ON THE ZEROS OF STIELTJES AND VAN VLECK POLYNOMIALS¹ ву G. M. Shah #### 1. Introduction The generalized Lamé differential equation with which we shall be concerned is $$(1.1) \quad \prod_{i=1}^{p} (x - a_i) [y'' + (\sum_{i=1}^{p} \alpha_i / (x - a_i)) y'] + V(x) y = 0,$$ where all α_j are positive and $a_1 < a_2 < \cdots < a_p$. Also V(x) is a polynomial of degree (p-2) in x to be specified presently. It is known [5] that there exist exactly C(n + p - 2, p - 2) polynomials V(x) of degree (p - 2)such that corresponding to each such V(x) the equation (1.1) has a polynomial solution S(x) of degree n. Such S(x) are called Stieltjes polynomials and the corresponding V(x) are known as Van Vleck polynomials in the literature (see e.g. [2]). It has been shown that the zeros of all such S(x) lie in (a_1, a_p) and those of the V(x) also lie in (a_1, a_p) ([1] and [7]). Given a decomposition of the positive integer n into n_1, n_2, \dots, n_{p-1} nonnegative integers with $\sum_{j=1}^{p-1} n_j = n$, it was shown by Stieltjes [5] that there exists exactly one polynomial solution S(x) of degree n with n_i $(j = 1, 2, \dots, n_i)$ p-1) zeros in (a_j, a_{j+1}) . This result gives completely the location of the zeros of S(x) in various intervals (a_j, a_{j+1}) $(j = 1, 2, \dots, p-1)$. object of this paper is to give such information about the zeros of Van Vleck polynomials V(x). In Section 2 we prove two lemmas which, in turn, are used in Section 3 to show that each V(x) can have at most two zeros in any interval $(a_j, a_{j+1}), 2 \leq j \leq p-2$. It is also shown that each of the intervals $(a_1, a_2), (a_{p-1}, a_p)$ contains at most one zero of V(x). Section 4 deals with the bounds for the zeros of S(x). These bounds can be used to give some known bounds for various classical polynomials. ### 2. Lemmas In this section we intend to construct a function whose only zeros are the zeros of S(x) and those of the corresponding V(x). This will be done by proving the following two lemmas. LEMMA 1. A necessary and sufficient condition that an a_j $(j = 1, 2, \dots, p)$ be a zero of V(x) is that it be a zero of the derivative S'(x) of the corresponding S(x). Received July 8, 1968. ¹ This paper is part of the author's doctoral dissertation written at the University of Wisconsin-Milwaukee under the supervision of Professor M. Marden. *Proof.* (Necessity). Suppose that a_j , $1 \le j \le p$ is a zero of V(x). Since the equation (1.1) holds for $x = a_j$, it follows that either α_j is zero or S'(x) has a zero at a_j . In view of the hypothesis that all α_j are positive we have that a_j is a zero of S'(x). (Sufficiency) Suppose that a_k is a zero of S'(x). Then equation (1.1) yields for $x = a_k$, $V(a_k)S(a_k) = 0$. Since $S(a_k) \neq 0$, (S(x) has all its zeros simple) it follows that V(x) has a zero at a_k . For convenience we denote by P the class of Van Vleck polynomials V(x) which have each no zero at any a_j , $1 \le j \le p$ and the class consisting of the remaining V(x) will be denoted by Q. It is easy to construct examples to show that neither P nor Q need be empty. The next lemma and the results of section 3 will deal with members of class P. It will, however, be shown at the end of Section 3 how the results obtained for the members of class P can be modified for the members of class Q. LEMMA 2. The zeros of a Van Vleck polynomial V(x) of degree (p-2) and of class P and those of the corresponding Stieltjes polynomial S(x) of degree n are the zeros of the function $$F(x) = \sum_{j=1}^{n-1} 1/(x - x_j') + \sum_{j=1}^{p} \alpha_j/(x - a_j)$$ and conversely, where x'_j $(j = 1, 2, \dots, n - 1)$ are the zeros of the derivative of S(x). *Proof.