
8" t:)/8' () + 2t i/ (b — a;) = 0

or
(33) S/t — a;) + 1/t — @)

+ 2/ (ti—a) =0 (=12 -,p—3).
Equations (3.2) and (3.3) show that the zeros of S(z) and those of the cor-
responding V (x), apart from a;, are the zeros of the function
34) G@) =i/ @—2)+1/@—a)+ Xha/@@—a).

It is clear from equation (3.4) and Lemma 2 that we can get the zeros of S ()
and those of V (z), apart from a; (which is a zero of V (z)) directly from F (z)
by replacing the zero of S’ (x) which coincides with ax by ai. Also G(z) has
(n + p — 3) zeros. Among these are n zeros of S(x) and (p — 3) zeros of
V(x). We may then state the following lemma.

Lemma 2. The zeros of a V (x), which has one zero at ar,, 2 < k < p — 1,
and the remaining zeros not coinciding with any a; , and the zeros of the correspond-
ing S (x) are the zeros of the function (x — ax )G (x), where G () ¢s given by equa-
tion (34).

In view of Lemma 2’, the modification in the proofs of earlier results in case
V(z) € Q is obvious. In those results the open intervals (a;, a;;1) are to be
replaced by the closed intervals [a;, aj1].

4, Bounds for the zeros of S(x)

The following theorem of Laguerre [3, p. 59] will be used to obtain some
bounds for the zeros of S (x).

Tuaeorem (Laguerre). Let f(x) be a polynomial of degree n and xy one of its
simple zeros. Then any circle through the points ko and zy = 20— 2(n — 1)f’ (z0)/
1" (o) separates the zeros of f () unless all the zeros lie on the circumference of this
circle. The same 1s true if a straight line replaces this circle.

The following result gives the bounds for the zeros of S ().

TraeorREM V. If 21 and x, are the smallest and the largest zeros of any Stieltjes
polynomial S (x) of degree n, then

() 2o/ (@ —a;) <2 — 1)/ (@ — )
() e/ (@ — a) >2m — 1)/ (a, — z1).

Proof. We prove only (i). (i) can be proved similarly. For z = x,,
equation (1.1) gives

(4.2) 8 @a) + (Xof=1 @i/ @ — ;)8 (22) = 0

(4.1)
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or
2 Zan:ll 1/(@n — ;) + Z?-ﬂ i/ (xa — a;) = 0,
where S(z) = [[7= (* — #,). Thus
(4.3) i/ (@ — a;) = =2 2055 1/ (@a — ;) < 0.
Also, 8" (z.) # 0, for otherwise, equation (4.2) would give &' (2,) = 0.

Therefore,
8 8 @a)/8" @a) = — (1 05/ (@ — ;).
0

T =@ — 2 — 1)8" @)/8" (@a) = @n + 2(n — 1) (LI s/ (@n — a;))~".

We assert that
o < T+ 20 — 1) (Ll 0/ (@ — a;))7,

for otherwise, since in view of inequality (4.3), 2 < 2», we could draw a circle
through z, and &, which would include all the zeros of S (x) in its interior, a
contradiction to the above theorem of Laguerre.
Thus
a < 2 < 2w+ 200 — 1) Q1 a5/ (20 — 05))7"
or

2t/ (@ — a;) < 2(n — 1)/ (a1 — ).

It may be remarked that some classical orthogonal polynomials, e.g.,
Legendre, Jacobi, and Tchebychif polynomials are special cases of Stieltjes
polynomials up to a constant factor. The bounds for their zeros given in
[6, p. 118] can be obtained directly from inequalities (4.1).
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