* Let S(x) be a Stieltjes polynomial of degree n such that the corresponding V(x) is of class P. Let $$S(x) = \prod_{j=1}^{n} (x - x_j), \quad S'(x) = n \prod_{j=1}^{n-1} (x - x'_j),$$ $$V(x) = A \prod_{k=1}^{p-2} (x - t_k),$$ A a constant. Since $S'(x_k) \neq 0$, for zeros of S(x) are all real and distinct [4], we have from equation (1.1), for $x = x_k$, $$S''(x_k)/S'(x_k) + \sum_{j=1}^{p} \alpha_j/(x_k - a_j) = 0$$ $(k = 1, 2, \dots, n)$ \mathbf{or} (2.1) $$\sum_{j=1}^{n-1} 1/(x_k - x_j) + \sum_{j=1}^{p} \alpha_j (x_k - a_j) = 0 \qquad (k = 1, 2, \dots, n).$$ Now, consider a zero t_k of V(x). In view of the fact that $V(x) \in P$, $t_k \neq a_j$, $1 \leq j \leq p$ and $S'(t_k) \neq 0$ by Lemma 1. Hence for $x = t_k$, equation (1.1) yields $$S''(t_k)/S'(t_k) + \sum_{j=1}^{p} \alpha_j/(t_k - a_j) = 0 \qquad (k = 1, 2, \dots, p-2)$$ or (2.2) $$\sum_{j=1}^{n-1} 1/(t_k - x_j') + \sum_{j=1}^{p} \alpha_j/(t_k - a_j) = 0$$ $(k = 1, 2, \dots, p-2).$ Equations (2.1) and (2.2) show that the zeros of any S(x) and those of the corresponding V(x), if $V(x) \in P$, are among the zeros of the function (2.3) $$F(x) \equiv \sum_{j=1}^{n-1} 1/(x - x_j') + \sum_{j=1}^{p} \alpha_j/(x - a_j).$$ 524 G. M. SHAH On the other hand, it is easy to see that F(x) has only (n + p - 2) zeros, equal to the number of zeros of S(x) and of V(x). To prove the converse, we note that if ν is a zero of F(x), then for $x = \nu$, equation (1.1) becomes $$(2.4) \quad \prod_{j=1}^{p} (\nu - a_j) [S''(\nu) + S'(\nu) \sum_{j=1}^{p} \alpha_j / (\nu - a_j)] + V(\nu) S(\nu) = 0.$$ We assert that $S'(\nu) \neq 0$, for otherwise $V(\nu) = 0$ and $\nu = a_k$ for some k by Lemma 1, which would contradict that $V(x) \in P$. Hence equation (2.4) can be simplified to $$\frac{S''(\nu)}{S'(\nu)} + \sum_{j=1}^{p} \frac{\alpha_j}{\nu - a_j} + \frac{V(\nu)S(\nu)}{S'(\nu) \prod_{j=1}^{p} (\nu - a_j)} = 0$$ which in turn gives $V(\nu)S(\nu) = 0$. Hence ν is either a zero of S(x) or of the corresponding V(x). ### 3. Zeros of V(x) Strong use of Lemma 2 is made in obtaining the results of this section. THEOREM I. Any interval (a_k, a_{k+1}) , $1 \le k \le p-1$, which does not contain any zero of S'(x) contains at most one zero of the corresponding V(x), if $V(x) \in P$. *Proof.* By Lemma 2, since $V(x) \in P$, the zeros of V(x) are among the zeros of the function (3.1) $$F(x) = \sum_{j=1}^{n-1} 1/(x - x_j') + \sum_{j=1}^{p} \alpha_j(x - a_j).$$ Differentiating the identity (3.1), we have $$F'(x) = -\sum_{j=1}^{n-1} 1/(x - x_j')^2 - \sum_{j=1}^{p} \alpha_j/(x - a_j)^2.$$ Thus F(x), apart from (n + p - 1) points of discontinuity, namely x'_j $(j = 1, 2, \dots, n - 1)$ and a_s $(s = 1, 2, \dots, p)$, is differentiable in $[a_1, a_p]$ and a decreasing function of x in each interval of continuity. We now restrict our attention to a fixed interval (a_k, a_{k+1}) . As $x \to a_k +$, $F(x) \to +\infty$ and as $x \to a_{k-1} -$, $F(x) \to -\infty$. Thus, if (a_k, a_{k+1}) does not tain any x_j' , F(x) is continuous in (a_k, a_{k+1}) and decreases from $+\infty$ to $-\infty$ as x varies from a_k to a_{k+1} . Hence F(x) changes sign just once in (a_k, a_{k+1}) . In view of Lemma 2, either V(x) or S(x) has one zero, namely the zero of F(x) in (a_k, a_{k+1}) . An immediate sequence of the above result is the following: COROLLARY 1. Any interval (a_k, a_{k+1}) , $1 \le k \le p-1$, which does not contain any zero of S'(x) and S(x) contains precisely one zero of the corresponding V(x), if $V(x) \in P$. It is easy to see that among C(n + p - 2, p - 2) Stieltjes polynomials S(x) of degree n there are (p - 1) polynomials which have each all its zeros in one interval (a_j, a_{j+1}) $(j = 1, 2, \dots, p-1)$. It follows from Lemma 1 that all V(x) corresponding to such S(x) are in class P. The following result gives the distribution of the zeros of such V(x). THEOREM II. If all the zeros of a Stieltjes polynomial S(x) of degree n lie in $(a_j, a_{j+1}), 1 \leq j \leq p-1$, then no zero of the corresponding V(x) lies in (a_j, a_{j+1}) and each of the remaining (p-2) intervals (a_k, a_{k+1}) $(k \neq j, 1 \leq k \leq p-1)$ contains precisely one zero of V(x). **Proof.** As all the zeros of S(x) are in (a_j, a_{j+1}) , all x'_j , the zeros of S'(x) are contained in this interval [4]. Consequently no x'_j or x_j is contained in any (a_k, a_{k+1}) $(k \neq j, k = 1, 2, \dots, p-1)$. It follows by Corollary 1 that V(x) has one zero in each interval (a_k, a_{k+1}) $(k \neq j, k = 1, 2, \dots, p-1)$. Since V(x) is of degree (p-2) and the number of the intervals (a_k, a_{k+1}) $(k \neq j, k = 1, 2, \dots, p-1)$ is also (p-2), we have that V(x) has no zero in (a_i, a_{i+1}) . THEOREM III. Any two consecutive zeros of S(x) if not separated by any a_j are not separated by a zero of the corresponding V(x), if $V(x) \in P$. More generally, any q ($q \le n$) consecutive zeros of S(x) if not separated by any a_j are not separated by zeros of the corresponding V(x), if $V(x) \in P$. *Proof.* Let x_k , x_{k+1} be two successive zeros of S(x) with $x_k < x_{k+1}$ which are not separated by any a_j . Thus both x_k and x_{k+1} lie in the same interval, say (a_j, a_{j+1}) . We have to show that V(x) has no zero in (x_k, x_{k+1}) . By Rolle's theorem, S'(x) vanishes once between x_k and x_{k+1} , say at x'_k . Thus $x_k < x'_k < x_{k+1}$. $F(x_k) = 0$ and as $x \to x'_k - F(x) \to -\infty$. Hence F(x) decreases continuously from 0 to $-\infty$ as x varies from x_k to x'_k . Consequently F(x) has no zero in the open interval (x_k, x'_k) . Similarly F(x) decreases from $+\infty$ to 0 as x moves from x'_k to x_{k+1} and has, therefore, no zero in the open interval (x'_k, x_{k+1}) . To prove the last assertion, let $x_k < x_{k+1} < \cdots < x_{k+q-1}$ be q consecutive zeros of S(x) not separated by any a_j . These zeros, then, lie in the same interval, say in (a_j, a_{j+1}) . In view of the simplicity and reality of the zeros of S(x) the inequalities $$a_{j} < x_{k} < x'_{k} < x_{k+1} < \cdots < x'_{k+q-2} < x_{k+q-1} < a_{j+1}$$ hold, where x'_j $(j = k, \dots, k + q - 2)$ denote the zeros of S'(x) in (x_k, x_{k+q-1}) . By repeated application of the argument used in the proof of the first part of this theorem it follows that V(x) has no zero in (x_k, x_{k+q-1}) . The following result gives information about the zeros of those $V(x) \in P$ whose corresponding S(x) have their zeros in more than one interval (a_j, a_{j+1}) . THEOREM IV. Let $x_{k+1} < x_{k+2} < \cdots < x_{k+r}$ be r zeros of S(x), $1 \le r \le n$, in (a_j, a_{j+1}) , $1 \le j \le p-1$, then the corresponding V(x), if $V(x) \in P$, has at most one zero in (a_j, x_{k+1}) , at most one zero in (x_{k+r}, a_{j+1}) and no zero in (x_{k+1}, x_{k+r}) . 526 G. M. SHAH *Proof.* That V(x) has no zero in (x_{k+1}, x_{k+r}) is the content of Theorem III. It is obvious that (a_j, x_{k+1}) contains at most one zero of S'(x). In case (a_j, x_{k+1}) does not contain any zero of S'(x), then F(x) is a continuously decreasing function of x in (a_j, x_{k+1}) . Also as $x \to a_j +, F(x) \to +\infty$ and $F(x_{k+1}) = 0$. Thus F(x) and by Lemma 2, V(x) has no zero in (a_j, x_{k+1}) . In case (a_j, x_{k+1}) does contain one zero of S'(x), say x'_k , then $a_j < x'_k < x_{k+1}$, for $V(x) \in P$ and zeros of S(x) are simple. Again, F(x) is a continuously decreasing function of x in (a_j, x'_k) . As $x \to a_j +$, $F(x) \to +\infty$ and as $x \to x'_k -$, $F(x) \to -\infty$. Hence F(x) has precisely one zero in (a_j, x'_k) . This zero of F(x) cannot be a zero of S(x), since the smallest zero of S(x) in (a_j, a_{j+1}) , by hypothesis, is x_{k+1} and $x'_k < x_{k+1}$. Therefore, this zero of F(x) must be a zero of F(x). It is easy to see that no zero of F(x) lies in F(x) decreases continuously from F(x) to 0 in this interval. It can be shown similarly that F(x) has at most one zero in F(x) and F(x) decreases continuously from F(x) to 0 in this interval. The following corollaries follow from the proof of the above theorem. COROLLARY 2. Any interval (a_j, a_{j+1}) , $1 \le j \le p-1$, which contains (n-1) zeros of S(x), contains at most one zero of the corresponding V(x), if $V(x) \in P$. COROLLARY 3. The intervals (a_1, a_2) and (a_{p-1}, a_p) contain each at most one zero of V(x), if $V(x) \in P$. We take up now the class Q of Van Vleck polynomials V(x) which have some of the zeros at a_j , $2 \le j \le p-1$. In view of Lemma 1, the corresponding S'(x) have also zeros at these a_j . We intend to show that all the results following Lemma 2 are still valid except that open intervals (a_j, a_{j+1}) are to be replaced by closed intervals $[a_j, a_{j+1}]$. For convenience, let us suppose that V(x) has a zero at a_k and that the remaining (p-3) zeros of V(x) do not coincide with any a_j . By Lemma 1, the corresponding S'(x) has a zero at a_k . Then, let $$S'(x) = n(x - a_k) \sum_{j=1}^{n-2} (x - x'_j)$$ and $V(x) = A(x - a_k) \prod_{j=1}^{p-3} (x - t_j)$. For a zero x_i of S(x), we have then, from equation (1.1) $$S''(x_i)/S'(x_i) + \sum_{j=1}^{p} \alpha_j/(x_i - a_j) = 0$$ $(i = 1, 2, \dots, n)$ or (3.2) $$\sum_{j=1}^{n-2} 1/(x_i - x_j') + 1/(x_i - a_k) + \sum_{j=1}^{n} \alpha_j/(x_i - a_j) = 0$$ $$(i = 1, 2, \dots, n).$$ We have used the fact that no $x_i = a_j$ $(j = 1, 2, \dots, p)$ which is well known. Also, for a zero $t_i \neq a_k$ of V(x), equation (1.1) gives, $$S''(t_i) + S'(t_i) \sum_{j=1}^{p} \alpha_j / (t_i - a_j) = 0 (i = 1, 2, \dots, p - 3).$$ In view of Lemma 1, $S'(t_i) \neq 0$, thus $$S''(t_i)/S'(t_i) + \sum_{j=1}^{p} \alpha_j/(t_i - a_j) = 0$$ or (3.3) $$\sum_{j=1}^{n-2} 1/(t_i - x_j') + 1/(t_i - a_k) + \sum_{j=1}^{p} \alpha_j/(t_i - a_j) = 0 \quad (i = 1, 2, \dots, p-3).$$ Equations (3.2) and (3.3) show that the zeros of S(x) and those of the corresponding V(x), apart from a_k , are the zeros of the function (3.4) $$G(x) = \sum_{j=1}^{n-2} 1/(x-x_j') + 1/(x-a_k) + \sum_{j=1}^{p} \alpha_j/(x-a_j).$$ It is clear from equation (3.4) and Lemma 2 that we can get the zeros of S(x) and those of V(x), apart from a_k (which is a zero of V(x)) directly from F(x) by replacing the zero of S'(x) which coincides with a_k by a_k . Also G(x) has (n + p - 3) zeros. Among these are n zeros of S(x) and (p - 3) zeros of V(x). We may then state the following lemma. LEMMA 2'. The zeros of a V(x), which has one zero at a_k , $2 \le k \le p-1$, and the remaining zeros not coinciding with any a_j , and the zeros of the corresponding S(x) are the zeros of the function $(x-a_k)G(x)$, where G(x) is given by equation (3.4). In view of Lemma 2', the modification in the proofs of earlier results in case $V(x) \in Q$ is obvious. In those results the open intervals (a_j, a_{j+1}) are to be replaced by the closed intervals $[a_j, a_{j+1}]$. ## 4. Bounds for the zeros of S(x) The following theorem of Laguerre [3, p. 59] will be used to obtain some bounds for the zeros of S(x). THEOREM (Laguerre). Let f(x) be a polynomial of degree n and x_0 one of its simple zeros. Then any circle through the points x_0 and $x'_0 = x_0 - 2(n-1)f'(x_0)/f''(x_0)$ separates the zeros of f(x) unless all the zeros lie on the circumference of this circle. The same is true if a straight line replaces this circle. The following result gives the bounds for the zeros of S(x). THEOREM V. If x_1 and x_n are the smallest and the largest zeros of any Stieltjes polynomial S(x) of degree n, then (4.1) (i) $$\sum_{j=1}^{p} \alpha_j / (x_n - a_j) < 2(n-1)/(a_1 - x_n)$$ (ii) $\sum_{j=1}^{p} \alpha_j / (x_1 - a_j) > 2(n-1)/(a_p - x_1)$. *Proof.* We prove only (i). (ii) can be proved similarly. For $x = x_n$, equation (1.1) gives $$(4.2) S''(x_n) + (\sum_{j=1}^{p} \alpha_j / (x_n - a_j)) S'(x_n) = 0$$ \mathbf{or} $$2\sum_{j=1}^{n-1} 1/(x_n-x_j) + \sum_{j=1}^{p} \alpha_j/(x_n-a_j) = 0,$$ where $S(x) = \prod_{j=1}^{n} (x - x_n)$. Thus (4.3) $$\sum_{j=1}^{p} \alpha_j / (x_n - a_j) = -2 \sum_{j=1}^{n-1} 1 / (x_n - x_j) < 0.$$ Also, $S''(x_n) \neq 0$, for otherwise, equation (4.2) would give $S'(x_n) = 0$. Therefore, $$S'(x_n)/S''(x_n) = -(\sum_{i=1}^{p} \alpha_i/(x_n - a_i))^{-1}$$ So $$x'_{n} = x_{n} - 2(n-1)S'(x_{n})/S''(x_{n}) = x_{n} + 2(n-1)(\sum_{j=1}^{p} \alpha_{j}/(x_{n} - a_{j}))^{-1}.$$ We assert that $$x_1 < x_n + 2(n-1)(\sum_{j=1}^{p} \alpha_j/(x_n - a_j))^{-1}$$ for otherwise, since in view of inequality (4.3), $x'_n < x_n$, we could draw a circle through x_n and x'_n which would include all the zeros of S(x) in its interior, a contradiction to the above theorem of Laguerre. Thus $$a_1 < x_1 < x_n + 2(n-1)(\sum_{j=1}^{p} a_j/(x_n - a_j))^{-1}$$ \mathbf{or} $$\sum_{j=1}^{p} \alpha_j/(x_n-a_j) < 2(n-1)/(a_1-x_n).$$ It may be remarked that some classical orthogonal polynomials, e.g., Legendre, Jacobi, and Tchebychif polynomials are special cases of Stieltjes polynomials up to a constant factor. The bounds for their zeros given in [6, p. 118] can be obtained directly from inequalities (4.1). #### BIBLIOGRAPHY - M. BÖCHER, The roots of polynomials which satisfy certain linear differential equations of the second order, Bull. Amer. Math. Soc., vol. 4 (1898), pp. 256-258. - M. Marden, Geometry of polynomials, 2nd ed., Math. Surveys, no. 3, Amer. Math. Soc., Providence, R.I., 1966. - G. PÓLYA AND G. SZEGÖ, Aufgaben Und Lehrsätze aus der Analysis, vol. 2, Springer, Berlin, 1925. - G. M. Shah, Zeros of polynomial solutions of generalized Lamé differential equation, Ph.D. Dissertation, University of Wisconsin-Milwaukee, 1966. - 5. T. J. STIELTJES, Sur certains, polynômes que vérifient une équation différentielle linéaire du second, ordre et sur la theorie des fonctions de Lamé, Acta Math., vol. 6 (1885) pp. 321-326. - G. Szegö, Orthogonal Polynomials, 2nd ed., American Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959. - E. B. VAN VLECK, On the polynomials of Stieltjes, Bull. Amer. Math. Soc., vol. 4 (1898), pp. 426-438. University of Wisconsin-Milwaukee. Milwaukee, Wisconsin